
A Framework for Reliable Aerial Manipulation

Gowtham Garimella∗1, Matthew Sheckells∗2, Soowon Kim1 and Marin Kobilarov1

Abstract— This paper describes the development of an indus-
trial package sorting capability using aerial manipulators. Our
goal is to enable the transport of small packages to and from
locations that are difficult or dangerous to access or to simply
replace tedious repetitive tasks that otherwise require human
labor or large and expensive industrial robots. This work
focuses on the development of a framework that can achieve a
high level of reliability but also efficiency. To accomplish this, we
developed a novel software framework with built-in robustness
to algorithmic failures and hardware faults. The software
framework provides a way to combine independent modular
behaviors, such as waypoint tracking and visual servoing, into
a set of connected domain-dependent state machines. Motion
robustness is achieved through model-based control that can
adaptively compensate for the additional torques, forces, and
other biases from the interaction of the manipulator and
packages, as well as for variations in battery power. To simplify
object picking and reduce the need for extremely precise end-
effector positioning, the aerial manipulator is endowed with
a novel magnetic gripper which mates with a flat receptacle
attached to objects. In addition, a novel grasping strategy
is employed to improve the probability of picking objects.
Combining the fault-tolerant state machine framework with
adaptive controllers we demonstrate that package sorting can be
done reliably (85% end-to-end transport success rate, with 20%
of errors due to software and 80% due to hardware and sensor
failure) while maintaining the agility of the aerial manipulation
system (e.g., each box is detected and picked up in less than 12
seconds on average).

I. INTRODUCTION

Vertical take-off and landing (VTOL) vehicles such as
quadrotors have gained a lot of attention recently due to
their agility and ability to navigated in remote and cluttered
environments. Current research suggests that VTOL vehicles
attached with manipulators, known as aerial manipulators,
are attractive for numerous applications, including package
transportation [1], collaborative load transportation [2], col-
laborative construction, and structural maintenance applica-
tions [3], [4]. Many of these applications require interactions
between multiple software components and hardware sub-
systems while navigating cluttered environments to achieve a
desired goal. There are also performance constraints on tasks
which would require navigating through the environments
quickly. In such a scenario, the safety and reliability of the

1Gowtham Garimella Soowon Kim and Marin Kobilarov are
with the Department of Mechanical Engineering, Johns Hopkins
University, 3400 N Charles Str, Baltimore, MD 21218, USA
ggarime1|skim386|marin@jhu.edu

2Matthew Sheckells is with the Department of Computer Science, Johns
Hopkins University, 3400 N Charles Str, Baltimore, MD 21218, USA
msheckells@jhu.edu

3https://github.com/jhu-asco/aerial_autonomy
∗ These authors contributed equally.

Fig. 1. Proposed aerial manipulation system picking (top) and placing
(bottom) a package.

overall system under software and hardware failures is criti-
cal. In particular, the task of aerial manipulation is non-trivial
since it involves underactuated quadrotor systems combined
with multi-degree of freedom manipulators interacting with
the environment. We propose a two-fold approach: on the
software side, a fault tolerant state machine framework that
implements several controllers for aerial manipulation and
on the hardware side, a novel magnetic gripper that tolerates
end-effector error up to 2 cm while grasping. The result is
a reliable aerial manipulation system with a high probability
of picking objects (90%) and tolerance to a wide variety of
errors.

A. Related Work

Past research has focused on developing control algorithms
and manipulators specifically for aerial manipulation (e.g.
[5], [6], [7]). While results have been reported separately
for various aspects of aerial manipulation such as control
algorithms (e.g. [8], [9], [10], [11], [12]), motion planning,
and visual servoing (e.g. [13], [14], [15]), very few fully-
integrated systems that allow the combination of these basic
behaviors into complex tasks with fault-recovery have been
reported. Current commercially available aerial autonomy
suites [16], [17] are limited to basic navigation and observa-
tion tasks and not directly applicable to aerial manipulation.

A few fully integrated applications for aerial manipulation

have been proposed in recent years. An aerial manipulation
system for moving metallic discs and sheets is proposed
by [18], [19]. The system developed by Gawel et al. [18]
used an electro-permanent gripper that can turn on and off the
magnetic effect by reversing an electric current. In contrast,
our work proposes a permanent magnetic gripper solution
that can turn on and off by changing the polarity of the
magnets using a mechanical servo. This type of gripper
does not use energy to hold the object and only requires
momentary energy to release objects. Lee et al. proposed a
collaborative framework for moving an unknown object in
an unknown obstacle ridden environment [20]. Kim et al.
developed an aerial manipulation system for lab automation
using a parallel manipulator [21]. Orsag et al. suggested a
benchmark for different aerial grasping applications [22].
Our work performs two similar benchmark applications:
grasping objects from a table and placing them in slots on a
shelf.

This work proposes a reliable aerial manipulation system,
at the core of which lies an autonomy software framework
that is robust to controller and hardware failures. We apply
the state machine framework to a package sorting application
that combines an off-the-shelf quadrotor with a custom
built light-weight 2-DoF arm and a magnetic gripper that
is tolerant to position error. We implement and compare
two different control strategies for picking objects: a PID
controller that assumes tight inner-loop attitude control and
a Model Predictive Controller (MPC). A novel magnetic
gripper is developed that can grasp objects with a tolerance
of 2 cm in end-effector position. We tested the entire system
through a set of 101 experiments and documented different
failure modes that can occur. The software framework is
robust enough to complete 85 out of the 101 pick-place trials
conducted. Finally, we provide the state machine framework
and aerial manipulation controllers as open-source software3.

II. SOFTWARE FRAMEWORK

At the core of this system lies a software framework
that allows users to easily create autonomy applications by
combining modular state behaviors, controllers, and hard-
ware capabilities into domain-specific state machines. The
software framework has been designed to:
• combine modular behaviors, such as waypoint naviga-

tion and visual servoing, into complex state machines to
perform complicated tasks, like object pick-and-place;

• enable robustness to sensor, controller, and hardware
failure, through introspection and fail-safe actions;

• provide control methods that adapt to environment
changes;

• provide automated tests for controllers and logic sys-
tems, independent of their hardware implementation;

• serve as an open-source system for developing complex
aerial autonomy applications.

It tightly integrates high-level control strategies for both
quadrotors and manipulators with an existing finite state
machine library to provide robustness to controller and
hardware failures during the task. The software framework

consists of two major components– the state machine and
the robot system, which are described next.

A. From behaviors to automatically generated state machine

The state machine and its set of behaviors form the core of
our software framework. The state machine logic is specified
through a state transition table which consists of a list of
tuples that specify the start state, transition event, ending
state, transition action, and transition guard.

The states in a state machine denote the different stages
during the execution of a task. In the context of aerial
manipulation, the states denote different stages of the pick
and place task. For example, the “Reaching Goal” state
refers to when the quadrotor is navigating to a goal location.
Similarly, the “Taking Off” state denotes the quadrotor in the
process of taking off from the ground.

State transitions are triggered by an event. For example,
a transition from the “Landed” state to the “Taking Off”
state is triggered by a ”Take-off” event. Events are typically
generated by the state machine itself or by users through a
graphical interface.

When a state transition is triggered, a guard function first
verifies the feasibility of a transition between two states. That
is, a state transition occurs only when the guard allows it.
If the guard blocks a state transition, the current state will
remain unchanged. As an example, in our pick-and-place
task, a guard function checks that the output of the object
tracking module is valid before transitioning into a “Visual
Servoing” state, which attempts to align the quadrotor with
an object using visual features.

When the guard allows a state transition to occur, an
associated transition action executes. Typically, these actions
switch the active controllers, send direct commands to the
hardware driver, or configure some aspect of the robot for the
new state. The transition actions can be triggered by the user
or through state machine logic. These actions can be chained
to create more complicated actions and thereby reduce code
duplication.

While in a particular state, the system repeatedly executes
an internal behavior associated with that state. These be-
haviors, called “internal actions”, trigger specific events on
the state machine based on the current robot state. These
actions typically perform health checks on the hardware and
controllers and check for convergence of active controllers.
In the case of the “Reaching Goal” state referred to above,
the internal action checks for the battery status of the
quadrotor and triggers an “Abort” event if the battery is
low and checks if the quadrotor has converged to the goal
location, triggering a “Completed” event if it has converged.
Similar to transition actions, the internal actions can also be
chained together. Encoding the state machine logic in the
internal actions allows for decentralization of state machine
logic and reduces code duplication among different state
machines.

The state machine has been implemented using the Boost
meta state machine library in C++ [23]. The states, actions,
and guards in the table are C++ classes that can be reused

Fig. 2. Illustration of the interaction between the various software com-
ponents of the developed framework. The Graphical User Interface (GUI)
displays feedback from the individual components, but those connections
are left out of the diagram for readability.

in different transition tables to form diverse state machine
behaviors without code duplication.

B. Robot System

Figure 2 illustrates the interaction between different com-
ponents of the robot system and the state machine. The data
obtained from sensors and hardware drivers are fed into the
state machine. The state machine then selects the active set
of controllers and the desired goal for these controllers. The
controllers are further grouped based on the hardware type
that they command so that only a single controller is allowed
to execute for a specific hardware group. Choosing a single
controller avoids accidental errors, such as when two types of
position controllers are trying to send conflicting commands
to the quadrotor. The output of the controllers is finally sent
back to the physical robot through the hardware driver.

C. Graphical User Interface

We have also developed a Graphical User Interface (GUI)
from which users can trigger events and monitor the robot
system and state machine health. The GUI communicates
with the state machine through the Robot Operating System
(ROS) middleware [24] (Figure 3).

III. AERIAL MANIPULATOR CONTROL

We now describe in detail two of the trajectory tracking
controllers implemented on our aerial manipulation system:
an acceleration-based controller that relies on roll-pitch-yaw-
thrust commands and an MPC controller.

A. Acceleration-based Control

Many off-the-shelf quadrotors come equipped with built-in
flight control hardware, where the control interface is limited
to higher level commands such as roll-pitch-yaw-thrust or
angular rate commands instead of direct motor commands.

Fig. 3. User interface for sending commands and viewing state machine
and robot system feedback. The left panel is the portion provided by the
framework showing the state machine status. The right panel shows a view
from the onboard camera with objects to pick.

Here, we describe a controller that can be employed on such
systems.

Define the state of the quadrotor as x = (p,R, v, ω), where
p ∈ R3 is the position, R ∈ SO(3) is the attitude, v ∈ R3

is the velocity, and ω ∈ R3 is the angular velocity. The
autopilot takes as input the desired roll φd, desired pitch
θd, desired yaw rate ψ̇d and a thrust command ut ∈ R.
It internally runs a feedback loop that controls the rotor
velocities to achieve these high-level commands. The aim
of the controller is to accurately track a desired reference
trajectory in terms of position, velocity, and yaw, where the
reference is specified as a smooth trajectory in quadrotor
position pr ∈ R3 and quadrotor yaw ψr. To achieve this task,
we design a controller that computes the desired acceleration
ad ∈ R3 based on the error in position ep = pr−p and error
in velocity ev = ṗr − v as

ad = Kpep +Kded + ar, (1)

where Kp,Kd ∈ R3×3 are positive diagonal matrices that
act as proportional and derivative gains and ar = p̈r is the
feedforward acceleration based on the reference trajectory.
The proportional and derivative gains for the x and y axes
are selected separately from that of the z-axis gain since
the quadrotor dynamics are significantly different along the
z-axis.

Next, we compute the roll, pitch, and thrust commands
that achieve the desired acceleration ad. The rotors on the
quadrotor are aligned with the body z-axis, which implies
the quadrotor can only apply acceleration along this axis.
The net acceleration produced by the quadrotor is given by

a = RZ(ψ)RY (θ)RX(φ)e3ut − g, (2)

where ψ, θ, φ represent a ZYX Euler parametrization of
R, R(·) represents rotation about z, y, and x-axes, g =
[0, 0,−9.81] is the gravity vector and e3 = [0, 0, 1]T is the
body z-axis. Mass does not enter the equation since ut is
a commanded body z-axis acceleration rather than a true
thrust force. We solve for the autopilot inputs φ, θ, and ut
by setting a as ad. The desired thrust command is given by

ut = ‖ad + g‖. (3)

To find the desired roll and pitch, we define the normalized
acceleration vector as ād = (ad + g)/ut. The desired roll
and pitch are then given by

φd = arcsin(ā>d e1 sinψ − ā>d e2 cosψ), (4)

θd = arctan

(
cosφ(ā>d e1 cosψ + ā>d e2 sinψ)

cosφ ā>d e3

)
. (5)

The above conversion has a singularity as 90◦ degrees roll,
which is not encountered in our application.

The commanded yaw rate is proportional to the error
between the current yaw and desired yaw obtained from the
reference trajectory as

ψ̇d = kψ(ψ − ψr) + ψ̇r. (6)

Previous work proves stability for a similar class of
trajectory tracking controllers that use PID to compute a
desired force and an inner-loop attitude controller to achieve
the desired force direction [25].

B. Model Predictive Controller

The model predictive controller computes the thrust and
desired attitude for the quadrotor by solving a trajectory
optimization problem. The optimization minimizes the cost
over a predicted trajectory for the quadrotor using a sequence
of control inputs. In this work, we assume a second order
model of the quadrotor rotational dynamics as explained
in [26]. The arm is assumed to be a kinematic system
and is controlled separately. The state of the quadrotor
for MPC optimization is obtained by extending the regular
quadrotor state by the desired Euler angles ξd so that x =
(p,R, v, w, ξd). The control inputs for the system are given
by the thrust ut and the Euler angle rates ξ̇d. The dynamics
model as described in [26] predicts the state at step i+1 given
the state xi and control ui and any additional parameters pi
at step i as

xi+1 = f(xi, ui, pi). (7)

In our model, the external disturbances (modeled as accel-
erations) and thrust gain parameters are taken as parameters
to the system.

The cost function used for the optimization is a quadratic
cost function that minimizes the error between quadrotor
state xi and reference state x̄i while also minimizing the
deviation of the control effort ui from the desired control
effort ūi. The cost function can be written as

L = (xN − x̄N)>QN (xN−x̄N)+
N−1∑
i=0

(xi−x̄i)>Q(xi−x̄i) + (ui−ūi)>R(ui−ūi), (8)

where N is the number of trajectory steps, QN is the terminal
cost gain, and Q,R are the cost gains along the trajectory.
The MPC trajectory optimization minimizes the cost function
L subject to the constraint that the trajectory is dynamically
feasible

u∗1:N = arg min
u1:N

L s.t xi+1 = f(xi, ui, pi), (9)

giving the optimal control inputs u∗1:N . The trajectory op-
timization problem is inherently sparse since the controls
at stage i can only effect the states i + 1 to N . Thus, we
use a Stagewise Newton method [27] which is also closely
related to Differential Dynamic Programming (DDP) [28] to
solve (9). During a single iteration, this method performs
a backward pass over the current control trajectory which
computes the gradient of L with respect to u1:N and executes
a forward pass which performs a line search over the descent
step size by fully unrolling the dynamics to ensure the cost
decreases. We employ the Casadi automatic differentiation
library [29] to find the gradients of the dynamics required
for the Stagewise Newton method. The MPC optimization
for the quadrotor dynamics is able to run at a frequency of
100 Hz on an onboard Intel NUC i5 computer.

C. Reference Trajectory Generation

The trajectory tracking controllers described above need a
reference trajectory that is feasible for the quadrotor to track.
When navigating to a waypoint or approaching an object
to pick it up, we use a polynomial reference trajectory of
degree 9 along each individual axis to ensure the reference
derivatives are smooth up to fourth order. The coefficients of
the polynomial are found by solving a linear system defined
by the boundary conditions of the trajectory, where the initial
position and yaw are given by sensors and final position and
yaw are given by the user. The rest of the derivatives of the
position at the boundaries are set to zero so that the trajectory
starts and ends at rest.

1) Grasping Strategy: Close to the object in the final stage
of the picking procedure, we track a trajectory that is constant
in the plane parallel to the object, but sinusoidal perpendicu-
lar to the object. This results in a periodic “poking” motion.
This behavior is desirable since it pushes the end-effector
towards the object with the intent of making contact during
the first half cycle of the motion, but pulls the end-effector
back away from the object if it is misaligned while poking.
By pulling away, the robot has the opportunity to correct
its attitude and relative position without colliding with the
object before the next poking cycle begins.

IV. PARAMETER ESTIMATION

A. Thrust Gain Estimation

The acceleration-based controller relies on the autopilot
to achieve the desired thrust, roll, pitch, and yaw rate.
The autopilot usually takes as input a normalized thrust
command between 0 and 100, where a non-constant scale
factor can transform the normalized value to a metric unit
of thrust force. The scale factor, called the thrust gain, is
constantly changing since it depends on the battery voltage
and mass of the quadrotor. To compensate for these effects,
a thrust gain estimator computes the mapping between the
thrust command and the actual thrust force based on the
commanded thrust, the body acceleration vector, and the
orientation obtained from the quadrotor. We combine the
mass into the thrust gain to directly map the normalized input
to gravity compensated acceleration of the quadrotor. The

commanded thrust u ∈ R maps to a corresponding global
acceleration a ∈ R3 of the quadrotor as

a = ktRe3u+ g (10)

where kt ∈ R is the thrust gain, the orientation of the body
is denoted by the rotation matrix R, and the thrust vector
is assumed to be pointed towards the body-z direction, i.e.
e3 = [0, 0, 1].

The thrust gain can be obtained from the measured body
acceleration ab ∈ R3 and gravity vector as

kt =
1

u
eT3 (ab −R>g) (11)

These measurements can be obtained from the Inertial Mea-
surement Unit (IMU) on the quadrotor. The noise in the IMU
measurements is accounted for by using an exponential filter

k̄ti+1
= (1− λ)k̄ti + λkti , (12)

where k̄ti is the filtered thrust gain estimate at time index i.
By choosing a scale λ between 0 and 1, the thrust gain can
be adjusted to change more aggressively, which leads to the
quadrotor changing thrust aggressively to compensate for a
change in mass. Figure 4 shows the thrust gain estimated
for the quadrotor during a pick-and-place application. The
positive jumps in the gain denote a package being dropped
and a negative jump denotes a package being picked. The
thrust gain exhibits an overall downward trend as the battery
voltage drops over time.

Fig. 4. Estimate of thrust gain kt computed from IMU data and expected
acceleration.

B. Euler Angle Bias Estimation

We also found a small difference of approximately 0.5
degrees between the roll and pitch Euler angles reported
by the IMU and the angles obtained by inverting the fused
body acceleration reported by the IMU aacc as shown in
Figure 5. The roll and pitch angles corresponding to fused
body acceleration are obtained using (5) where desired ad
is replaced by the rotated body acceleration reported by the
IMU, that is

aglobal = RY (θ)RX(φ)aacc, (13)

where āglobal = (aglobal + g)/‖aglobal + g‖. To track the
reference trajectory, we need to track Euler angles that are
consistent with the body acceleration. Hence, we add the

difference between the angles δφ, δθ to the commanded roll
and pitch before sending them to the autopilot, where

δφ = φ− φacc, δθ = θ − θacc. (14)

0 5 10

Time (seconds)

−0.02

−0.01

0.00

0.01

R
o

ll
(r

ad
)

Acc_IMU

IMU

0 5 10

Time (seconds)

−0.05

0.00

0.05

0.10

P
it

ch
 (

ra
d

)

Acc_IMU

IMU

Fig. 5. Bias in roll and pitch estimated from difference in expected and
actual accelerations.

V. HARDWARE

A. Commercial Off-the-Shelf quadrotor

The aerial manipulation system contains a modified DJI
Matrice quadrotor as the base. The quadrotor is equipped
with a PointGrey Flea3 camera and an Intel NUCi5 com-
puter, which communicates with the Matrice flight controller
over a UART connection.

B. Motion capture system

Motion capture system is used for position and velocity
estimation for the control algorithms. The DJI Guidance
sensor suite consisting of 5 stereo cameras is used as a
fail-safe in case we lose motion capture during experiments.
Although using a motion capture system is restricting the
applicability of the system, it provides a good ground truth
for comparing our system with other future applications.

C. Manipulator

1) Custom 2-DoF Arm: Several previous works, like [30]
and [5], develop arms specifically for aerial manipulation, but
they typically only grasp objects directly below the robot and
cannot reach outside the envelope of the quadrotor. In this
work, a light-weight 2-DoF manipulator is used for picking
objects outside the envelope of the quadrotor. Dynamixel
servos control the manipulator joints which are connected by
carbon fiber tubes. The manipulator end-effector is steered
using a Cartesian position controller which commands joint
velocities to achieve a desired end-effector position. Since
the arm is underactuated, the pose of the end effector can
only be specified using two translational coordinates.

2) Magnetic Gripper: The arm uses a custom gripper to
pick and place objects. Since the position accuracy of the
quadrotor is limited to around 2 centimeters, the gripper
should be able to pick the object without requiring a high
degree of precision. The gripper also needs to be able to
pick objects of different sizes and shapes. Existing open-
source grippers, such as the Yale OpenHand [31], are too
heavy and do not fit the requirements specified above. Our
custom gripper shown in Figure 6 is composed of four
magnets with alternating polarity embedded into a wheel
attached to a servo. The magnets are attracted to a mating

joint (shown in Figure 6) that is attached to any object
the user wishes to pick. The mating joint has a pattern of
magnets to give the gripper more than one place to attach,
thereby increasing the amount of position error it can tolerate
while picking. It can tolerate a position error of about 3cm
parallel to the surface of the plate and 2cm perpendicular
to the plate. Once an object is attached to the gripper, it
can be released by rotating the magnet wheel 90◦ which
flips the polarity of the magnets and repels the object. The
gripper uses a momentary switch to detect whether it has
attached to a mating joint, allowing the onboard computer
to know when it has successfully picked up an object. An
onboard Teensy microcontroller runs software which sends
commands to the servo and receives feedback from the
switch. The gripper communication channel connects to a
single servo communication bus that runs up the length of
the manipulator to the computer.

Fig. 6. The magnetic gripper (left) and a sample package (right) used in
our aerial manipulation experiments. The package is instrumented with an
AR marker to facilitate tracking and a magnetic mating joint so it can attach
to the gripper.

VI. INDUSTRIAL PICK-AND-PLACE APPLICATION

The software framework developed in §II is used to
develop an industrial pick-and-place application leveraging
the aerial manipulation platform described in §V.

A. Setup

The goal of the application is to sort packages from a
packaging area (table) and transport them to corresponding
storage area (shelf). The package transportation capability
can be useful, for instance, in package fulfillment centers
or for remote object transport in radio-active environments.
Overall, the application demonstrates the system’s reliable
aerial grasping and object insertion capabilities.

The packages are tagged with AR markers [32] and
have an attached mating joint that connects to the gripper
described in §V-C.2. Each package has a corresponding des-
tination marker ID where the object is placed. Figure 7 shows
a timeline of the quadrotor picking and transporting packages
to their corresponding storage spaces. The packages have
masses between 120g and 170g. The mass of the package is
limited by the arm capacity (200g) and the quadrotor payload
capacity (500g).

1) State Machine: Figure 8 shows a simplified illustration
of the finite state machine for the pick place application.
There are two different logical loops in the diagram.

The first is the regular logic loop starting from ”Waiting
to Pick” state. During this cycle, the quadrotor automatically
detects the closest available package in the workspace, picks
up the package, determines the storage location based on the
marker ID of the object picked up, uses visual servoing using
on-board camera to navigate to a marked shelf, places the
package on the shelf, and returns to a start position with the
packages in view. This process is repeated indefinitely as-
suming new packages appear continuously in the packaging
area.

Various system components could fail throughout the
pick-and-place process, but the implemented state machine
accounts for such failures through a second loop known as
the fault-recovery loop. For example, during picking, the
arm could block the marker from the camera, resulting in a
tracking loss. Instead of just aborting and waiting for human
input, the system instead back-tracks to its prior position and
re-attempts the picking process. Other failure modes include
failing to pick the object within a specified timeout. Recovery
state transitions are shown in red in Figure 8.

In addition to automatic recovery, sometimes during the
experiment, a user intervention is necessary. A list of such
failures encountered during operations is listed in Table II.
The state machine ensures the system is safe under these
failure modes by switching to hovering and relying on
internal controller to stably hover in place until the user is
ready to intervene. Furthermore, the state machine accepts
manual override from a safety pilot to abort any action safely.
The state machine recognizes the intervention and aborts any
active controllers running on the machine. Therefore, the user
can resume picking operation after rectifying the error and
disabling the override sent.

B. Results

Figure 7 shows a timeline of the pick-and-place task,
where the quadrotor picks up a package from the table
and places it in a shelf. The media attachments associated
with this work demonstrate the complete pick-and-place task
where the quadrotor sorts multiple packages into the top and
bottom shelves without any manual interruptions.

We quantified the ability of the quadrotor to perform a
successful pick operation over 101 trials of picking and
placing. The acceleration-based controller is used for these
trials since it was easier to tune and performed slightly better
than MPC at the picking task. Figure 9 compares the mean
absolute errors along translational positions, velocities, and
yaw angle for each controller. Both the MPC controller and
acceleration-based controller performed well during trajec-
tory tracking, but the acceleration-based controller with more
extensive gain tuning produced slightly better results.

Table I shows the mean trajectory tracking errors and pick
times during the trials. The aerial manipulator was able to
pick the object successfully 80% of the time without the
ability to detect system faults. The system’s pick success

Fig. 7. Time-lapse of the aerial manipulator picking the object highlighted in yellow from the packaging area (top-left) and placing it on a storage shelf
(top-right) in the same trial. The bottom picture shows an overhead view of the pick-and-place procedure.

Fig. 8. Part of the state machine for picking and placing a package. The
recovery actions are red and user actions are green. The user can also abort
from any other state back to hovering if manual intervention is desired.

Pick Success Rate 91/101
Overall Success Rate 85/101

Min Pick Time 6.5 seconds
Mean Pick Time 11.5 seconds
Max Pick Time 25 seconds

Mean Absolute Error x 2.1cm
Mean Absolute Error y 2.5cm
Mean Absolute Error z 1 cm
Mean Absolute Error ψ 0.03 rad

TABLE I
PICK SUCCESS RATE, PICK TIME STATISTICS, AND ERROR IN

QUADROTOR POSITION AND YAW FOR PICKING AN OBJECT

rate increased to 85% when it is was able to automatically
recognize failure to pick an object and could retry and re-
pick the object in a future attempt. We also achieved a mean
absolute error of less than 3 centimeters in all translational
axis and less than 2 centimeters/second in velocity. Figure 10
shows a histogram of pickup times and total time for pick
and place of an object over different trials. The majority of
pickup times vary from 6 seconds to 16 seconds, while the
total pick-and-place time for one box varies from 30 seconds
to 40 seconds in most cases.

X Y Z ψ VX VY VZ

Axis

0.00

0.01

0.02

0.03

0.04

E
rr

o
r

Controller

MPC

Acceleration control

Fig. 9. Mean absolute errors along x, y, z (meters), and yaw ψ
axes (radians) and translational velocities (meters/second) for MPC and
acceleration-based controller. The black lines show the 95% confidence
interval obtained using bootstrapping.

10 15 20 25

Pickup time (seconds)

0

10

20

30

C
o

u
n

t

30 40 50

Total time (seconds)

0

5

10

15

20

C
o
u
n
t

Fig. 10. Histogram of pickup and total time for placing one box using the
pick place state machine.

VII. CONCLUSION

This work developed an aerial manipulation system using
a commercial quadrotor, a custom arm and end-effector, and
a new software framework for aerial autonomy capable of
fault-tolerant industrial pick-and-place tasks. While failure
detection and system health monitoring increased the robust-
ness of the system, more robust hardware and environment-
adaptive manipulation are necessary to further reduce the

Failure Mode Number of Failures
Object misplaced in shelf while placing 1
Gripper failed to hold onto object 1
Lost motion capture while gripping 1
Controller failed after multiple retries 3
Proximity sensor failed to detect object 3
Object went out of workspace 3
Camera stops responding due to driver errors 3

TABLE II
FAILURE MODES DURING PICK-AND-PLACE TRIALS

failure modes shown in Table II and drive the system
toward 100% reliability. Future work will integrate advanced
adaptive models for the quadrotor and the arm that explicitly
take into account their coupled dynamics in order to reduce
position control error in MPC methods. New grippers that do
not require custom attachments on the package will also be
designed to make the system more widely applicable. Finally,
while we were able to demonstrate reliable and relatively
efficient operation, the overall speed and agility of the robot
can be further improved. Achieving extreme agility without
sacrificing reliability remains a central challenge yet to be
solved.

VIII. ACKNOWLEDGEMENTS

Thanks to Professor Joseph Katz and Professor Louis
Whitcomb for providing facilities for conducting experiments
and to Subhransu Mishra for guidance in designing the
manipulator hardware. This material is based upon work
supported by the National Science Foundation under grant
no:1527432.

REFERENCES

[1] Amazon, “Prime air.” https://www.amazon.com/
Amazon-Prime-Air/b?node=8037720011, 2017.

[2] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and
transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1,
pp. 73–86, 2011.

[3] AeroWorks. http://www.aeroworks2020.eu/, 2017.
[4] AEROARMS. https://aeroarms-project.eu/, 2017.
[5] C. D. Bellicoso, L. R. Buonocore, V. Lippiello, and B. Siciliano,

“Design, modeling and control of a 5-dof light-weight robot arm for
aerial manipulation,” in Control and Automation (MED), 2015 23th
Mediterranean Conference on, pp. 853–858, IEEE, 2015.

[6] A. Suarez, G. Heredia, and A. Ollero, “Lightweight compliant arm
with compliant finger for aerial manipulation and inspection,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4449–4454, Oct 2016.

[7] P. E. Pounds, D. R. Bersak, and A. M. Dollar, “The yale aerial
manipulator: grasping in flight,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 2974–2975, IEEE, 2011.

[8] R. Mebarki and V. Lippiello, “Imagebased control for aerial manipu-
lation,” Asian Journal of Control, vol. 16, no. 3, pp. 646–656, 2014.

[9] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, mod-
eling, estimation and control for aerial grasping and manipulation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2668–2673, IEEE, 2011.

[10] K. Kondak, F. Huber, M. Schwarzbach, M. Laiacker, D. Sommer,
M. Bejar, and A. Ollero, “Aerial manipulation robot composed of
an autonomous helicopter and a 7 degrees of freedom industrial
manipulator,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 2107–2112, IEEE, 2014.

[11] C. Korpela, P. Brahmbhatt, M. Orsag, and P. Oh, “Towards the realiza-
tion of mobile manipulating unmanned aerial vehicles (mm-uav): Peg-
in-hole insertion tasks,” in International Conference on Technologies
for Practical Robot Applications (TePRA), pp. 1–6, IEEE, 2013.

[12] S. Kim, S. Choi, and H. J. Kim, “Aerial manipulation using a quadrotor
with a two dof robotic arm,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4990–4995, IEEE, 2013.

[13] K. Kondak, F. Huber, M. Schwarzbach, M. Laiacker, D. Sommer,
M. Bejar, and A. Ollero, “Aerial manipulation robot composed of
an autonomous helicopter and a 7 degrees of freedom industrial
manipulator,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2107–2112, May 2014.

[14] V. Lippiello, J. Cacace, A. Santamaria-Navarro, J. Andrade-Cetto,
M. A. Trujillo, Y. R. Esteves, and A. Viguria, “Hybrid visual servoing
with hierarchical task composition for aerial manipulation,” IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 259–266, 2016.

[15] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, Visual Odometry and Mapping for Autonomous Flight
Using an RGB-D Camera, pp. 235–252. Cham: Springer International
Publishing, 2017.

[16] “Dji guidance pro suite.” https://www.dji.com/ground-station-pro,
2017.

[17] L. Meier, “Pixhawk autopilot - px4 autopilot platform,” 2014.
[18] A. Gawel, M. Kamel, T. Novkovic, J. Widauer, D. Schindler, B. P. von

Altishofen, R. Siegwart, and J. Nieto, “Aerial picking and delivery of
magnetic objects with mavs,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 5746–5752, IEEE, 2017.

[19] M. Nieuwenhuisen, M. Beul, R. A. Rosu, J. Quenzel, D. Pavlichenko,
S. Houben, and S. Behnke, “Collaborative object picking and delivery
with a team of micro aerial vehicles at mbzirc,” in European Confer-
ence on Mobile Robots (ECMR), pp. 1–6, IEEE, 2017.

[20] H. Lee, H. Kim, W. Kim, and H. J. Kim, “An integrated framework
for cooperative aerial manipulators in unknown environments,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2307–2314, 2018.

[21] D. Kim and P. Y. Oh, “Lab automation drones for mobile manipulation
in high throughput systems,” in IEEE International Conference on
Consumer Electronics (ICCE), pp. 1–5, IEEE, 2018.

[22] M. Orsag, C. Korpela, S. Bogdan, and P. Oh, “Dexterous aerial
robotsmobile manipulation using unmanned aerial systems,” IEEE
Transactions on Robotics, vol. 33, no. 6, pp. 1453–1466, 2017.

[23] “Boost meta state machine msm library,” 2017.
[24] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, 2009.

[25] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se (3),” in Decision and Control (CDC), 2010
49th IEEE Conference on, pp. 5420–5425, IEEE, 2010.

[26] G. Garimella, M. Sheckells, and M. Kobilarov, “Robust obstacle avoid-
ance for aerial platforms using adaptive model predictive control,” in
IEEE International Conference on Robotics and Automation (ICRA),
pp. 5876–5882, IEEE, 2017.

[27] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 2003.

[28] D. H. Jacobson and D. Q. Mayne, Differential dynamic programming.
Modern analytic and computational methods in science and mathe-
matics, New York: Elsevier, 1970.

[29] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, In Press,
2018.

[30] V. Ghadiok, J. Goldin, and W. Ren, “Autonomous indoor aerial
gripping using a quadrotor,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4645–4651, IEEE, 2011.

[31] R. R. Ma, L. U. Odhner, and A. M. Dollar, “A modular, open-source
3d printed underactuated hand,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 2737–2743, IEEE, 2013.

[32] Alvar. http://virtual.vtt.fi/virtual/proj2/
multimedia/alvar/index.html, 2017.

