
Neural Network Modeling for Steering Control of an Autonomous
Vehicle

Gowtham Garimella1, Joseph Funke2, Chuang Wang2, and Marin Kobilarov3

Abstract— Model-based control of dynamical systems typi-
cally requires accurate domain-specific knowledge and spec-
ifications of possibly proprietary system components. In the
context of autonomous driving, steering actuator dynamics
can be difficult to model due to an integrated proprietary
power steering control module. While first-principles models
derived from physics laws can often approximate the system
behavior, it remains generally difficult to capture non-physically
derived behavior based on proprietary software algorithms in
the power steering system. To overcome this limitation, this
work instead employs a recurring neural network to model
the steering dynamics of an autonomous vehicle. The resulting
model is then integrated into a Nonlinear Model Predictive
Control scheme to generate feedforward steering commands
for embedded control. The proposed approach is compared to
traditional first-principles steering modeling through on-vehicle
experiments and statistical data validation. As a result, it is
shown that the neural network model can be automatically
generated with less domain-specific knowledge, can predict
steering dynamics more accurately, and perform comparably to
a high-fidelity first principles model when used for controlling
the steering system of a self-driving vehicle.

I. INTRODUCTION

This paper considers the dynamical modeling of steering
systems in passenger vehicles and the use of derived models
for steering control, as a basic building block for autonomous
driving. We propose an architecture consisting of a nominal
physics-based model that is embedded as a block inside
a data-driven recurrent neural network (RNN). This RNN
model serves as a transition function for model-predictive-
control (MPC) to achieve desired steering behavior. The ap-
proach is suitable for systems with known electromechanical
specifications but also for black-box (e.g. third-party OEM)
vehicle systems with unknown characteristics. We show that
this method achieves marked improvement over traditional
feed-forward techniques and study the effects of different
strategies for combining RNNs with a simple physics-based
model.

The steering system can nominally be modeled based
on known physics laws from first principles. The steering
dynamics are usually modeled as a second-order forced
dynamical system [24] with torque inputs induced by the
steering actuator and tire forces [15]. For modern steering

*This work was supported by and conducted at Zoox Inc.
1Gowtham Garimella is with the Department of Mechanical Engineering,

Johns Hopkins University, 3400 N Charles Str, Baltimore MD 21218, USA
ggarime1@jhu.edu

2Joseph Funke and Chuang Wang are with Zoox Inc., Menlo Park,
California, USA joe.funke|mrwang@zoox.com

3Marin Kobilarov is with Zoox Inc., Menlo Park, California, USA and
with the Johns Hopkins University, 3400 N Charles Str, Baltimore MD
21218, USA marin@zoox.com

systems, a power steering motor is used as the steering
actuator and is governed by a steering controller. In this
work, we assume that no exact knowledge of the internal
controller logic is available and the first-principles approach
is thus a very coarse approximation to the actual behavior.

Unlike the first principles models, non-parametric models
do not depend on strict physics-based assumptions and
instead can be derived solely from experimental input-
output data. Such models can better capture complex actu-
ator nonlinearities and delays and can thus provide higher
predictive accuracy with limited domain specific knowl-
edge [14].Recently, RNN models have been employed in
Model Predictive Control (MPC) framework to produce a
controller for robot manipulation [11], using deep layers [18]
to model the robot dynamics and controls cutting task
accurately.

A non-parametric approach can be used in conjunction
with control policy learning [20]. Deep neural networks
have been proposed to learn a non-parametric control policy
based on experience. In a reinforcement learning setting,
the control policy tries to maximize a reward function by
balancing exploration and exploitation of the dynamics of
the system [16]. Guided Policy Search Methods have been
proposed to improve the convergence of the reinforcement
learning methods [25]. While these techniques are very
general and could work directly with the physical system,
our present work focuses on first learning an accurate and
robust dynamics model only, which can then be rigorously
validated and used for traditional model-based control.

Steering control has been achieved using simple first
principles model with robustness to disturbances [6], [9].
Similarly, lateral control schemes that control the lateral
displacement of the vehicle using first principles models have
been developed [8], [19], [17]. The success of these methods
depends on an accurate steering model, which is non-trivial
since the power steering dynamics is unknown.

RNN-based models have been employed for vehicle con-
trols in many simulation studies [7], [22], [10], [13]. Rivals
et.al [23] experimentally demonstrated neural network based
lateral control of a four-wheel-drive car. Apart from the
model-based control schemes, vision based neural network
control policies have also been developed [21], [5]. However,
these control policies rely heavily on the trained vision data
and when presented with new examples, can perform unex-
pectedly. While the approach of mapping from sensory inputs
to actions directly holds promise, for safety considerations
we consider a more traditional multi-layered model-based
approach consisting of high-level planner providing reference

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 24–28, 2017, Vancouver, BC, Canada

978-1-5386-2682-5/17/$31.00 ©2017 IEEE 2609

trajectories that are tracked by a low-level controller. This
decomposition allows for individual verification of each layer
on a wide range of datasets.

Contributions.: In this work, a model based control
strategy is developed for the steering dynamics of an auto-
motive vehicle. An RNN model has been used to model the
steering dynamics of the vehicle. The model is augmented
with known physics-based transition blocks to improve its
predictive capacity. The learned model is then employed
in an MPC framework to produce the feed-forward control
torques for a low-level embedded steering PID controller.
Experiments on Toyota Highlander vehicles have been con-
ducted to compare the performance of the steering tracking
behavior using feedforward controls from different models.
The limitations and advantages of several configurations of
the proposed architecture are examined.

Organization.: The rest of the paper is organized as
follows. In section II, the steering control architecture is
laid out, and the necessity for feedforward steering torque is
explained. Next, the steering models required to compute the
feedforward steering torque are explained in section III. The
procedure to compute feedforward steering torque using the
models is specified in section IV. Finally, the effect of adding
the feedforward steering torque using different models is
compared in section V.

II. CONTROL ARCHITECTURE

Controlling the steering system requires tracking a refer-
ence steering angle trajectory by applying torque inputs to the
steering system. The steering reference trajectory is gener-
ated from a high-level planner as shown in Fig 1. The usage
of a layered structure separates the vehicle behavior from
low-level vehicle tracking. Following the control structure,
the high-level planner produces a trajectory that is consistent
with obstacles and road rules. The MPC trajectory tracking
then produces a steering reference trajectory necessary to
achieve the high-level planner trajectory. Finally, the low-
level steering PID controller computes the actuator steering
torque input required to track the steering trajectory.

Fig. 1: Control architecture showing how a desired trajectory
is converted to steering actuator commands. The focus of the
paper is to develop a feedforward steering torque to improve
steering controller.

The focus of this work is to develop an appropriate
feedforward steering torque input to improve the steering
PID controller. The steering PID controller tracks a reference
steering trajectory (δr, δ̇r), by commanding the steering

torque τcmd as

τcmd = −kp(δ − δr)− kd(δ̇ − δ̇r)− ki
∫

(δ − δr)dt+ τff .

Using an accurate feedforward steering torque τff is
critical as can be observed from Fig 2. The figure shows the
steering torques necessary for tracking a reference trajectory
using a PID controller with the feedforward steering torque
turned off (τff = 0). The bulk of the control input during
the tracking is provided by the integrator alone which leads
to poor tracking performance. The PID gains have been
chosen based on gain scheduling to track reference trajec-
tories closely without oscillations. The performance of PID
controller is limited by the time delays inherent in the system.
The PID gains used ensure stability but allows error to
accumulate over time, which is then compensated through the
integrator. The goal of introducing the feedforward steering
torque is to improve the system response and reduce tracking
error without increasing PID gains. The parametric and non-
parametric models necessary for generating the feedforward
steering torque are investigated next.

6 8 10 12 14 16 18 20 22

Time (sec)

-30

-20

-10

0

10

20

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Proportional

Integrator

Derivative

Fig. 2: Steering torque generated by a PID controller during
a trajectory tracking experiment. The majority of the torque
output is provided by the integrator indicating that the
steering system is highly nonlinear.

III. MODELING STEERING DYNAMICS

The steering model predicts the steering angle δ and
the steering rate δ̇ based on the applied steering torque
τs. Steering dynamics are highly coupled with the lateral
dynamics of the vehicle, which in turn depends on the
longitudinal velocity vx, which we regard as a recorded
input. The lateral states, lateral velocity vy and yaw rate
φ̇, are therefore included as a part of our steering dynamics
formulation. The complete state of the steering dynamics is
x = [δ, δ̇, φ̇, vy]

T and controls by u = [τs, vx]
T . The stacked

states and controls are represented by z = [xT , uT]T .
The discrete steering dynamics evolve according to the

discrete-time model xi+1 = f(zi) where i defines the time
index along the trajectory. The discrete steering dynamics

2610

predicts the next state xi+1 given the current state xi and
control ui. The state transition function f is an unknown
nonlinear function of the previous state and controls. It can
be derived from a first principles approach or using a non-
parametric model such as a neural network.

A. First principles model

The first principles model is a second order model that
integrates the net steering torque to obtain the steering angle
and its rate. The net steering torque is given by a combination
of the steering system dynamics, road wheel interactions, and
power steering torque. The steering system dynamics consists
of Coulomb friction from the steering rack, jacking torque
due to camber angle, and damping caused by rigid body
dynamics [12]. The self-aligning torque is produced due to
tire deformation when the steering wheel moves against the
tire thread. At small slip angles, the self-aligning torque is
proportional to the lateral force Fyf applied to the front tire.
The resulting first principles model is

δ̈ = kpδ︸︷︷︸
jacking

+ kdδ̇︸︷︷︸
damping

+ kaFyf︸ ︷︷ ︸
Aligning

+ kcsgn(δ̇)︸ ︷︷ ︸
Coulomb

+ g(τs, vx)τs︸ ︷︷ ︸
Power Steering

,

sgn(δ̇) =
{

1 if δ̇ > 0
−1 otherwise

.

A tire model specifies the lateral force applied to the front
tire [15]. The lateral velocity and the yaw rate of the car are
propagated using the bicycle model [24].

The power steering system applies an actuation torque
based on the torque sensor input τs and longitudinal velocity
vx. The net torque from power steering system is modeled
as a nonlinear gain g(τs, vx) on the torque sensor input.

g(τs, vx) = g1(τs)g2(v),

g1(τs) = γ1

[
1− e−

(
τs−γ2
γ3

)2
]
,

g2(v) =
[
γ4 + (1− γ4)e−vx/γ5

]
.

The power steering gain g(τs, vx) is decomposed into two
multiplicative gains. The first gain is dependent on driver
input. It increases with the driver input and saturates to
a constant value γ1 as driver input becomes large. The
parameters γ2, γ3 specify the bias and the rate of change of
the gain respectively. The second gain decreases with vehicle
velocity, where the rate of decrease is specified by γ5 and
the saturated value by γ4. The form of the gain function has
been chosen based on observed experimental data between
driver input torque and assist torque. The power steering
dynamics presented here is an approximation based on the
graphs shown in Badawy et.al [2], since the true dynamics
is unknown. The unknown parameters in the first principles
model are obtained using standard least-squares regression
based on the error between predicted and measured steering
angle and steering rate.

B. Neural Network Model

The neural network model approximates the nonlinear
function xi+1 = f(zi) to predict the discrete-time steering

dynamics. The model consists of several units of neural
network blocks stacked in time. Each neural network block
is divided into a known physics function and a stack of
fully connected layers. Figure 3 shows a block diagram of
a neural network block. The current inputs and previous
outputs are stacked together and fed into the fully connected
layers and the physics function. The output of these layers is
combined to predict the state at the next step. These predicted
variables together with new control inputs are fed back into
the network to continue prediction for the next step.

Fig. 3: The neural network architecture used for learning
lateral dynamics.

The overall discrete dynamics for a neural network model
can be written as f(z) = fph(z) + fnn(z), where fph
denotes the physics function and fnn represents the neural
network layers. The physics function incorporates basic
domain knowledge by predicting the steering angle as an
integral of the steering rate and the yaw rate based on the
no-slip condition for a kinematic car model. The physics
function can be mathematically stated as

fph(zi) =

δi + k1δ̇i

0
vxi tan(k2δi)

0

 ,
where the unknown parameters are the time-constant for
integration k1 and the inverse of the wheelbase of the car
k2. Similarly, the neural network layers can be expressed as

fnn(zi) = gn (gn−1 (gn−2 (· · · g0 (zi)))) ,
gi(x) := σ(Wix+ bi), i = 0, . . . , n− 1,

gn(x) :=Wnx+ bn.

The function gi(·) defines a single fully connected layer for
the neural network with the parameters Wi, bi. The function
σ(·) denotes the activation function used in the network. The
activation function is chosen to be the hyperbolic tangent
function. The last layer gn(·) is specified as a unit activation
function since the neural network is used in a regression
problem.

The neural network layers predict the residual dynamics
not modeled by the physics function. The neural network
layers, therefore, capture the effects of road-tire interactions,
power steering logic, and steering system dynamics. The
addition of physics function improves the gradient flow of
the network thereby providing better prediction performance.
The increase in depth of the fully connected layers increases
the ability of the RNN to model higher nonlinear models.At

2611

the same time, it is also harder to train deeper neural network
models due to the vanishing gradient problem [3]. In this
work, the depth of the neural network layers has been
experimentally determined to capture the unknown dynamics
well.

Training: The neural network weights and the physics
function parameters are optimized using time series data
collected from driving the vehicle along variable curvature
paths with different desired longitudinal velocities. The steer-
ing dynamics are controlled using a preliminary Proportional
Integral Derivative (PID) controller during the data collection
phase.

The collected time series data is divided into fixed time
horizon segments to train the neural network model. The loss
function during neural network training is set to minimize the
difference between propagated states and measured states for
each of the fixed time horizon segments. The loss function
also adds an L2 regularization with a user-selected gain cr to
avoid overfitting of the parameters. The goal of the training
phase is to find the optimal parameters θ∗ that minimize the
training cost as

θ∗ = argmin
θ

m∑
j=1

C(x̃0:N , u0:N−1, θ), (1)

C(x̃0:N , u0:N−1, θ) =

n∑
i=1

(x̃i − xi)TP (x̃i − xi) + crθ
T θ,

(2)
s.t xi+1 = fph(zi, θ) + fnn(zi, θ), (3)
zi = [xi, ui], x0 = x̃0, (4)
θ = [W0, b0,W1, b1, · · · ,Wn, bn, k1, k2], (5)

where θ denotes the weights of the network along with the
unknown physics parameters.

The cost function C measures the deviation of the prop-
agated states xi from measured states x̃i for m sample tra-
jectories. The state deviations are weighed using a diagonal
matrix P to enforce a uniform scale across the deviations.
The matrix P is usually chosen as the inverse covariance of
the sensor measurements.

The propagation of steering dynamics results in the propa-
gated states significantly diverging from the measured states
for random initialization of parameters. The optimization is
thus performed in two stages: first by limiting the propaga-
tion to a single step and initializing the parameters obtained
from the previous stage and optimizing over the entire
trajectory segment. This two-stage optimization proposed by
Lenz et al. [11] has been shown to perform better than
random initialization of parameters.

Implementation: The RNN is coded as a computational
graph in TensorFlow [1] package. The training data is
provided by 20,000 trajectory segments with a 0.5-second
horizon which corresponds to approximately 150 hours of
driving data. The neural network has been trained with two
fully connected layers. The optimization has been performed
using mini-batch gradient descent with a batch size of 200
samples.

The optimal parameters are used to verify the performance
of the model on a test data set of 5,000 trajectory segments.
The RNN model is used to propagate the lateral dynamics
using the initial state and controls along the trajectory.
Figure 4 shows the RMS error between the propagated
and measured handwheel angle along the trajectory using
different trained models. The addition of a second layer to the
RNN along with physics function improves the performance
of prediction significantly. Increasing the RNN layers further
does not result in an improvement of performance. Hence the
depth of neural network is limited to two layers.

0 0.2 0.4 0.6 0.8 1

Time(sec)

0

5

10

15

20

25

30

35

40

45

50

H
a
n
d
w

h
e
e
l
a
n
g
le

(d
e
g
)

RMS Error vs Time

First principles model

2 layer RNN no physics

1 layer RNN

2 layer RNN

3 layer RNN

Fig. 4: Averaged RMS Error between propagated and mea-
sured hand wheel angle along the trajectory for all the test
segments plotted for different dynamics models.

IV. STEERING CONTROL

The steering torque used to track a steering reference
trajectory consists of a PID component and a feedforward
component. The steering reference trajectory comprises of a
reference steering angle δr and steering rate δ̇r. The feed-
forward steering torque estimates the necessary command
to track the desired reference and thereby improves tracking
performance when compared to applying the PID component
alone. The procedure to compute feedforward steering torque
using different models is discussed next.

A. Inverting First Principles Model

Here, the feedforward steering torque for controlling the
steering system is computed by inverting the first principles
model. Denoting the power steering dynamics at a given
longitudinal velocity by P (τs) := g(τs, vx)τs, the input
torque required to track a steering reference trajectory is
computed as

τ∗s = P−1
(
−kpδr − kdδ̇r − kaFyf

)
.

The desired steering angle, steering rate and forward
velocity along the trajectory are assumed to be known during
inversion. The tire force Fyf is computed based on reference
trajectory as

Fyf = kfmvxφ̇,

2612

where the gain kf is the ratio of the distance between
the center of mass to front wheels to the wheelbase. The
feedforward steering torque for trajectory tracking is chosen
to be equal to the computed input torque τff = τ∗s , since
the computed input torque is only dependent on the reference
trajectory.

The double derivative of the reference steering angle, the
Coulomb friction and the desired steering acceleration are
not accounted for when computing the feedforward steering
torque to avoid inducing high-frequency oscillations into the
steering control.

B. Lookup table

The feedforward steering torque can also be computed
using a lookup table under steady state assumptions. The
lookup table provides the steering torque required to achieve
a steady state steering angle for a given velocity. The data
in the lookup table is filled based on experiments in which
the steering torque is adjusted to achieve the desired steering
angle for a given forward velocity. The feedforward steering
torques for a given reference steering angle and forward
velocity are then computed by interpolating the data points
from the lookup table.

C. NMPC Steering Control

When using the neural network model, the feedforward
steering torque is computed by solving an NMPC opti-
mization problem. The optimization problem is set to track
a reference steering trajectory s̃0:N consisting of desired
steering angle δr and desired steering rate δ̇r using the
neural network model. The longitudinal velocity is fixed to
be equal to the reference velocity from high-level planner
during the optimization process. In contrast to the neural
network optimization in Eq 5, this optimization fixes the neu-
ral network parameters and optimizes over the feedforward
steering torques to track the desired steering trajectory. The
optimization problem for computing the feedforward steering
torque can be written as

τ∗0:N−1 = argmin
τ0:N−1

N∑
i=1

(si − s̃i)TPi(si − s̃i) + τTi−1Riτi−1,

s.t xi+1 = fph(zi) + fnn(zi),

si = [δi, δ̇i]
T , s̃i = [δr, δ̇r]

T

Given {vx0:N−1, x̃0:N}.

The first component of the optimal steering torque from
NMPC optimization is sent to the PID controller as feed-
forward steering torque (τff = τ∗0). If there are delays
in sending the torque command, the feedforward steering
command can correspond to the future stamped steering
torque as in τff = τ∗delay

Optimization Algorithm: The NMPC optimization is per-
formed using a Stage-wise Newton method [4]. The al-
gorithm consists of repeatedly application of two steps:
backward pass to compute a quadratic relaxation of the
value function and forward pass to update the states and
controls that minimize the approximated value function.

This procedure is repeated until a specific time limit. If
the optimization did not succeed by then, the feedforward
term is set to zero. The gradient of the cost function with
respect to the input variables can be obtained analytically
for the neural network model. The analytical gradients avoid
using expensive finite differencing scheme for computing
gradients.

V. RESULTS

The MPC controller for steering dynamics has been tested
on a passenger car equipped with a high-precision GPS
system, and an onboard compute stack. The onboard com-
pute stack consists of two computational modules: high-
level computer and low-level microcontroller. The high-level
computer performs the high-level planning and provides a
steering reference trajectory as an output. It also produces
the feedforward steering torque necessary for tracking the
steering reference trajectory using NMPC optimization de-
scribed in section IV. The low-level microcontroller runs a
steering PID controller that outputs a torque command based
on the input steering reference and feedforward torque.

Start

Goal

Fig. 5: Test track used for autonomous driving experiments

The goal of the experiments is to closely track the desired
waypoint trajectory in a small test track as shown in Fig 5.
The steering controller is tested at longitudinal velocities
of 5mph and 10mph under a maximum lateral acceleration
of 3.5m/ss. Large lateral acceleration and low speeds are
used to test the system, as these conditions tended to cause
worse steering tracking performance. The effect of adding
a feedforward steering torque using different models on
the steering tracking performance is shown in Table I. Not
including a feedforward in the controller results in the largest
RMS error, as expected. Adding the lookup feedforward
model improves the performance only slightly, probably
because these are more dynamic rather than steady state
maneuvers. Computing the feedforward steering torque using
the first principles model, which incorporates these dynamic
effects, outperforms the lookup table model.

The neural network performs comparably to first principles
model with regards to the RMS error. It also performs
better than the first principles model at low velocities. The
first principles model is not able to model the road-wheel
interactions correctly at low velocities. This is likely because
at lower velocities, the power steering system provides larger
assist, and that effect is difficult to model directly without

2613

knowing the underlying power steering software algorithm.
The neural network, however, benefits from its own internal
representation based simply on training data.

Controller/Longitudinal velocity 5mph 10mph
No Feedforward 18.63 18.61
Lookup table 16.43 14.88
First principles model 12.48 9.56
Neural network model 10.21 9.53

TABLE I: RMS Handwheel error (degrees) for different
models based on multiple trials.

The steering performances of different steering controllers
are shown in Fig 6 for a single trial at 5mph and 10mph
longitudinal velocities. The initial steering angle differences
are matched across different controllers before computing the
RMS error to remove the effect of various initial conditions.
The PID controller without feedforward steering torque has
the highest RMS steering error as seen in Table I, and as
a result of the larger errors, the integrator performs much
of the tracking task. Adding a lookup table offers marginal
improvement, since the maneuvers are highly dynamic. The
first principles model and the neural network model out-
perform the other methods with regards to RMS error. The
magnitude of the integrator is also small and most of the
tracking performed by the feedforward steering torque.

VI. CONCLUSIONS

The use of RNN, a non-parametric model, for modeling
and control of a vehicle’s steering system has been presented.
The creation of the neural network model did not require
domain specific knowledge about the power steering module
and steering system dynamics. It used only minimal knowl-
edge of the nominal car dynamics to improve the prediction
capability. The resulting neural network model outperformed
a first principles model in the long-term prediction of steer-
ing dynamics and operated equally well in generating a
feedforward reference command for control. These results
demonstrate that a simple RNN, augmented with simple
dynamics information but lacking domain specific knowl-
edge, can be suitable for dynamical modeling and control
of a vehicle steering system. The current system is limited
to learning RNN model offline and computing feedforward
torque online. Future work will include learning the non-
parametric model online and testing the vehicle on changing
road conditions.

REFERENCES

[1] TensorFlow. https://www.tensorflow.org/, 2017.
[2] Badawy Aly, Zuraski Jeff, Bolourchi Farhad, and Chandy Ashok.

Modeling and analysis of an electric power steering system. In SAE
Technical Paper. Society of Automotive Engineers(SAE) International,
03 1999.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, Mar 1994.

[4] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont,
MA, 1999.

[5] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deep-
driving: Learning affordance for direct perception in autonomous
driving. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2722–2730, 2015.

[6] Zhengrong Chu and C. Q. Wu. Active disturbance rejection control for
automated steering in vehicles and controller tuning. In 2016 American
Control Conference (ACC), pages 7567–7572, July 2016.

[7] K T R Van Ende, D Schaare, J Kaste, F Küçükay, R Henze, and F K
Kallmeyer. Practicability study on the suitability of artificial, neural
networks for the approximation of unknown steering torques. Vehicle
System Dynamics, 54(10):1362–1383, oct 2016.

[8] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat.
Predictive active steering control for autonomous vehicle systems.
IEEE Transactions on Control Systems Technology, 15(3):566–580,
May 2007.

[9] J. Guldner, W. Sienel, Han-Shue Tan, J. Ackermann, S. Patwardhan,
and T. Bunte. Robust automatic steering control for look-down
reference systems with front and rear sensors. IEEE Transactions
on Control Systems Technology, 7(1):2–11, Jan 1999.

[10] A Haddoun, M E H Benbouzid, D Diallo, R Abdessemed, J Ghouili,
and K Srairi. Modeling, Analysis, and Neural Network Control
of an EV Electrical Differential. IEEE Transactions on Industrial
Electronics, 55(6):2286–2294, jun 2008.

[11] Ian Lenz AND Ross Knepper AND Ashutosh Saxena. Deepmpc:
Learning deep latent features for model predictive control. In Robotics:
Science and Systems, Rome, Italy, 2015.

[12] Krisada Kritayakirana and J Christian Gerdes. Autonomous vehicle
control at the limits of handling. PhD thesis, Stanford University,
2012.

[13] S Kumarawadu and T T Lee. Neuroadaptive Combined Lateral and
Longitudinal Control of Highway Vehicles Using RBF Networks.
IEEE Transactions on Intelligent Transportation Systems, 7(4):500–
512, dec 2006.

[14] I J Leontaritis and Stephen A Billings. Input-output parametric
models for non-linear systems Part I: deterministic non-linear systems.
International journal of control, 41(2):303–328, 1985.

[15] William F Milliken and Douglas L Milliken. Race car vehicle
dynamics, volume 400. Society of Automotive Engineers Warrendale,
1995.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
Atari with Deep Reinforcement Learning. Deep Learning Workshop
at Neural Information Processing Systems NIPS, 2013.

[17] L. Ni, A. Gupta, P. Falcone, and L. Johannesson. Vehicle lateral motion
control with performance and safety guarantees. IFAC-PapersOnLine,
49(11):285 – 290, 2016. 8th IFAC Symposium on Advances in
Automotive Control AAC 2016.

[18] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Ben-
gio. How to Construct Deep Recurrent Neural Networks. International
Conference on Learning Representations ICLR, 2014.

[19] S. Patwardhan, Han-Shue Tan, and J. Guldner. A general framework
for automatic steering control: system analysis. In Proceedings of the
1997 American Control Conference (Cat. No.97CH36041), volume 3,
pages 1598–1602 vol.3, Jun 1997.

[20] M M Polycarpou. Stable adaptive neural control scheme for nonlinear
systems. IEEE Transactions on Automatic Control, 41(3):447–451,
mar 1996.

[21] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural
network. Technical report, DTIC Document, 1989.

[22] G V Puskorius, L A Feldkamp, and L I Davis. Dynamic neural network
methods applied to on-vehicle idle speed control. Proceedings of the
IEEE, 84(10):1407–1420, oct 1996.

[23] Isabelle Rivals, Lon Personnaz, Grard Dreyfus, and Daniel Canas.
Real-time control of an autonomous vehicle: a neural network ap-
proach to the path following problem. In 5th International Conference
on Neural Networks and their Applications, pages 219–229. Citeseer,
1993.

[24] Jihan Ryu. State and parameter estimation for vehicle dynamics
control using GPS. PhD thesis, Stanford University, 2004.

[25] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel.
Learning Deep Control Policies for Autonomous Aerial Vehicles with
MPC-Guided Policy Search. arXiv preprint arXiv:1509.06791, 2015.

2614

5mph Trials 10 mph Trials

0 10 20 30 40 50 60

-400

-200

0

200

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 10 20 30 40 50 60

Time (sec)

-50

0

50

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 17.95 deg

0 5 10 15 20 25 30 35

-400

-200

0

200

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 5 10 15 20 25 30 35

Time (sec)

-50

0

50

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 19.37 deg

a) PID controller without feedforward steering torque

0 10 20 30 40 50 60

-400

-200

0

200

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 10 20 30 40 50 60

Time (sec)

-40

-20

0

20

40

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 15.82 deg

0 5 10 15 20 25 30 35

-400

-200

0

200

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 5 10 15 20 25 30 35

Time (sec)

-50

0

50

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 14.54 deg

b) Lookup feedforward steering torque

0 10 20 30 40 50 60

-400

-200

0

200

400

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 10 20 30 40 50 60

Time (sec)

-60

-40

-20

0

20

40

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 12.70 deg

0 5 10 15 20 25 30

-400

-200

0

200

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 5 10 15 20 25 30

Time (sec)

-50

0

50

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 9.24 deg

c) First principles feedforward steering torque

0 10 20 30 40 50 60

-400

-200

0

200

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 10 20 30 40 50 60

Time (sec)

-60

-40

-20

0

20

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 8.35 deg

0 5 10 15 20 25 30 35

-400

-200

0

200

H
a

n
d

w
h

e
e

l
A

n
g

le
(d

e
g

)

Steering Angle

Actual

Ref

0 5 10 15 20 25 30 35

Time (sec)

-50

0

50

T
o

rq
u

e
 (

%
)

Steering Torque

Total

Integrator

Feedforward

RMS Error: 9.24 deg

d) RNN feedforward steering torque

Fig. 6: Comparison of steering performance using steering controllers with different feedforward steering torque methods
for a single trial.

2615

