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Abstract— This work considers autonomous fruit picking
using an aerial grasping robot by tightly integrating vision-
based perception and control within a learning framework. The
architecture employs a convolutional neural network (CNN) to
encode images and vehicle state information. This encoding
is passed into a sub-task classifier and associated reference
waypoint generator. The classifier is trained to predict the
current phase of the task being executed: Staging, Picking, or
Reset. Based on the predicted phase, the waypoint generator
predicts a set of obstacle-free 6-DOF waypoints, which serve
as a reference trajectory for model-predictive control (MPC).
By iteratively generating and following these trajectories, the
aerial manipulator safely approaches a mock-up goal fruit and
removes it from the tree. The proposed approach is validated in
29 flight tests, through a comparison to a conventional baseline
approach, and an ablation study on its key features. Overall, the
approach achieved comparable success rates to the conventional
approach, while reaching the goal faster.

I. INTRODUCTION

Unmanned aerial vehicles (UAV) are well suited to carry
out tasks which would be otherwise inefficient or unsafe
for human-piloted vehicles. These devices have been utilized
successfully in autonomous racing, photography, and map-
ping. An unmanned aerial vehicle (UAV) must be aware of its
environment to avoid collisions en route to its specified goal.
In aerial manipulation tasks, such as package delivery [1],
infrastructure inspection [2], or construction [3], the UAV
must interact with the environment, not merely avoid it. This
requires two important processes: sensing and path planning.
In the first, information from onboard sensors (cameras,
LIDARs, IMUs, etc.) is used to map out and understand
the UAV’s surroundings, estimating objects of interests such
as goals and the obstacles. In the second, this information
about the environment is used to generate a plan of action,
allowing the UAV to achieve its aim safely and efficiently.

This work describes the development of an algorithm for
picking fruits off of trees using a system comprised of a
quadrotor with an attached rigid arm. This system is under-
actuated and has no prior knowledge of the environment.
A convolutional neural network (CNN) is taught to mimic
an expert trajectory planner, and to predict a safe, collision-
free set of waypoints that converge towards the desired goal
(i.e. an orange). The ResNet-based CNN is trained end-to-
end to create a deep integrated pipeline for both sensing
and path planning. This allows the model to integrate visual

1Gabriel Baraban and Marin Kobilarov are with the Department of
Mechanical Engineering, Johns Hopkins University, 3400 N Charles Str,
Baltimore, MD 21218, USA gbaraban|marin@jhu.edu

2 Siddharth Kothiyal is with the Laboratory for Computational Sensing
and Robotics, Johns Hopkins University, 3400 N Charles Str, Baltimore,
MD 21218, USA sidkothiyal@jhu.edu

features largely ignored by prior methods, such as leaf edges,
corners, and shadows, when inferring waypoints to guide
the UAV. The model outputs waypoints to guide the UAV.
Dynamic feasibility is enforced by an optimization step
using Differential Dynamic Programming (DDP) to produce
a dense trajectory out of these inferred waypoints. By using
this network as a receding horizon path planner, the UAV is
able to bundle together successive predictions and reach the
goal.

Imitation learning has been trained to successfully perform
complex tasks with robotic systems. Conventional imitation
learning pipelines generally require a large amount of data,
as the dataset must cover most of the spectrum of the
expected input data space. Dataset creation for such pipelines
also relies on the data being representative of all scenar-
ios encountered by the robotic system. Without this equal
distribution, imitation learning based systems can suffer in
quality, requiring supplemental strategies such as DAgger [4]
to improve the model performance (as in Loquercio et al.
[5]).

This work proposes a variation to the conventional imita-
tion learning, as shown in Figure 3. The network contains
a common ResNet like CNN sub-network, followed by a
set of dense sub-networks, each used to perform waypoint
prediction during different phases encountered by the UAV.
Sharing a common CNN allows the network to encode the
visual information sensed from the environment into a latent
vector representation, which is then used by each of the dense
sub-networks for optimizing waypoint prediction in their
respective phases. The latent vector is concatenated with state
information before passing through the dense sub-networks.
The network also takes in as input state information, which
is concatenated to the latent vector representation encoded
by the CNN.

In order to generate a dataset for training the network,
a visual-servoing method was created. It solves the fruit-
picking problem using a state machine implemented in
the Aerial Autonomy [6] software architecture. This state
machine acts as a deterministic Markov Decision Process
(MDP), with each state solving a distinct sub-problem of
the overall fruit-picking task. This method was also used as
a comparison baseline for the network-based solution.
A. Problem Formulation

The system used in this work is an aerial manipulator with
a fixed arm. The position of the quadrotor base, p ∈ R3, its
orientation R ∈ SO(3), and the arm joint angles r ∈ R2

together form the posture of the system, q = (p,R, r). This



defines two transforms in SE(3): g(q) =

[
R p
0 1

]
, the loca-

tion and attitude of the quadrotor base, and Φ(r) the relative
pose of the end effector in the body frame. When multiplied,
the resulting transform ge(q) = g(q)Φ(r) ∈ SE(3) is
the position and orientation of the end effector in world
coordinates. The geometry of the system in euclidean space
is defined as A(q), the set of points within the workspace
W .

The system velocity q̇ = (v, ω, ṙ), is the derivative of each
element of q: the body-fixed linear and angular velocities
v, ω ∈ R3 and the joint velocities ṙ ∈ R2. Because the arm
is fixed, ṙ = 0. The velocities are used in homogeneous
coordinates using the formulas:

V̂ =

[
ω̂ v
0 0

]
, ω̂ =

 0 −ωx ωy

ωz 0 −ωx

−ωy ωx 0

 .
The full state of the system x = (q, q̇) is controlled by the
input u ∈ R4. u is composed of three torques around the
body-fixed axes, and a thrust force applied along the local
z-axis. The dynamics are of the form ẋ = f(x, u) based on
the derivations in [7] and [8]:

ġ(q) = g(q)V̂ , M(q)V̇ + b(x) = B(q)u (1)
M(q), b(x), B(q) are the mass matrix, bias vector, and
control transformation matrix.

The goal of robotic fruit picking is to compute a reference
trajectory x̄(t) and a series of control inputs u(t) minimizing
the cost: ∫ tf

t0

1

2
‖x(t)−x̄(t)‖2Q +

1

2
‖u(t)‖2Rdt

subject to the constraints:

ẋ = f(x(t), u(t)) (2)
A(q(t)) ∩ E = ∅ (3)

g(x̄(tf ))Φ(r) =

[
? pgoal
0 1

]
(4)

The first constraint (Equation 2) enforces the dynamics from
equation 1. The second constraint (Equation 3) prevents the
system from colliding with the environmental obstacles, de-
fined through the set of points E ⊂ W . The third constraint
(Equation 4) requires that the final posture of the system
place the end-effector position at pgoal ∈ R3, the location of
the fruit. The values of x are fully observable, and accessed
through the hardware suite onboard the system. E and pgoal
are not known a priori and must be estimated online through
a fusion of camera images and state measurements.
B. Imitation Learning Sub-Tasks

The fruit-picking task outlined above requires a wide
variety of actions from the UAV. At the beginning of a trial,
it moves quickly to close the gap between the vehicle and
the tree. Once it nears the tree, its speed slows. It must move
more precisely, avoiding collisions with the tree and lining
up the end-effector with the fruit. This, in addition to the
dynamical relationship between successive states, prevents
the training dataset from being independent and identically
distributed (i.i.d), a common expectation of machine learning
data.

To allow for visual-servoing, the larger task of fruit picking
was modelled as an MDP, divided into three control phases.
Each phase solves a discrete-time stochastic control problem:

• Staging: The quadcopter begins in this state and makes
large motions to reach an offset location within 1 meter
of the goal.

• Picking: Once the goal is close, the quadcopter takes
smaller, more-precise steps to grasp the fruit.

• Reset: If any malfunction occurs during the Picking
phase, the system returns to the Staging location, so
it can make another attempt.

Each of these phases has greater internal consistency, and
training a separate model for each phase leads to better
learning performance than training one network for the entire
dataset. Training these networks is made more efficient by
using a shared visual CNN-based encoder, as a significant
amount of visual information will have an overlap in multiple
phases. In addition to learning behaviors for each phase,
the network also learns to predict its current phase, thereby
choosing the next action to follow.
C. Related Work
1) Aerial Manipulation

Aerial manipulation research varies widely, using systems
of a variety of sizes, sensors, and end-effectors. Some works,
such as Zhang et al. [9], use overactuated systems, allowing
the end-effector dynamics to be completely decoupled from
the UAV. Others prefer lightweight underactuated systems,
using the coupling between the UAV and end-effector as
an advantage. For example, Welde et al. [10] prove that
underactuated aerial manipulators are differentially flat, al-
lowing for easy motion planning in the flat output space and
Spurny et al. [11] demonstrate an algorithm for cooperative
search, picking, and placing of a set of unknown ferrous
objects using a team of small UAVs. For sensing, a aerial
manipulators often use onboard cameras, allowing for vi-
sual servoing, such as in Mebarki et al. [12]. This visual
information can be synthesized with IMU data to perform
visual-inertial odometry, as in [13]. Other works choose less
conventional sensing techniques, such as Mulgaonkar et al.
[14], which uses collisions with the environment to create a
map of the surroundings. The manipulators used in different
research works range from simple 1-DOF grippers [11],
to more complex open-chain manipulators [9], to bimanual
end-effectors for more complex manipulations [15]. More
detail on the diversity of aerial manipulation systems used
in research can be found in the literature reviews by Ding et
al. [16] and Samadikhoshkho et al. [17].
2) Mapping

Classical machine learning approaches to UAV navigation
aim to distill an image into specific measurements of object
locations and orientations, which are then passed into a
planning algorithm. UAV control algorithms for obstacle
avoidance often use an explicit map of the environment.
This may be accomplished through a point cloud (often
provided by a depth camera) with processing via algorithms
like RANSAC [18] or point clustering [19]. In another



application,Francis et al. [20], use the differences between
successive frames to model the motion of pixels in the scene.

Beyond these classical methods, Foehn et al. [21] use
convolutional neural networks (CNNs) to map the locations
of objects in an environment (in their work, gates for drone
racing). Liu et al. [22] uses CNNs to map the location of fruit
in mango orchards. The above methods remove all visual
information not related to this explicit output.
3) Path Planning

Given input information such as a map or a measurement
of goal and obstacle locations, there are several ways to pro-
duce a safe, feasible trajectory. Typically, these approaches
fall into two categories, sampling and optimization. Sampling
approaches search the state space [23] or control space [24],
discarding any values that result in unsafe behaviour. These
safe states are then converted into a full trajectory, through
a minimum snap trajectory [25], [26], a polynomial or b-
spline fit [27]. Optimization approaches focus exclusively
on identifying and minimizing costs, skipping the sampling
step. They apply costs to collisions and rewards to reaching
goal spaces, (see [28]). Other methods, such as [29], [30],
find time-optimal paths.

Machine learning approaches to path planning typically
take in the state and environment observation vectors and use
fully connected networks to infer control actions. Hwangbo
et al. [31] use reinforcement learning to train a UAV to
quickly reach a stable equilibrium from any random initial-
ization. Song et al. [32] use a similar approach, but use an
observation of racing gates to infer u as well.
4) Imitation Learning

The present work aims to explore UAV navigation in un-
certain environments. In such contexts, Kaufmann et al. [33],
use deep learning to infer commands directly from images,
allowing the UAV to perform acrobatic maneuvers without
full state information. Similarly, the NVIDIA PilotNet [34]
infers a ground vehicle steering angle,and Yang et al. [35]
builds on PilotNet to output both a steering angle and speed
goal. The above works train networks using a regression-
based cost function. The cost function used in training the
fruit-picking network is based on work by Kim et al. [36],
which found that classification-based cross-entropy loss can
improve on the traditional regression-based loss.

II. BASELINE APPROACH

Before training a network to pick an fruit, we first develop
a method using existing techniques. This allows the novel
approach below to be compared with the current state of
the art. In this baseline approach a neural network segments
the fruit from the color image. The centroid pixel is then
back-projected using the depth image, providing a three
dimensional fruit position in the camera frame. Finally, the
pixels around the fruit are used to estimate a non-colliding
approach angle.
A. Control Framework

The baseline control algorithm performs the following
steps (shown in Figure 1):

1) The onboard camera captures color and depth images.

2) The color image is passed through a segmentation
network to find the location of the goal.

3) The location of the centroid in the camera coordinate
frame is calculated using the depth image and the
camera’s intrinsic matrix.

4) The points near the centroid are back-projected, creat-
ing an estimate of the local tangent plane.

5) A goal position and yaw are calculated from the
position of the fruit and the normal vector to the
tangent plane.

6) A polynomial reference trajectory is calculated, lever-
aging the differential flatness of the quadcopter dynam-
ics to generate a trajectory x̄(t) from the position and
yaw goal.

7) A low-level controller tracks x̄(t) while a new tra-
jectory update can be produced from the next camera
frame.

B. Segmentation
To be able to successfully attempt trajectory generation

to the goal, the environment must be sensed to locate the
fruit. Having access to only the onboard camera for sensing,
a custom segmentation network (based on the U-Net archi-
tecture [37]) was trained to achieve this task. For segmenting
out the fruit in the image, four convolutional layers, of sizes
128, 256, 512, and 512, respectively, are applied sequentially
to the image. Three transpose convolutional layers, of sizes
512, 256, and 128, are then applied, creating an output of the
same size as the original input image. Two skip connections
are added: one between layer 1 and layer 7, and the other
between layer 2 and layer 6. After training on a dataset of
10,000 hand-labeled images, the network was able to predict
the location of the fruit in the picture with an Intersection
over Union of 93.49%. The result can be seen in Figure 2.
C. 3D Projection and Plane Estimation

The centroid of the segmented pixels are then projected
to 3D using the depth channel of the camera and the
pinhole camera projection model. Knowing the location of
the fruit gives the algorithm the information it needs to
reach the final goal, but not enough to avoid collisions
with the environment. In order to approach the fruit from a
safe angle, the pixels near the centroid are back-projected
into three dimensional space and transformed into world
frame coordinates. The resulting point cloud is fit to a plane
using RANSAC [18]. The normal vector to this plane η
is an estimate of the safest approach angle for the aerial
manipulator. In order to ensure safe flight, the z coordinate
of η is set to zero, so that the quadcopter will approach from
a horizontal direction. An example is shown in Figure 2.
D. Trajectory Generation

During flight, the segmentation and plane estimation pro-
cesses occur at 5 hz, continuously updating the estimate
of pgoal and η. As this system completely depends on the
camera for estimating the location of the fruit, it must ensure
the fruit remains in view throughout the process. To ensure
this happens smoothly, especially towards the end of the
process (where the gripper is likely to block the view to the
fruit), a staging state is added, which makes the quadcopter
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Fig. 1. Flow of data for baseline approach

Fig. 2. The point-cloud generated by the onboard camera. The points used
for plane estimation are shown in white, with the estimate of η shown as
the red axis at the centroid.

position itself at an offset slightly below and in front of
the fruit. At the beginning of each flight, the MDP phase is
initialized to Staging. The algorithm computes a safe location
at the predefined offset from pgoal in the direction of η.
A polynomial reference trajectory in position and yaw is
computed to bring the quadrotor from its current location to
the staging location. The other elements of the state (roll,
pitch, v, and ω) are calculated from the position and yaw
using the differential flatness of the system. After reaching
the goal pose, the MDP transitions into the Picking phase.
Another polynomial trajectory is calculated, this time to
bring the end effector to pgoal. Moving to the offset location
causes the final approach angle to pgoal to be parallel to η,
and therefore less likely to collide with the tree. This phase
ends when the end effector detects a successful connection
with the fruit. If the Picking phase takes too long without
reaching the fruit or the fruit goes out of view, the Reset
stage begins, which returns to the same offset location as
the end of Staging and then restarts Picking.

E. Shortcomings
This approach is effective only when the fruit is in view

during flight. If the fruit is not initially in view, the approach
has no means to explore and find it. Relatedly, if the fruit
leaves view during the Staging phase, the system has no
recourse but to backtrack and try again. If the fruit leaves
view during the Picking phase, it has the ability to retry
Picking, but this leads to slower behavior. Second, the
segmentation network accuracy is reduced when the fruit is
visible but occluded by leaves.

Another limitation is that the RANSAC step is sensitive
to outliers in the point cloud. If the fruit is only sparsely
surrounded by leaves, the point cloud can include pieces
of the background or trunk, making the estimate of η
unreliable. Some of this can be effectively mitigated by low-
pass filtering. However, when the outliers are dependent on
the camera perspective, η can oscillate between estimates,
making staging impossible.

Finally, the biggest shortcoming of this method is the
rigid logic governing the phase transitions. Often, during the
Staging phase, the drone will overshoot its target position
and retreat to it. This maneuver actually takes it further away
from the fruit, wasting time and control effort. The aim of
this work is to use a neural network to imitate the successes
of this approach, while streamlining operation and avoiding
its flaws.

III. LEARNED MULTI-PHASE APPROACH
A. Control Framework

In this work, we use imitation learning via a neural
network trained on successful executions of the baseline
approach. The procedure follows the following steps:

1) The camera image is received and passed through the
segmentation network from section II-B.

2) The color and segmentation layers of the image are fed
into a CNN encoder. The resulting latent vector is com-
bined with a vector of the current roll, pitch, and back-
projected fruit pose and fed into a densely connected
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network, trained to output which phase is currently
active, as well as N = 3 poses {∆ḡ1, ...,∆ḡN},
corresponding to the the desired states over the next
N intervals of a time-step ∆t.

3) The series of poses ∆ḡi are given to a DDP optimizer
which produces a smooth trajectory. This trajectory
passes through the ∆ḡ waypoints while minimizing
control effort and obeying the dynamics of the system.

4) A low-level controller tracks the smooth trajectory
while a new trajectory can be produced from the next
camera frame.

B. Network Architecture
The waypoint prediction network architecture (shown in

Figure 3) begins with a four channel image input, the RGB
image from the camera concatenated with the segmented
image Section II-B. This visual information, a 640 x 480
x 4 tensor, is passed into a 56 channel CNN and then
through three ResNet blocks. Each ResNet block performs
the following transformation y(x) = Ci(Re(Ci(Re(x)))) +
Ci(x), where Re is the ReLu activation function and Ci is a
convolutional layer with i channels (the blocks use i = 72,
i = 96 and i = 128 channels respectively). The output after
the third block is flattened into a vector, which represents
the latent state information encoded from the image data.

This vector is concatenated with the current roll, pitch,
and relative orange pose and passed into two fully connected
layers of size 16,384 and 8,192. The final step is an output
layer of size (p + p × N × b × 6), where p = 3 is the
number of phases, b = 100 is the number of bins used for
the classification cost (discussed in Section III-B.1), N = 3
is the number of waypoints being generated by the network,
each with 6 DOF: x,y,z,yaw, pitch,roll.

The first waypoint ∆ḡ0 ∈ SE(3) defines the transform
from the current position to a new goal position to be
reached after ∆t seconds. The subsequent outputs ∆ḡi=1,2

are relative to the i − 1 transform. By using this change of
coordinates, the network can learn to output ∆ḡi = ~0 when
the UAV should move to ∆ḡi−1 and stop.
1) Classification Cost

In training the ∆ḡ outputs, we use a classification cost,
similar to that used by Kim et al. [36]. The available space

of outputs is discretized into b sections (”bins”) in each
degree of freedom, and the network is trained to output
the likelihood that the correct waypoint falls within each
bin. This avoids the common pitfall in regression training of
unintentionally training a network with low variance which
simply outputs the dataset mean. Instead, the probability
output is compared to the one-hot output of the expert. Dur-
ing training, the loss function is the cross-entropy between
these two distributions. Two concerns when designing this
approach are the inherent limitation of the output space, as
each coordinate can now only be inferred to fall within the
space spanned by the bins, and the network output size, as
it is much larger than a direct regression would require. The
output space limitation is mitigated by the phase selection
architecture, as each MDP phase can be discretized into
its own output space. Thus, when in Picking, the network
will inherently output smaller, less aggressive waypoints than
when in Staging.
2) Phase Selection

The first p = 3 elements of the output vector are treated
as a classifier, trained to predict which phase best fits the
current system conditions. The rest of the output vector is
treated as a series of p distinct outputs, one for each phase.
Each output has N points, each with 6 degrees of freedom.
Each degree of freedom is encoded as b probabilities, trained
through the classification cost. The loss for training the
network is computed as the sum of the cross-entropy loss for
predicting the phase and the classification cost for predicting
the waypoints for the actual phase of the system . During
inference, the classifier output is used to determine which
set of waypoints will be forwarded along to the trajectory
generation algorithm (section III-C), as well as the value of
∆t to use. Staging behaviors use ∆t = 1.0s, while Picking
and Reset use ∆t = 0.25s.
C. Trajectory Generation

Once the waypoints have been produced, they are passed
to a short-term trajectory generator, which uses DDP to
produce a trajectory over the next N × ∆t seconds that
minimizes the cost

J =

∫ N×∆t

0

(x(t)TQx(t) + u(t)TRu(t) + w(x, t))dt



The Q cost on x(t) penalizes unsafely high velocities,
the R cost on u(t) penalizes high control effort, and the
waypoint cost w is zero when t 6= {∆t, 2∆t, ..N ×∆t} and
∆xTQf∆x otherwise. This Qf cost penalizes ∆x, the dif-
ference between x(t) and x̄(t) = g(x(0))

∏t/∆t
0 ∆x̄i. Thus,

through choices of Q, R, and Qf , DDP finds a trajectory
that flies closely to each waypoint, while conforming to
the dynamics of the UAV. The trajectory lasts for N × ∆t
seconds, far longer than it takes for a new image to be
processed and a new trajectory to be recalculated.
D. Data Collection

Using the baseline controller, a dataset of approximately
40,000 images and associated paths were collected over the
course of 263 trials. Each trial consisted of placing the
fruit, tree, and UAV at randomized positions and orientations
within the workspace, then allowing the expert to run until
the end-effector contained the fruit. This was verified by a
magnetometer in the base of the basket and a small magnet
glued to the bottom of the fruit. Any trials containing errors
in Picking (crashing, losing sight of the fruit, getting trapped
in an equilibrium) were still used for training Staging and
Reset, provided they completed successfully. The network
was trained using these pairs, as well as horizontally mirrored
images with the associated waypoints transformed from left
to right as well.

IV. RESULTS

A. Hardware
The quadcopter base used in this work is the DJI Matrice

100. It carries an Intel NUC for onboard computation, a
Realsense D435i to collect RGB and Depth images, and
a LSM303DLHC magnetometer. The fruit is fitted with
a magnet on its underside and the magnetometer is used
to detect when an fruit has successfully entered the end-
effector. The workspace is limited to the volume covered
by a Optitrack motion capture system, allowing for 120Hz
odometry feedback.
B. Trial Design

After training the network was able to predict the correct
phase with 92.2% accuracy in the training dataset and 87.6%
accuracy in the validation dataset.

After training, the network was flown in an identical setup
to the data collection above (section III-D). Afterwards, the
trials were analysed for the following criteria:

1) Picking Success: The percentage of trials in which,
after staging, the end effector reached the goal, placing
the fruit in the basket.

2) Staging Success: The percentage of trials in which
the UAV reached the staging position, leaving only to
approach the goal.

3) Picking Speed: On trials which successfully picked
fruit, the average speed for the final phase.

4) Staging Speed: On trials which successfully reached
the staging position, the average speed of the staging
phase.

Mean values of these metrics for the baseline and network
controllers can be found in table IV-B.

TABLE I
COMPARISON OF THE BASELINE AND LEARNED APPROACHES

Method Picking
Success

Staging
Success

Picking
Speed
(cm/s)

Staging
Speed
(cm/s)

Baseline 75.6% 99.2% 3.4 12.5
Learned 70.3% 96.3% 2.7 19.2

TABLE II
ABLATION STUDY

Method Picking
Success

Staging
Success

Trials

Learned 70.3% 96.3% 29
Without Roll-Pitch 40% 80% 10
Without Fruit Pose 0% 60% 10
Without Multi-phase 10% 70% 10
Regression Loss 10% 20% 10

C. Ablation Study
The network architecture is further validated by an ab-

lation study on four of its features. The same dataset was
used to train a set of new networks, one without the roll and
pitch inputs, one without the fruit pose inputs, one without
multi-phase setup, and one using a regression cost instead of
the classification cost. The results of trials with these four
networks are shown in table IV-C.
D. Discussion

Compared to the baseline controller, the novel controller
performs slightly worse at both staging and picking success.
The network demonstrated two common failure modes. First,
the UAV would reach a valid staging location, but then
remain there instead of entering the Picking phase. Second,
the UAV would miss the fruit by a small amount, which
could knock the fruit to the outside of the basket. The Reset
behaviour would be unable to disentangle the end-effector
from the tree, requiring manual intervention.

The ablated networks performed as follows:
1) The network trained without roll and pitch inputs was

prone to more aggressive maneuvers, which often led
to the fruit leaving view or the UAV getting too close
to the tree.

2) The network trained without fruit pose inputs was dra-
matically worse, struggling to even reach the staging
position.

3) The network trained as a single phase suffered from
the equilibrium failures described above, getting to a
position with a good view of the fruit and remaining
there instead of moving in to pick it.

4) The network trained with a regression cost was not
very responsive to changes in its state. It moved
generally forward, frequently crashing into branches or
missing the tree outright. It only succeeded at reaching
the fruit if the randomized initial position placed it
directly in front of the fruit.

V. CONCLUSION
We have presented an algorithm for generating

dynamically-feasible paths which enable an aerial
manipulator to navigate to and pick a mock-up fruit from



Fig. 4. Three examples of flights using the novel control algorithm. The green lines show the last several computed trajectories. The most recent waypoints,
the point cloud, and the onboard camera image are shown as well.

a tree. The main motivation was to enable the system to
adapt to complex cases, such as target occlusions, compliant
interactions, and scene motion from external disturbances.
Since standard geometric model-based planning methods
can be sensitive to such uncertainties, the premise was that
machine learning could offer a more reliable alternative by
more tightly coupling perception and planning.

Admittedly, the advantages of the proposed method as
implemented are not obvious from the results obtained up
to this point, and further work is needed to investigate its
robustness in such complex use cases. The approach, based
on imitation learning, is also inherently limited by the quality
of training examples. The baseline controller used in this
work did not generate perfect performance and, while the
network was only trained on its successes, it still inherited
some of its flaws. This resulted in the network reproducing
behaviors such as getting stuck on foliage. The dataset used
to train the network also created a reliance on back-projection
of the fruit pose for success, and required near-constant
visual contact with the fruit in order to progress.

Looking forward, some of these shortcomings can be
alleviated using a larger dataset or adding another sub-
network to the architecture. One such improvement could
be replacing the plane estimation RANSAC algorithm with
an η prediction network. Even more promising are recurrent
neural networks, as the internal memory will allow the
system to learn the dynamics of the latent space across time
steps. An accurate recurrent world model could then serve
as a basis for reinforcement learning.
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D. Thakur, G. Loianno, and V. Kumar, “Cooperative autonomous
search, grasping, and delivering in a treasure hunt scenario by a team
of unmanned aerial vehicles,” Journal of Field Robotics, vol. 36, no. 1,
pp. 125–148, 2019.

[12] R. Mebarki and V. Lippiello, “Image-based control for aerial manip-
ulation,” Asian Journal of Control, vol. 16, no. 3, pp. 646–656, 2014.

[13] Y. Yang, P. Geneva, K. Eckenhoff, and G. Huang, “Visual-inertial
odometry with point and line features,” in 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 2447–
2454, 2019.

[14] Y. Mulgaonkar, W. Liu, D. Thakur, K. Daniilidis, C. J. Taylor, and
V. Kumar, “The tiercel: A novel autonomous micro aerial vehicle
that can map the environment by flying into obstacles,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
pp. 7448–7454, 2020.

[15] A. Suarez, F. Real, V. M. Vega, G. Heredia, A. Rodriguez-Castaño,
and A. Ollero, “Compliant bimanual aerial manipulation: Standard and
long reach configurations,” IEEE Access, vol. 8, pp. 88844–88865,
2020.

[16] X. DING, P. GUO, K. XU, and Y. YU, “A review of aerial manip-
ulation of small-scale rotorcraft unmanned robotic systems,” Chinese
Journal of Aeronautics, vol. 32, no. 1, pp. 200–214, 2019.

[17] Z. Samadikhoshkho, S. Ghorbani, F. Janabi-Sharifi, and K. Zareinia,
“Nonlinear control of aerial manipulation systems,” Aerospace Science
and Technology, vol. 104, p. 105945, 2020.

[18] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, p. 381–395, June
1981.

[19] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and



S. Leutenegger, “Mid-fusion: Octree-based object-level multi-instance
dynamic slam,” 2019.

[20] S. L. Francis, S. G. Anavatti, and M. Garratt, “Detection of obstacles in
the path planning module using differential scene flow technique,” in
2015 International Conference on Advanced Mechatronics, Intelligent
Manufacture, and Industrial Automation (ICAMIMIA), pp. 53–57,
2015.

[21] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” 2020.

[22] X. Liu, S. W. Chen, C. Liu, S. S. Shivakumar, J. Das, C. J. Taylor,
J. Underwood, and V. Kumar, “Monocular camera based fruit counting
and mapping with semantic data association,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2296–2303, 2019.

[23] G. Kontoudis, Z. Xu, and K. G. Vamvoudakis, “Online, model-free
motion planning in dynamic environments: An intermittent, finite
horizon approach with continuous-time q-learning,” 07 2020.

[24] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” 2019.

[25] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, mod-
eling, estimation and control for aerial grasping and manipulation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2668–2673, IEEE, 2011.

[26] G. Ryou, E. Tal, and S. Karaman, “Multi-fidelity black-box optimiza-
tion for time-optimal quadrotor maneuvers,” 2020.

[27] D. Jung and P. Tsiotras, On-line Path Generation for Small Unmanned
Aerial Vehicles Using B-Spline Path Templates.

[28] G. Garimella, M. Sheckells, and M. Kobilarov, “Robust obstacle avoid-
ance for aerial platforms using adaptive model predictive control,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 5876–5882, IEEE, 2017.

[29] P. Foehn and D. Scaramuzza, “Cpc: Complementary progress con-
straints for time-optimal quadrotor trajectories,” 2020.

[30] S. Spedicato and G. Notarstefano, “Minimum-time trajectory genera-
tion for quadrotors in constrained environments,” IEEE Transactions
on Control Systems Technology, vol. 26, no. 4, pp. 1335–1344, 2018.

[31] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[32] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” 2021.

[33] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Deep drone acrobatics,” 2020.

[34] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural network
trained with end-to-end learning steers a car,” 2017.

[35] Z. Yang, Y. Zhang, J. Yu, J. Cai, and J. Luo, “End-to-end multi-modal
multi-task vehicle control for self-driving cars with visual perception,”
2018.

[36] J. W. Kim, C. He, M. Urias, P. Gehlbach, G. D. Hager, I. Iordachita,
and M. Kobilarov, “Autonomously navigating a surgical tool inside
the eye by learning from demonstration,” 2020.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” 2015.


