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Abstract— This work considers the problem of predicting
the dynamics of a small unmanned ground vehicle (UGV)
navigating on unknown terrains. Predicting the dynamics over
long horizons accurately helps avoid obstacles by making
accurate control decisions early on. We propose a Recurrent
Neural Network (RNN) to predict the position and orientation
of the vehicle driving at 8 meters per second (18 mph) up
to a time horizon of 2 seconds. Our method is different from
traditional dynamic models of a car in the sense that we do
not explicitly encode the terrain dependent parameters into
the model. In contrast, the RNN model can estimate both the
type of the terrain and the terrain parameters by processing
through a few steps of sensor data such as GPS, IMU and
wheel encoders. We tested the network on a 1/5th scale RC
car driving on three terrain surfaces namely grass concrete
and sand which have vastly different dynamic behaviors. Our
network is able to make position predictions with an accuracy
of 0.5 m and orientation of the car with an accuracy of 7 degrees
in the next two seconds. In addition, the network is also able
to classify the terrain accurately 74% of the time (3 terrains
considered) where random chance would predict at 33%. The
dynamic model created in this work can be used in predictive
control schemes such as Model Predictive Control (MPC) or to
simply determine the safe driving conditions of a vehicle based
on the terrain.

I. INTRODUCTION

This paper considers the autonomous navigation of small
Unmanned Ground Vehicles (UGV) on natural terrains, moti-
vated by applications such as package delivery, surveillance,
search and rescue operations [1], [2], [3] in environments
that do not necessary have regular roads that are easily
traversable. For instance, consider a ground vehicle tran-
sitioning between two different surfaces or driving aggres-
sively on a terrain (such as in Fig. 1). In order to safely
navigate these terrains and reach a goal state, the vehicle
needs an accurate model that can predict it’s motion for a
long horizon. The terrain conditions often introduce sudden
changes in the tire-to-surface interaction that, if not modeled,
can lead to excessive lateral accelerations, wheel slip and
possible loss of control. In such scenarios, it is necessary to
accurately detect the terrain properties online and predict the
motion of the car over a sufficiently long future horizon that
ensures obstacle avoidance or safe stopping. We propose a
neural network model for identifying the dynamical model
of a UGV, which can represent the vehicle motion faithfully
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over a long horizon by automatically recognizing the driving
terrain online based on sensor data.

Fig. 1. A small (1/5 scale) ground vehicle driving on different terrains.
The top figure shows the car transitioning between grass and brick surfaces.
The bottom picture shows car sliding over a grass terrain with red arrows
indicating sideways slip.

A. Related Work

Earlier work concentrated on modeling the dynamics of a
four wheeled robot using first principles models [4]. Using
the first principles models, several control approaches have
been developed that control the vehicle on flat terrains
under different slip conditions [5], [6], [7]. These models,
although sufficient for a flat terrain with fixed terrain pa-
rameters, cannot capture the full nonlinear dynamics of a
car on terrains with varying conditions. Simple first prin-
ciples models have also been developed for performing
control on rough terrains [8] at low speeds. Initial control
frameworks on these terrains were restricted to low speeds
where the dynamics was predictable using the simplified
models [9]. Aggressive driving on different terrains has
been made possible by combining improved robot dynamics
modeling with better control approaches. Several authors
considered high fidelity physics simulators to predict the
car dynamics [10], [11]. The physics-based models are used
in either a Model Predictive Control (MPC) setting [12]
or in a reinforcement learning approach where a control



policy is found using a transfer learning approach [13],
[14]. These methods require an accurate representation of the
terrain which can be constructed from LiDAR data as shown
in [15], [16], [17]. Tuning the parameters for a high fidelity
simulation model is usually hard since it is dependent on
the specific terrain and the vehicle being used. Recent work
done by Aghli and Hackerman [18] have shown ability to
tune these parameters by choosing selected motion segments
with maximum information regarding the parameters.

Unlike physics-based models, neural networks have also
been used to learn the dynamics of robots [19], [20]. These
methods combine traditional first principles models with neu-
ral network models to precisely predict the dynamics of the
robot. The neural network models have been combined with
MPC techniques to control robots under uncertainty [21],
[22]. The authors were not able to find any current literature
where neural network methods are employed to learn the
dynamics of a mobile robot on multiple terrain surfaces.

Instead of using neural networks for learning dynamics,
end to end control policies which take in sensor data and
produce a control output have also been developed for
aggressive driving. Sallab et al. [23] showed that deep
reinforcement learning can be applied to race car driving
in simulation. Yunpeng et al. [24] further showed that deep
neural networks can be used to learn control policies for
driving aggressively at 8 m/s on a 1/5th scale RC car using
only a monocular camera and wheel encoders. Convolutional
neural networks (CNN) have been used to predict costs
for MPC optimization using a vision sensor in [25]. Our
approach, in contrast to above methods, learns an accurate
model over multiple terrain surfaces. The learned model is
the first step in developing a model based control scheme
which can use a neural network control policy or an MPC
policy.

Neural networks have also been used to classify the terrain
type based on cameras [26], LiDAR [27], and a subset of
camera, Lidar and vibrational sensors [28], [29], [30]. These
approaches try to avoid the terrains that are hard to drive
on rather than learning the dynamics on those terrains. In
this work, we try to predict the dynamics of the car on
different terrains and, therefore, allow for safe navigation
of the vehicle on multiple terrains.

B. Contributions

We develop a general Recurrent Neural Network (RNN)
architecture that is not specific to any particular vehicle
model or terrain type and is expected to adapt to different
environments. The network is applied to predicting the
dynamics of the ground vehicle shown in Figure 1 traversing
two terrain types: grass and brick. The terrains are assumed
to be relatively flat and thus the dynamics of the car can be
captured using planar (as opposed to 3D) relative pose dis-
placements, gyro and acceleration data, encoder odometry of
each wheel, and control inputs. We show that with sufficient
training data across different velocities and maneuver types
it is possible to learn a model that can predict the motion
equally well irrespective of the terrain surface type, e.g. the

Measurement Source Accuracy Frequency (Hz)
Position GPS 0.2 m 5
Forward Velocity Motor Encoder 0.1m/s 50
Wheel velocities Wheel encoders 2◦ 50
Body Z angular
velocity

MEMS-Gyro 0.1rad/s 100

Body X, Y angu-
lar velocity

MEMS-
Accelerometer

0.1m/ss 100

Steering angle Servo-motor 3◦ 50

TABLE I
THE TABLE SHOWS THE SENSOR MEASUREMENTS USED BY THE

NETWORK, THE SOURCE SENSORS, THE MEASUREMENT ACCURACY AND

THE ACQUISITION FREQUENCY

network can predict the position of the vehicle 2 seconds
in the future traveling at 7 m/s with 0.6 cm accuracy on
average. It is shown that training the network using data from
both terrains types is critical for achieving such performance.
In addition we show that RNN can be made to encode the
terrain type explicitly using controls and sensor measurement
and not rely on vision based sensors. We tested with 3
different terrains types and obtained an accuracy of 75%
when driving with high lateral acceleration or high forward
acceleration.

.

II. NEURAL NETWORK ARCHITECTURE

In this work we use a Recurrent Neural Network (RNN) to
predict the behavior of the car. We are interested in predicting
the pose of the car g which is an element of SE (2). The
pose is fully defined by the position (x ∈ R, y ∈ R) of the
center of the rear axle of the car as well as the orientation
(θ ∈ S1) of the car. The network is also designed to perform
other auxiliary tasks which may help in predicting the pose
g better. The auxiliary tasks performed by the network are to
predict the terrain its driving on and predicting a set of sensor
measurements z ∈ Rnz , where nz is the sensor dimension.
The terrain prediction is performed by learning a probability
distribution vector ψ on a set of pre-defined terrain labels
Sψ and the label with maximum probability is chosen as the
predicted terrain label.

A. Network inputs and outputs

1) Outputs: RC car is equipped with a suite of sensors
with varying accuracies and data collection frequencies as
shown in Tab I. The pose measurements ĝ are obtained by
concatenating the position measurements (x, y) from GPS
and the orientation θ of the car from yaw measurement of
the IMU. The auxiliary sensor measurements ẑ are chosen
as front left and right wheel encoders as well as z angular
velocity obtained from IMU (ẑ ∈ R3). These sensor mea-
surements have been chosen by experimenting with different
combinations of sensors and finding a set that results in good
prediction performance.

2) Inputs: The recurrent network takes as input the cur-
rent sensor measurements ẑi and the current controls ui.
The vehicle is controlled using an Electronic Speed Control
(ESC) to control the longitudinal velocity of the vehicle



v ∈ R and a servo to control the steering angle φ ∈ R
of the vehicle. The control inputs to the vehicle are given by
the desired velocity and steering angle vd ∈ R, φd ∈ R i.e
u = [vd, φd]

T . The car is controlled at a frequency of 50 Hz
while the position measurements are received at a frequency
of 5 Hz. If we supply the network with only a single control
input, the network loses predictive capacity. To avoid the
loss in control information, we fit a second order polynomial
(up(t) = c0 + c1t+ c2t

2) to the controls between (ti, ti+1)
where t ∈ R represents the time and c0:n ∈ R2 corresponds
the polynomial coefficients. We feed the stacked coefficients
ci = [cT0,i, c

T
1,i, c

T
2,i]

T to the neural network at each step as
shown in Fig 2. Assuming the controls between the times
are given by u0, · · · , uNu (ignoring the subscript i for clarity
in notation), the coefficients for the second order polynomial
are obtained by performing a least squares fit as

min
c0:2

Nu∑
j=0

‖c0 + c1tj + c2t
2
j − uj‖22 (1)

Fig. 2. Neural Network Architecture for predicting the next car pose gi+1

given the current sensor measurements ẑi, control coefficients ci and the
hidden state hi. The transform function φ applies a relative pose δg to
current pose g.

B. Predicting relative pose and change in sensor measure-
ments

A naive implementation of the neural network involves
predicting the pose of the RC car at the next time step
gi+1 directly using the pose measurements, controls and
other auxiliary sensor measurements at the current step
(ĝ, ẑ, ui). This approach has two main issues. First, the
position coordinates x, y have a very large output scale.
When the workspace is very large, a large network size
is required to predict the position coordinates accurately.
Further, the training data is required to cover the entire
position space uniformly which increases the size of the
training data drastically.

The second issue has to deal with angle measurements
which lie on S1. In our example, the orientation of the car
wraps around 2π, and, thus, there are jumps in the predictions
which are not easy to model. The common solution to this
problem is to embed the angles in a higher dimension such
as quaternions [31]. This adds additional dimensions to the
state.

In this work, we use the invariance of the car dynam-
ics [32] to mitigate the issues mentioned above. The invari-
ance in the dynamics allows for us to predict the change
in the pose δgi ∈ R3 and change in sensor measurements
δzi which combined with ĝi and ẑi predicts gi+1, zi+1 as
explained in [33], without explicitly predicting the pose and
measurements.

The overall architecture of the neural network is shown in
Fig 2. The RNN part of the network is shown in dashed lines.
The recurrent network takes in the sensor measurements ẑi,
control polynomial coefficients ci and the hidden state hi
and predicts the hidden state at next step hi+1. The hidden
state represents information accumulated over time and is
equivalent to the state of the system in a traditional dynamic
model. The size of the hidden state has been experimented
with and is chosen as 20 dimensional state (hi ∈ R20).

The hidden state is then passed through a three fully
connected layers with 20 nodes each to obtain the change
in pose δgi and the change in sensor measurements δzi as
δxi = [δgTi , δz

T
i ]
T . The change in pose is then then applied

to the measured pose to obtain the predicted pose at next
step as

gi+1 = φ(ĝi, δgi) = gi exp(δgi), (2)

where the exponential function maps a vector from R3

to SE(2). The predicted sensor measurements live on a
Euclidean manifold (z ∈ R3) and are obtained by simply
adding the change in sensor measurements to the previous
sensor measurements i.e zi+1 = ẑi + δzi.

C. Terrain Classification

The neural network is also trained to predict the terrain
on which the vehicle is driving based on the hidden state
from the RNN. By training on this auxiliary task, we force
the hidden state to learn the representation of the terrain as
part of the hidden state. The hidden state hi+1 is processed
through a couple of separate hidden layers and finally a soft-
max layer to get the normalized probability vector ψi+1. The
maximum element in the vector corresponds to the predicted
terrain label.

III. TRAINING

The network is trained on a series of trajectories collected
by driving the car manually over different surfaces. We used
four different surfaces in this work: grass, turf, concrete
and sand. For each of the surfaces, we varied the desired
velocities from 0 m/s to 10 m/s and the steering command
from -20 degrees to 20 degrees.

The network training is performed by minimizing a train-
ing cost L that consists of minimizing the error between
predicted pose gi+1 and measured pose ĝi+1, the error be-
tween predicted sensor measurements zi+1 , measured sensor
measurements ẑi+1 and a cross entropy loss minimizing the
error in the terrain probability distribution vector ψi+1. The



loss function is given by

L =

N∑
i=1

(
‖Qgi(gi+1 − ĝi+1)‖22 + ‖Qzi(zi+1 − ẑi+1)‖22

+ QCE CE(ψ̂i+1, ψi+1)
)
,

(3)
where Q(·) is the weighting matrix that scales the importance
of each of the tasks, CE represents the cross entropy loss and
ψ̂i+1represents a one-hot vector with the index corresponding
to label getting a value of one. The weight Qgi is further
scaled inversely by length of the relative motion δgi to
normalize the errors across different velocities. Since the
pose of the car g lives in SE (2), the subtraction ”−” between
the poses gi+1, ĝi+1 in equation (3) refers to the operator that
finds the distance between two elements in SE (2).

The cost function (3) is minimized using the truncated
back propagation algorithm where the car trajectories are
truncated into segments of 5 steps(1 second) and the gra-
dients of the network weights are computed based on back
propagation up to the segment length. Although the gradients
are truncated at the segment length, the hidden state is
propagated across continuous segments to ensure the terrain
information and vehicle velocities and accelerations are not
lost.

A. Testing

During the testing phase, the network predicts the pose of
the car for the next 2 seconds based on the current hidden
state h0 and controls control polynomial coefficients c1:N .
Since we do not know the future pose and sensor measure-
ments ẑ1:N , ĝ1:N , we replace the measured quantities with
predicted quantities i.e z1:N , g1:N in network architecture
shown in Fig 2. Accurate prediction of car dynamics based
on predicted poses and sensor values requires an accurate
initialization of hidden state. The hidden state is initialized
by running the network with past sensor measurements and
past controls for a fixed period of time to ensure the hidden
state is converged. The initialization time is determined based
on average time observed in training for the predicted sensor
measurements to catch up with observed sensor measure-
ments starting from an zero initialized hidden state.

IV. RESULTS

A. Self driving Platform

The 1/5th scale electric RC car has stock mechanical
linkages, drive train and servo motors. The radio receiver,
servo motor controller and electronic speed control have
been upgraded to talk to an ATmega-2560 based controller
board using UART interface. The front two wheels are
equipped with magnetic encoders . The steering servo and
drive motor are powered by a 4000 mAh 6 cells LiPo
battery. The enclosure and mounting brackets are made with
laser-cut acrylic plates and 3D printed parts. The computer
sub-system includes an Intel quad-core i7 processor with
8 GB of RAM, an ethernet switch and wifi router. It is
powered by a 4000mAh 6cell LiPo battery. The software for

Fig. 3. Assembled car

collecting data and running MPC is setup using the Robot
Operating System(ROS) framework. ROS also facilitates
communication between computer and low level controller
along with time synchronization. The computer sends drive
motors rpm and steering wheel angle commands to the low-
level controller which is then relayed to the ESC and the
servo controller for closed-loop/set-point control. The low
level controller sends back sensors information. Localization
is performed by 2D LiDAR based localization algorithm or
through a combination of IMU and RTK GPS. The neural
network algorithm is setup using the TensorFlow python API.

B. Data

Data from two distinct surface types was collected by
manually driving the car at various speeds and angular
velocities. While driving the vehicle, care is taken to span
the space of controls and sensor measurements as best as
possible .The car experiences a maximum lateral acceleration
of 8m/sec2, forward acceleration of 4m/sec2, an angular
velocity of 1.2rads/sec and forward speeds up to 8 m/sec
.The data is divided into training, validation and test set.
The training set is used to optimize the neural network
parameters. Model selection and tuning is done using the
validation set. The plots in the results sections is obtained
by running the learned models on the test set.

C. Discussion

The network was trained separately on grass, brick and
combined training data set and their performance was evalu-
ated separately on the grass and brick data set. The results are
tabulated in table IV-C. The columns of the tables show the
root mean squared(RMS) error of the relative pose prediction
performed over the same dataset. Lets consider the case
where we train the network on brick and combined dataset,
separately. The prediction with combined trained network
is better than the brick trained model. This indicates that
the network learns the terrain parameters without explicitly
specifying the terrain, which is evident from the discussion



in the next paragraph. The network is able to make accurate
predictions over multiple steps. This is presented in fig 6.
Lastly the figure 4 plots the RMS error in angle, x and
y position for trajectories sampled from the set with speed
greater than 7 m/sec. That gives us an RMS error of 0.12
rad, 0.5 m in x and 0.2 m in y over 2 seconds.

In the Fig 5 we show that the hidden state of the RNN
can indeed encode the explicit terrain type just based on the
controls inputs and sensor feedback. We collect driving data
with high lateral and forward acceleration on three terrains:
Turf, Sand and Concrete to train the RNN with auxiliary
task. The rows show the true labels and the columns show
the predicted labels. For example, the first row shows that
out of 286 concrete sample trajectories, 211 samples were
labeled correctly.

Fig. 4. RMS error of trajectories with minimum speed of 7 m/sec over 2
secs (10 steps)

V. CONCLUSIONS

We have shown that the proposed RNN architecture is
able learn the dynamics of an RC car accurately without
any prior knowledge of the terrain. The network is also
able to classify the terrain only based on wheel encoder
and GPS data without the aid of vision based sensors. The
high accuracy obtained using the RNN model allows for
navigating through different terrains safely. Combining the
RNN architecture with an MPC architecture to autonomously
navigate through multiple terrains is the subject of future
work.
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