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Abstract— This paper proposes a model reference adaptive
controller for aerial robots equipped with manipulators for
grasping and transporting objects of unknown mass. Through
a Lyapunov argument, this estimation and control algorithm is
shown to be asymptotically stable when tracking a desired ref-
erence trajectory. The adaptive controller is then demonstrated
on a quadrotor with a changing total mass, showing that it can
track a reference trajectory with sufficient accuracy to pick
up a payload and maintain flight stability, despite the sudden
change in vehicle parameters induced by the payload. This new
adaptive controller is slower to respond to changes in vehicle
mass than control strategies that use more conventional mass
estimation methods, but it is subject to less noise since it does
not make use of accelerometer data, resulting in a smoother
control trajectory.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) such as quadrotors are

now established platforms for aerial imaging and observa-
tions (e.g. agricultural crop monitoring, photography, and
surveillance). Recent research has augmented these capabili-
ties with onboard arms or grippers, creating aerial manipula-
tion platforms [1], [2], [3], [4]. These systems can be used for
package delivery [5], collaborative lifting [6], construction,
and infrastructure maintenance [7], [8]. Methods for deriving
the dynamics of such multi-body systems [9], [10], for their
motion planning and trajectory generation [3], [11], [12], and
control [2], [3], [13], [14] are now well established.

Applications involving the picking, lifting, or placing of a
payload require control algorithms that must adapt to changes
in the system mass. In most cases, mass is estimated as an
isolated unknown parameter through acceleration measure-
ments, for instance through batch least-squares regression or
low-pass filtering [15], [16]. Alternatively, coupled estima-
tion and control can be employed, specifically through an
adaptive model reference controller, in order to ensure that
as the mass estimate changes the system retains favorable
stability properties. In this work, we follow this viewpoint
and propose an estimation and control algorithm which
can follow given reference trajectories while picking up a
payload of unknown mass. The proposed controller is shown
to be globally asymptotically stable.

A. Related Work

Adaptive methods have been applied to aerial manipula-
tion in the past. For example, Cabecinhas et al. [17] used an
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Fig. 1. The aerial manipulation system picking up a package, using
the proposed adaptive model-reference controller to handle objects with
unknown mass.

adaptive technique to estimate a force bias on a quadcopter
manipulator. Other works have used sliding mode control [9]
and virtual decomposition [18] to handle these unknown
dynamics.

This work uses model reference control (MRC), a specific
technique within the adaptive control toolkit. Dydek et
al. [19] used MRC to develop a robust quadcopter control
algorithm, but did not apply their work to aerial manipu-
lation. Pierri et al. [20] used MRC to stabilize an aerial
manipulator, but only tested the results in simulation. This
work describes the development of an MRC algorithm and
applies it to an experimental setting, demonstrating its ability
to achieve stable flight and comparing its performance to a
baseline filtered estimator.

II. ADAPTIVE CONTROLLER DESIGN
A. Problem Setup

Let the system state be defined as x = (p, v) consisting
of the position p ∈ R3 and velocity v ∈ R3 of the center of
mass of the quadrotor in a fixed inertial frame. The difference
between this point and the center of mass of the entire
aerial manipulation system (quadrotor, arm, and payload) is
handled by Kobilarov et al. in [21]. The dynamics of the
system follow a simple force balance equation:

ẋ = Ax+Bu+

[
0
g

]
, (1)

where A =

[
0 I
0 0

]
, B =

[
0

m−1I

]
, and g is the acceleration

due to gravity.
The objective is to track a given smooth reference tra-

jectory xd(t), i.e. to design a controller to reduce the state
error ∆x(t) = x(t) − xd(t). Ideally, the stabilizing thrust
force input is

ud = m(ad − g)−K∆x (2)

where m is the mass of the system, ad = p̈d is the desired
acceleration (derived from the desired trajectory), and K =[
kpI kdI

]
is the control gain matrix chosen to render the



linear error dynamics ∆̇x = (A − BK)∆x exponentially
stable.

Unfortunately, a number of impediments prevent this so-
lution from being implemented. First, the ideal thrust input
above is a three dimensional vector, but in reality, a quadrotor
can only apply thrust along the body-fixed z-axis. In order
to thrust in the proper direction, the robot needs to align the
thrust axis with the desired acceleration ad by orienting itself
into the desired yaw, pitch, and roll Euler angles (αd, βd, γd).
In practice, αd is provided by the reference trajectory and
the true yaw α is stabilized to it independently. At every
time step, given the current yaw α, βd and γd are calculated
using the following formulas, where ei is the unit vector in
the i-th dimension:

γd = arcsin(aTd e1 sinα− āTd e2 cosα), (3)

βd = arctan

(
cos γd(a

T
d e1 cosα+ aTd e2 sinα)

cos γd aTd e3

)
. (4)

Of course, β and γ cannot be set instantaneously. Instead,
they are controller using a high-frequency control loop which
compues the required torques produced by the rotors to
achieve these angles [21]. In practice, the control interface
provided by many off-the-shelf quadrotor does not support
torque inputs. Instead, the flight controller accepts βd and γd
as inputs and a low level control loop stabilizes them quickly.
For yaw control, the quadrotor accepts an angular rate input,
α̇, which is chosen using a simple proportional controller:

α̇ = −kα(α− αd) (5)

This stabilizes yaw exponentially for a range of positive gains
kα. Thus, at each iteration of the controller, the control input
takes the form {α̇, βd, γd, T}, where T is the desired total
thrust magnitude.

The second problem is the relationship between the thrust
input and the resulting force produced by the rotors. Rather
than controlling force directly, the autopilot accepts a nor-
malized thrust command between 0 and 100. This value
corresponds to a percentage of the battery voltage, which
is then sent to the speed controller. A variety of factors
(e.g. propeller design, battery charge, floor effects) influence
the resulting thrust produced by the propellers, but the
relationship between the command and the thrust is modelled
as linear:

T = ktu

The gain parameter kt is unknown and dependent on a
number of factors, most notably the current voltage of the
battery, but for short term applications, it is assumed to be
constant. With this additional factor, the matrix B is changed

to be
[

0
kt
m I

]
. As such, equation 2 must be updated:

ud =
m

kt
(ad − g)−K∆x (6)

The value of kt
m is unknown, and the method developed here

attempts to estimate it through an adaptive controller.

Fig. 2. A Free-Body Diagram of the control inputs of the UAV

B. Adaptive Controller

Let θ̂ denote the current estimate of the unknown ratio
θ∗ = m

kt
. The error in the estimate is defined as ∆θ = θ̂−θ∗.

If this estimate is used to compute u as the current best
estimate of ud (defined above in equation 6), the new error
dynamics are as follows:

∆̇x = ẋ− ẋd
= A(x− xd) +B(u− ud)
= A∆x+B(θ ∗ −θ)(ad − g)−BK∆x

= (A−BK)∆x+
∆θ

θ∗

[
0

(ad − g)

]
. (7)

To find a stable update law for θ̂ and thereby prove the
stability of the controller, we turn to a Lyapunov function

V (∆x,∆θ) =
1

2
∆xTP∆x+

1

2km
∆θ2, (8)

where km > 0 and

P =

[
kp εθ∗

εθ∗ θ∗

]
.

The positive constant, ε, is chosen to ensure that P is positive

definite by limiting it to the interval 0 < ε <
√

kp
θ∗ . In turn,

the Lyapunov derivative is :

V̇ (∆x,∆θ) = −∆xTQ∆x+ ∆xTP
∆θ

θ∗

[
0

ad − g

]
+

1

km
∆θ∆̇θ.

The matrix Q =

[
εkp

εkd
2

εkd
2 kd − εθ∗

]
is ensured to be positive

definite by choosing ε to fulfill the inequalities ( εkd2 )2 <
εkp(kd− εθ∗) and εkp+kd− εθ∗ > 0. Experimentally, these
inequalities are verified in section V

The second term of V̇ is of indeterminate sign, and must
be rendered negative semidefinite in order to complete the
stability proof. Because ∆θ = θ̂ − θ∗ and θ∗ is a constant,
∆̇θ =

˙̂
θ and thus the error evolution can be designed through

the choice of ˙̂
θ. By choosing

˙̂
θ = −km

θ∗
∆xTP

[
0

ad − g

]
(9)



we obtain V̇ = −∆xTQ∆x. Expanding this choice yields:

˙̂
θ = ∆̇θ = −km

θ∗
∆xTP

[
0

ad − g

]
= −km

θ∗
∆xT

[
kp εθ∗

εθ∗ θ∗

] [
0

ad − g

]
= −km(ε∆p+ ∆v)T (ad − g) (10)

Note that the unknown parameter θ∗ is no longer present in
the control law, leaving a fully implementable solution.

Theorem 1. Corollary to Barbalat’s Lemma: [22] If g :
R+ → R and g ∈ L2 ∩ L∞, that is, g has bounded L2 and
L∞ norms, and if ġ is bounded, then limt→∞ g(t) = 0

Proposition 1. The control law:

u = θ̂(ad − g)−K∆x, (11)
˙̂
θ = −km(ε∆p+ ∆v)T (ad − g) (12)

achieves stable tracking of a twice-differentiable reference
trajectory xd(t).

Proof: Applying the controls defined in equations
(11) and (12) results in a negative semi-definite Lyapunov
derivative:

V̇ (∆x,∆θ) = −∆xTQ∆x. (13)

Because V̇ is negative semi-definite, V is inherently bounded
by its initial value. Due to the definition of V , this bounded-
ness implies that ∆x and ∆θ are bounded as well. Thus,
∆x ∈ L2 ∩ L∞. In addition, based on equation 7, the
boundedness of ∆x and ∆θ implies that ∆̇x is bounded
as well. Using the corollary to Barbalat’s Lemma, we can
therefore conclude that limt→∞∆x(t) = 0. Thus, the state
x(t) converges to xd(t).

Proposition 2. Under the above conditions, the parameter
estimate θ̂ approaches equilibrium, though not necessarily
at θ∗.

Proof: Equation (12) defines ˙̂
θ. Based on the above

results, ∆x converges to 0, and therefore ˙̂
θ converges to zero.

However, under a freefall trajectory, where ad(t) = g, ˙̂
θ = 0

for the entire trajectory. In that case, θ̂(t) simply remains
θ̂(0), and does not converge to θ∗. It is important to note,
that, despite this result, the tracking error will still converge
to zero.

Proposition 3. Under the above conditions, if the reference
trajectory (in particular the desired acceleration ad) satisfies
the inequality ||ad(t)− g|| > ε for some ε > 0 and for all t,
then the parameter error ∆θ will converge to zero.

Proof: LaSalle’s theorem [22] states that for a system
with a negative semi-definite Lyapunov function, the limit of
the state as time goes to infinity will be in the largest invariant
set T contained within the set S, where V̇ = 0. Based on
equation (13), S is clearly the set S = {(∆x,∆θ)|∆x = 0}.
Using equation (7), the only condition under which ∆x will
remain 0 is when the second term is also zero, i.e. when

∆θ
θ∗

[
0

(ad − g)

]
= 0. Multiplying by the constant θ∗ and

removing the first three (constantly zero) rows of the vector,
the new definition of T = {(∆x,∆θ)|∆θ(ad−g) = 0}. Only
when this condition is met will a member of T remain within
the set for all future time. Taking the magnitude of each side,
||∆θ(ad − g)|| = |∆θ|||(ad − g)|| > |∆θ|ε. Because ε > 0,
the only invariant set within S is T = {(∆θ,∆x) = (0, 0)}.
By LaSalle’s theorem, the system will converge to this point,
where all errors are zero.

This additional condition on acceleration is not particularly
strict for quadrotor systems. In practice, there are few desired
trajectories which engage in even brief free-fall. Bounding
the acceleration above gravity is often a prudent safety check,
and now it is shown to also guarantee the convergence of this
adaptive controller.

C. Baseline Estimator

In previous aerial manipulation systems, θ is estimated
using the data from an onboard accelerometer and a low-pass
filter. In particular, an estimator of this kind uses a simple
yet effective formula to estimate θ at every timestep:

θcalc =
||T ||2
||a||2

(14)

This estimate is sensitive to sensor noise, and so, rather than
using θcalc directly, the system uses a filtered value of θ
through the formula:

θi = αθcalc + (1− α)θi−1 (15)

This low-pass filter rejects most of the sensor noise in the
accelerometer while still being responsive to changes in θ∗.
In this work, the value of α used was chosen to be 0.16. If
the adaptive controller were not being used, this value could
be plugged into the control law

u(ti) = θi(ad(ti)− g)−K∆x(ti) (16)

The success of this approach is shown in [16].
Experiments shown in section V run an estimator of this

type in parallel to the adaptive estimator in order to provide
a baseline for comparison. Due to the dynamic nature of
the system, it is difficult to measure a true value of θ∗.
Instead, it is easier to compare the measurements of θ from
two different estimators, and show that the new adaptive
controller meets or exceeds the performance of the baseline,
well-established estimator.

III. HARDWARE

A. Quadrotor Platform

The aerial manipulation system is based on a DJI Matrice
quadrotor. The quadrotor is equipped with a PointGrey
Flea3 camera for performing visual tracking and an Intel
NUCi5 computer, which communicates with the Matrice
flight controller over a UART connection. A DJI Guidance
autopilot system is built into the system, for use in the event
of system breakdown.



B. Motion capture system

High precision position measurement is provided by an
Optitrack motion capture system. The motion capture lim-
its the experiment workspace to the coverage area of the
cameras, but for the purposes of quantifying the success of
the algorithm, this is not limiting. To obtain velocity mea-
surements from the motion capture sensor, the differences
between sucessive position measurements are passed through
an exponential low-pass filter, smoothing out the noise intro-
duced by this discrete approximation of the derivative.

C. Manipulator

1) Custom 2-DoF Arm: Unlike previous works that utilize
a fixed position gripper [1], [23], the aerial manipulator
used in this analysis uses a custom 2-DoF arm, which
can extend outside the rotor footprint of the quadcopter,
allowing for more complex manipulation behaviors. The
arm is constructed from carbon fiber tubes and actuated by
Dynamixel servo motors. The position of the end-effector is
controlled using an onboard Teensy microcontroller, and is
assumed to be constant during flight maneuvers.

2) Magnetic Gripper: The end of the arm is a custom
designed magnetic gripper, shown in Figure 3. Permanent
magnets embedded in the gripper attract magnets in a mating
plate attached to the payload. This attraction force allows
the gripper to tolerate 3cm error in the plane parallel to the
contact and 2cm in the normal direction. To ungrip a payload,
a servo motor rotates the magnets such that the polarities are
reversed, repulsing the mating plate. The gripping status is
measured by a momentary switch, which is depressed when
the mating plate is attached.

Fig. 3. The magnetic gripper (left) and a sample package (right) used in
our aerial manipulation experiments. The package is instrumented with an
AR marker to facilitate tracking and a magnetic mating joint so it can attach
to the gripper.

IV. TESTING METHODS

A. Payload Picking Scenario

Using the hardware described above, the controller at-
tempted a well-established pick and place scenario. At the
beginning of the test, a cardboard box payload is set up in
the testing area. The box is tagged with an AR marker [24]
and equipped with a mating plate. At first, the box is empty,
with a mass of 146g. Afterwards, weights were attached to
the box, resulting in a total mass of 173g. Ideally, these
experiments would have included a wider range of payload
masses, but all further mass additions exceeded the payload
capacity of the system.

The software for this controller was implemented in the
Johns Hopkins University Aerial Autonomy framework [16].
When the test begins, the parameter initializes at θ̂ = 5.8.
This value was chosen because preliminary experiments
found that the true values typically range from 5.5 to 6.0.
Because of the initial error in θ̂, the trajectory tracking of
the quadrotor is initially poor. To avoid collisions with the
testing environment, the first phase of the test is to fly to
a pre-determined staging location relative to the AR tag.
Should the system lose visual tracking of the AR tag, the
state machine resets, sending the quadrotor back to the home
position, then beginning again with the most recent value of
θ̂. Through these trial-reset episodes, θ̂ improves, allowing
better position tracking. If other failures occur during the
test (tag occlusions, sensor noise, etc.), this same resetting
mechanism is used to recover.

When this staging finishes, the adaptive controller param-
eter estimate is presumed to have stabilized to an equilibrium
value. From there, the robot tracks a reference trajectory
toward the mating plate, extending the arm and gripping
the payload. Once this connection is complete, the quadro-
tor retreats to a safe distance with the box still attached.
The added mass of the box upsets the equilibrium in the
parameter estimate, forcing it to adjust.

B. Gain Tuning

In early testing, various km and ε choices were tested.
Tuning these gains was a similar process to tuning a PD
controller, as the update law described in equation (10) can
be expanded into a PD-like form. By adjusting km and the
product kmε to adjust rise time and settling behavior, values
of km = 0.1 and ε = 0.23 were found to produce good
results.

C. Data Analysis

The sensor measurements, control inputs, and the pa-
rameter estimate were logged during each test, along with
the results of the baseline estimator. The result from the
controller can be compared to a typical solution to this
problem, as described in equation (15).

After collecting this data, the parameter estimates with
and without the box, θ̂2 and θ̂1 respectively, were obtained
by averaging the data of equilibrium flight. Two metrics are
then used to evaluate the controller performance. The first,
the rise time of the system, is defined as the time between
picking up the box and when θ̂ reaches 90% of θ̂2. The
second, the mass fraction, is obtained by assuming that the
mass-independent factors of θ are constant. By dividing the
two estimates, we derive the formula θ̂2

θ̂1
= M+m

M , where M
is the mass of the aerial manipulator (3.624kg) and m is the
mass of the box in that particular test. By comparing this
fraction to its true value, obtained with direct measurement,
the accuracy of the estimation can be evaluated.

V. RESULTS
Once the final choices for the parameter were made, a

series of four tests were run, picking up the unloaded box. On
average, the rise time was 10.04±2.9 seconds and the mass



Fig. 4. An example trajectory of the quadrotor, from test initiation until
the initial equilibrium is reached. In the θ plot, note the decrease in θ̂ from
the initial guess of 5.8 to convergence with the true value (approximately
5.6). The flat portions of the trajectory demonstrate the failsafe behavior, in
which the autopilot returns the quadrotor to the home position. The most
recent value of θ̂ is retained and used in the next attempt. In the position
plots, the reference trajectory is plotted in red and the quadrotor trajectory
is plotted in blue. The final plot is the total RMS position error.

fraction was 1.0485 ± 0.0085, compared to the true value
1.0403. Afterwards, four tests were run with a weighted box.
For these weighted tests, the rise time was 10.3±3.8 seconds,
while the mass fraction was 1.0607±0.0101, compared to the
true value 1.0477. The rise time results are tabulated along
with comparisons to the estimator in table I. While the rise
times were slower than the near instant response from the

Fig. 5. An example trajectory of the quadrotor, from the initial equilibrium
through the picking maneuver. The black dashed line illustrates when the
mass of the system changes due to the pickup. In the position plots, the
reference trajectory is plotted in red and the quadrotor trajectory is plotted
in blue. The final plot is the total RMS position error.

baseline estimator, the results from the adaptive controller
were less susceptible to sensor noise, even after filtering. The
mass fraction results, shown in table ?? were consistently
higher than the true results, which can be attributed to the
overall upward trend in θ due to battery voltage changes.
Because the weighted box tests took longer to converge, this
error was increased.

Figure 4 shows an example trajectory of the system reach-
ing initial equilibrium (before picking) and Figure 5 shows



an example trajectory demonstrating the system reaction to
picking up a box. These plots demonstrate that the adaptive
controller indeed achieves convergence to the proper value of
θ. Compared to the baseline estimator, the adaptive controller
has less noise, but has a slower convergence time. Possible
improvements are discussed in the following section.

TABLE I
MEAN RESULTS ACROSS FOUR TRIALS.

Metric Payload MRAC Std. Dev. Baseline Std. Dev.
Rise Time Empty 10.04s ±2.9s 4.44s ±1.2s
Rise Time Weighted 10.30s ±3.8s 5.96s ±3.37s
Mass Frac. Empty 1.0485 ±0.0085 1.0493 ±0.0079
Mass Frac. Weighted 1.0607 ±0.0101 1.067 ±0.0109

Finally, the three inequalities derived in section II-B can
be verified with the measured values of θ∗. The experimental
values used are shown in table V.

km ε kp kd
0.1 0.23 4 8

θ∗ varied between 5.5 and 5.8. The inequalities are there-
fore tested over that range. They are as follows:

1) 0 < ε <
√

kp
θ∗ =⇒ 0 < 0.23 < (0.83, 0.85)

2) ( εkd2 )2 < εkp(kd − εθ∗) =⇒ 0.85 < (6.13, 6.20)
3) εkp + kd − εθ∗ > 0 =⇒ (7.59, 7.66) > 0

Thus, we have verified that all of the conditions on the proofs
above hold true for the experiment at hand.

VI. CONCLUSION
This work developed an adaptive model reference con-

troller for an aerial manipulation system. By estimating the
unknown dynamics parameter of the system, the robot can
be controlled with sufficient accuracy to navigate and reach
an object of interest. Then, using the same algorithm, the
controller can adapt to the added mass after picking up
the object and quickly stabilize again. In future work, the
controller parameters could be tuned further, allowing the
estimate to converge faster and with less oscillation. In
addition, a future controller can circumvent the quadcopter
autopilot discussed in section II-A in order to the input
torques to the system. If torque-level commands were avail-
able to the controller, a similar analysis could be performed
to measure the attitudinal dynamics parameters of the system,
in effect measuring moments of inertia in the same way
that this controller measures mass. This will provide richer
information about unknown payload properties to extend
the applications of aerial manipulators into more complex,
unfamiliar environments.
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