
Using Data-Driven Domain Randomization to Transfer Robust Control
Policies to Mobile Robots

Matthew Sheckells1, Gowtham Garimella1, Subhransu Mishra1, and Marin Kobilarov1

Abstract— This work develops a technique for using robot
motion trajectories to create a high quality stochastic dy-
namics model that is then leveraged in simulation to train
control policies with associated performance guarantees. We
demonstrate the idea by collecting dynamics data from a 1/5
scale agile ground vehicle, fitting a stochastic dynamics model,
and training a policy in simulation to drive around an oval
track at up to 7 m/s while avoiding obstacles. We show that
the control policy can be transferred back to the real vehicle
with little loss in predicted performance. We compare this to
an approach that uses a simple analytic car model to train
a policy in simulation and show that using a model with
stochasticity learned from data leads to higher performance in
terms of trajectory tracking accuracy and collision probability.
Furthermore, we show that simulation-derived performance
guarantees transfer to the actual vehicle when executing a policy
optimized using a stochastic dynamics model fit to vehicle data.

I. INTRODUCTION

Training control policies for a robotic system in simulation
is attractive since data can be generated quickly and the
safety of the robot is not a concern. However, policies trained
in simulation often do not perform as well when transferred
to the real world since the simulator may not completely
match reality. Recent research suggests that domain random-
ization is a promising approach to generating policies that are
robust to modelling errors in the simulator [1], [2], [3], [4],
[5]. This technique injects noise into the model parameters
or dynamics of the simulated system in order to make the
generated control policy reliable under a variety of condi-
tions. Many procedures, however, choose the uncertainty of
the simulator in an ad-hoc, hand-tuned manner, often with
great results [2], [3].

In this work, we propose to learn the uncertainty of the
simulator in a data-driven fashion. We first fit a stochastic
dynamics model to data generated from the real system.
Then, we use this model to train a control policy using
the stochastic dynamics. We train the policy using PROPS,
a reinforcement learning algorithm that searches in policy
space and which uses the training data to generate a sta-
tistical performance guarantee for future executions of the
policy [6]. We show that when the policy is transferred to
the real robot that the performance guarantees computed in
simulation, such as not exceeding a given probability of
collision, still hold. An important consequence of this is that

1M. Sheckells, G. Garimella, S. Mishra, and M. Kobi-
larov are with the Department of Computer Science and
the Department of Mechanical Engineering, Johns Hopkins
University, 3400 N Charles Str, Baltimore, MD 21218, USA
msheckells|ggarime1|smishra9|marin@jhu.edu

Fig. 1. The JHU all-terrain mobile robot used for navigation experiments.

we can approximately quantify and improve the expected
performance and safety of a policy in simulation before
executing it on the actual physical system. We demonstrate
this approach by computing an obstacle avoiding trajectory
tracking control policy for an agile Unmanned Ground
Vehicle (UGV) travelling up to 7 m/s. We show that this
approach outperforms a relatively simple procedure which
trains a policy in simulation using a simple analytic model.

A. Related Work

This work is closely related to recent research in using
domain randomization in reinforcement learning as well as
older developments in nonlinear system identification and
model-based policy search.

1) Domain Randomization: Using domain randomization
to make control policies robust to the transfer from simu-
lation to reality, also known as “sim-to-real”, is a relatively
new avenue of research that has seen a lot of activity over the
last two years. Tobin et al. first used domain randomization
in a rendering engine to train an object detector completely
in simulation and then use it in the real world to perform
robotic grasping [1]. Researchers at OpenAI similarly trained
an object pose estimation model in simulation using a
randomized renderer while also using reinforcement learning
to optimize a control strategy for in-hand manipulation in a
randomized simulation. They were able to transfer both the
pose estimator and control strategy to a real robotic hand
with little performance degradation [2]. Other work trained
control policies in simulation with randomized dynamics and
successfully deployed the policies on real robots for pushing
objects [4] and quadruped control [3], Sadeghi et al. trained
a visual servoing policy in simulation while randomizing

properties such as camera viewpoint and lighting conditions,
showing that the transferred policy generalized to unseen
objects in the real world [5].

2) Stochastic Dynamics Modelling: Neural networks are
a powerful tool for modelling nonlinear functions, so re-
searchers have used them to model nonlinear system dy-
namics [7], [8], [9] and stochastic dynamics [10] for the past
two decades. A different approach is to use Gaussian Process
(GP) regression [11] or Bayesian neural networks [12], [13]
to model the dynamics and covariance as a continuous
function of the state and control input.

3) Model-based Policy Search: This work falls in the
realm of model-based policy search since we fit a model
of the system using data from the vehicle and leverage that
for stochastic policy optimization. There are several related
works: PILCO learns a stochastic dynamics model using
a GP and explicitly incorporates uncertainty into planning
and control while using approximate inference to evaluate
the policy and an analytic policy gradient to make policy
updates [14]. Kupcsik et al. leverage a model of the dynamics
for contextual policy learning, adapting a low level policy
to the situation at hand [15]. Guided policy search fits a
series of linear-Gaussian models to local system dynamics,
while using a Gaussian Mixture Model to capture a rough
global estimate of the dynamics. These models are used
to optimize local policies which are then used as target
distributions for fitting a global policy [16]. More recent
work used Bayesian neural networks to model a stochastic
nonlinear system and leveraged the model for stochastic
policy optimization [17]. Rajeswaran et al. developed the
EPOpt algorithm which uses adversarial training and an
ensemble of simulated source domains to train a policy
that is robust to different target domains and unmodelled
disturbances. Furthermore, EPOpt can leverage data from
the target domain and use Bayesian methods to make the
simulated domain a better approximation of the target [18].
The proposed approach is similar to related work in that it
finds a maximum likelihood estimate of the target system and
then uses it for policy optimization in simulation. The key
difference here is that we show empirically that performance
guarantees generated by the PROPS policy search algorithm
transfer to the real system when using a learned stochastic
model.

II. DATA-DRIVEN DOMAIN RANDOMIZATION

Policy transfer from simulation to a real robot often leads
to suboptimal or even unsafe results if the policy is trained
in a single, deterministic environment. This is because small
differences between the simulated and real environment can
lead to drastic differences in policy behavior. Recent research
has shown that randomizing some aspects of the environment
robustifies the policy and leads to better policy transfer.
This technique is called domain randomization. Here, we
introduce a procedure for modelling the uncertainty in the
real environment in order to inject uncertainty into the
simulation. Previous techniques use an ad-hoc procedure
to pick which parameters of the simulation to randomize.

This usually leads to a tuning procedure in which there is
a trade-off between policy robustness and how conservative
the policy is, where more noise leads to a more robust yet
more conservative policy. In contrast to this, we attempt to
learn the dynamics distribution from robot-generated data so
that the policy is not overly conservative. Next, we describe
the model and how we use it for generating random system
trajectories.

A. Stochastic Dynamics Model

The state of the dynamic system is denoted by x ∈ Rn
with control inputs u ∈ Rm. We assume that the dynamics
take the form of a stochastic ODE

ẋ = f(x, u) + g(x, u)w,

where w(t) is a random variable taking values in R` sampled
from a standard Gaussian N (0, I`), uncorrelated in time. The
functions f and g are the mean and the Cholesky form of
the covariance of the dynamics, respectively. More formally:

E[ẋ(t)] = f(x(t), u(t)),

E[ẋ(t)ẋ(τ)T] = g(x(t), u(t))g(x(t), u(t))>δ(t− τ),
where δ(t − τ) is the Dirac delta for given times t and τ .
While ` can be chosen high enough to capture the noise
complexity, we set ` = n for the rest of this work as it works
well in practice without making the model too complex. The
dynamics can be approximated by some parameterized model
f̂θ and ĝγ . Next, we describe the loss function for fitting such
a model to dynamics data.

B. Model Loss Function

Given trajectory data from a real system, we can find
functions f̂θ and ĝγ which maximize the likelihood of the
data and therefore provide a good probabilistic model of the
system.

Assume that we have M samples of the dynamics X =
{x1. . . . , xM}, U = {u1, . . . , uM}, Ẋ = {ẋ1. . . . , ẋM}. To
simplify notation, we denote f̂i , f̂θ(xi, ui) and ĝi ,
ĝγ(xi, ui). The likelihood of the data is given by the joint
probability density

p(Ẋ|θ, γ,X,U) =

M∏
i=1

e−
1
2 (ẋi−f̂i)

>ĝ−1>
i ĝ−1

i (ẋi−f̂i)√
(2π)n|ĝiĝ>i |

.

As is typical, we can instead maximize the simpler log
likelihood

ln p(Ẋ|θ, γ,X,U) =

M∑
i=1

− 1

2
(ẋi − f̂i)>ĝ−1

>

i ĝ−1i (ẋi − f̂i)

− 1

2
ln |ĝiĝ>i | −

n

2
ln 2π.

Since g is lower triangular, the last two terms above can be
simplified to −∑j ln ĝijj − n

2 ln 2π. Furthermore, ĝ−1i (ẋi−
f̂i) can be solved efficiently using forward substitution since
ĝi is lower triangular. Thus, we can fit a probabilistic model
of the dynamics by minimizing the loss

L(θ, γ) =
M∑
i=1

1

2
(ẋi − f̂i)>ĝ−1

>

i ĝ−1i (ẋi − f̂i) +
∑
j

ln ĝijj .

Fig. 2. Neural networks used for modelling the system dynamics

C. Model Architecture

In this work, we choose f̂θ and ĝγ to be simple neural
networks. Both consist of an input layer, several fully-
connected hidden layers with ReLU activation functions,
and an output layer. The f̂θ network simply outputs an n-
dimensional vector. The ĝγ network outputs n(n + 1)/2
numbers that are re-shaped into a lower triangular matrix.
The diagonal of the matrix is constrained to a positive
number by exponentiating the diagonal output from ĝγ . We
then add a small regularizing constant to the diagonal to
ensure invertibility of the matrix. We whiten the data before
passing it to the input layer to normalize the data and
avoid saturating activation functions. Each hidden layers uses
batch normalization also to avoid activation saturation. The
architecture is illustrated in Figure 2.

D. Sampling Trajectories from Stochastic Model

Starting from an initial state x0, we can generate a random
trajectory sample using the stochastic model with an Euler
integration scheme

xi+1 = xi + ˜̇x dt,

where dt is the simulation time step and ˜̇x is sampled from
N (f̂θ(xi, ui), ĝγ(xi, ui)ĝγ(xi, ui)

>). Thus, we can use the
learned stochastic model to randomize the environment while
performing stochastic policy optimization.

III. STOCHASTIC POLICY OPTIMIZATION

With a good probabilistic model of the dynamics in hand,
the goal of policy search is to find an optimal policy for the
model. Also of primary importance is providing a formal
guarantee on the future performance of the system under the
policy. In this section, we review a previously developed pol-
icy search method that directly minimizes a bound on future
performance, called PAC Robust Policy Search (PROPS) [6],
with PAC meaning ”probably-approximately-correct”.

A common way to define policy search in policy parameter
space is through the optimization

ν∗ = argmin
ν

Eτ,ξ∼p(·|ν)[J(τ)],

where J is a cost function encoding the desired behavior, ξ
is a vector of decision variables defining the control policy,

τ is the system response governed by the density p(·|ξ), and
ν parameterizes a surrogate distribution over the decision
variables. The surrogate stochastic model induces a joint
density p(τ, ξ|ν) = p(τ |ξ)π(ξ|ν) which contains the natural
stochasticity of the system p(τ |ξ) and artificial control-
exploration stochasticity π(ξ|ν) due to the surrogate model.

PROPS works within the framework of Iterative Stochastic
Policy Optimization (ISPO). The goal of ISPO is to generate
an optimal control policy which minimizes the cost function
J (ν) , E τ,ξ∼p(·|ν) [J(τ)]. We perform the search directly
in the parameter space of the policy and learn a distribution
over the policy parameters π(·|ν). ISPO iteratively builds
a surrogate stochastic model π(ξ|ν) from which a policy ξ
can be sampled. The goal is to then minimize the expected
cost J (ν) iteratively until convergence. This usually cor-
responds to π(ξ|ν) shrinking to a tight peak around ξ∗ or
around several peaks if the distribution is multi-modal. The
general framework for solving the problem is described in
Algorithm 1.

Algorithm 1 Iterative Stochastic Policy Optimization (ISPO)
1: Initialize hyper-distribution ν0, i← 0
2: while Bound on expected cost greater than threshold do
3: for j = 1, . . . ,M do
4: Sample trajectory (ξj , τj) ∼ p(·|νi)
5: Compute a new policy νi+1 using observed costs
{J(τ1), . . . , J(τM)}, set i = i+ 1

A key step in ISPO is computing the new policy based
on the observed costs of previously executed policies. The
specific implementation of the update step (Step 5) corre-
sponds to different policy search algorithms such as Reward-
weighted Regression (RwR) [19] or Relative Entropy Policy
Search (REPS) [20]. This work uses a recently introduced
algorithm called PAC Robust Policy Search (PROPS) for
updating the policy based on minimizing an upper confidence
bound on its expected future cost. PROPS performs an
optimization of the form

min
ν,α
Ĵα(ν) + αd(ν, ν0) + φ(α,N, δ), (1)

where Ĵα is a robust empirical estimate of J , d(·, ·) denotes
a distance between policy distributions, N is the number of
samples, and φ is a concentration-of-measure term which
reflects the discrepancy between the empirical cost Ĵα and
the true mean cost J . The expression in (1) (denoted J +)
is in fact a high-confidence bound on the expected cost, i.e.
with probability 1 − δ it hold that J ≤ J +. PROPS is
explained in more detail in previous work [6].

IV. TRAINING OBSTACLE AVOIDANCE POLICY FOR AN
AGILE MOBILE ROBOT

Using the procedure outlined in §II, we learn a stochastic
dynamic model of a 1/5 scale off-road UGV and use it
to train a control policy in simulation using the algorithm
described in §III. Furthermore, we train another control
policy on a simple kinematic car model using the same

0.0 1.8 3.7 5.5 7.0

Velocity (m/s)

-0
.5

-0
.2

0
.0

0
.3

0
.5

S
te

e
ri

n
g
 a

n
g
le

 (
ra

d
)

Log Position Dynamics Covariance

-4.5

-3.0

-1.5

0.0

Fig. 3. Log position dynamics covariance (computed as log (σ2
ṗx

+ σ2
ṗy

))
histogram over steering angle and velocity for the learned stochastic
dynamics. The model learns that ṗ is noisier at higher steering angles and
velocities. Here, the orientation input to the covariance model is θ = 0, but
we see similar results for all θ ∈ [−π, π]. Furthermore, to generate this
histogram we set vc = v, δc = δ.

policy search algorithm and compare the performance of
each policy when evaluated on the real vehicle. The goal
of each policy is to track an oval trajectory at a speed of
7 m/s while avoiding randomly generated obstacles in the
path of the vehicle. Figure 4 illustrates the task.

A. Robot

Our UGV is a heavily modified 1/5 scale Redcat Racing
Rampage XB-E equipped with an onboard Gigabyte BRIX
computer with an i7 processor. A LORD Microstrain 3DM-
GX4-25 IMU measures inertial data while a u-blox C94-M8P
RTK GPS computes global position. A hall effect sensor
encoder measures the rotation rate of the drive shaft, which is
converted to the body velocity of the vehicle after calibration.

B. Stochastic Model

We collected about 30 minutes of dynamics data, including
position, orientation, wheel velocity, steering angle, and
steering and velocity commands, while manually driving the
car on an astroturf field and took care to make sure the
data distribution evenly spanned the state-action space of the
vehicle expected for the task. We built a stochastic dynamics
model using the technique described in §II, using 3 hidden
layers of 64 units for both the f and g models. Figure 2
illustrates the model, where the model inputs include the car
orientation θ, body-x velocity v, steering angle δ, velocity
command vc, and commanded steering angle δc. The model
outputs ẋ, with x = (p, θ, v, δ), where p = (px, py) ∈ R2 is
the position of the vehicle.

The learned mean dynamics of the car behaved similarly
to a simple kinematic car model at lower velocities, while
the learned covariance model indicated higher noise in ṗ at
higher velocities and sharper steering angles as illustrated in
Figure 3.

C. Control Policy

Using the model discussed in the previous section, we
optimize a control policy for the off-road vehicle in sim-
ulation using PROPS. We use a policy based on feedback

controllers for achieving desired lateral offset, speed, and
obstacle avoidance, with relatively few learnable parameters.
Next, we discuss the representation of the car that we use for
the policy and then explain the details of the policy itself.

1) Curvilinear Car Dynamics: During motion planning, it
is useful to express the state of an autonomous vehicle with
respect to some curvilinear coordinate system. For example,
the reference curvature of the coordinate system can follow
the center line of a road or path. We define the state of the
vehicle as xcurv = (s, er, eθ, v, a, δ) ∈ R6, where s is the
arc length along the reference path, er is the lateral offset
from the path, eθ is the angular offset from the path tangent
at s, and v is the forward body-velocity, and a is the forward
body-acceleration. The control inputs to the system consist
of the jerk u1 ∈ R and steering angle rate u2 ∈ R. Typical
bicycle dynamics expressed using path coordinates are given
as


ṡ
ėr
ėθ
v̇
ȧ

δ̇

 =



v cos eθ
1−κ(s)er
v sin eθ

v
(
tan δ
L − κ(s)ṡ

)
a
u1
u2

 , (2)

where κ(s) is the curvature of the path at s and L is the
length of the vehicle [21].

2) Controller Design: While there exists previous work
which can perform obstacle avoidance while guiding the
system to a static goal (e.g. [22], [23], [24]), to the author’s
knowledge no such control design methodology exists to
simultaneously track a trajectory and avoid obstacles while
providing convergence guarantees.

Here, we design a Lyapunov stable controller that achieves
a desired track offset and velocity in a de-coupled manner.
A higher level planner commands a track offset to the lateral
controller that is computed to avoid any detected obstacles.

Lateral controller: The lateral controller guides the
vehicle to the center of the track lane, i.e. er = 0. We derive
such a control law using backstepping on the lateral offset.
We start with the Lyapunov candidate V0 = 1

2krpe
2
r +

1
2 ė

2
r ,

which has the time derivative
V̇0 = ėr[krper + ër]

= ėr

[
krper + u1 sin eθ + v cos eθ

(
θ̇ − v κ(s) cos eθ

1− κ(s)er

)]
with θ̇ , v tan δ

L and krp > 0. Setting θ̇ to the desired value

θ̇d , v
κ(s) cos eθ
1− κ(s)er

+
1

v cos eθ
(−krper − a sin eθ − krd ėr)

with krd > 0 makes V̇0 ≤ 0 and renders the system stable,
but we cannot directly set θ̇ to θ̇d. Thus, we create a second
storage function V1 which drives the error zθ , θ̇ − θ̇d to
zero

V1 = V0 +
1

2
z2θ .

Fig. 4. The robot using an optimized control policy to follow a 22 m × 14 m oval track at 6.5 m/s while avoiding virtual obstacles.

Noting that V̇0 = ėr[v cos eθ(θ̇ − θ̇d)]− krd ė2r , we have

V̇1 = zθ[ėrv cos eθ + żθ]− krd ė2r
= zθ

[
ėrv cos eθ +

a tan δ

L
+
v sec2 δ

L
δ̇ − θ̈d

]
− krd ė2r.

Setting

u2 = δ̇ =
L cos2 δ

v

[
−a tan δ

L
+ θ̈d − ėrv cos eθ − kzθzθ

]
makes V̇1 ≤ 0, thereby stabilizing the system. Thus, δ̇ gives a
control law for tracking a reference line and has three tunable
parameters krp , krd , kzθ .

Speed Control: The speed control law is a simple
PD controller on the forward-jerk u1 of the vehicle u1 =
kvp(vd − v) − kvda to achieve a desired speed vd. The
desired speed is set to the goal speed vgoal while the vehicle
is driving straight; however, it is often important for the
vehicle to slow down while turning to avoid obstacles. So, we
introduce a tunable lateral acceleration constraint alatmax,
which limits vd to be smaller at larger steering angles, i.e.
vd ≤ vmax(δ) ,

√
alatmaxL/| tan δ|. If vgoal < vmax, we

set vd = vgoal.
Obstacle Avoidance: A high level control strategy

chooses the desired track offset for the vehicle based on
the position of detected obstacles. If an obstacle is detected
within some radius of the vehicle, denoted kdet, then the
desired track offset is shifted by a distance kshift away
from the obstacle in the direction that the vehicle is pointing
relative to the obstacle. So, if the robot is pointing to the left
of the obstacle, then the desired track offset is shifted to the
left. If the track itself is already far enough away from the
detected obstacle, then no shift occurs. Both kdet and kshift
are tunable parameters in the navigation system.

Thus, the whole navigation policy has 8 tunable param-
eters: lateral gains krp , krd , kzθ , velocity control parame-
ters kvp , kvd , alatmax, and obstacle avoidance parameters
kdet, kshift. These compose the vector ξ ∈ R8 (see Sec. III).

D. Policy Optimization

Navigation Cost: The policy search cost function that
we attempt to minimize takes the form

J(τ)=

tf∑
t=0

[Ra2t+Qrer
2
t+Qv(vt/vgoal−1)2 + |vt|O(dt)]dt,

where R,Qr, Qv > 0 are tuning weights, dt is the time step,
and O(d) is a cost that encourages obstacle avoidance and
is defined as

O(d) =


O(olow) + Clow(olow − d)2, d < olow

Chigh(ohigh − d)2, olow < d < ohigh

0, otherwise,

where d is the distance from the car to the closest obstacle
with distance measured from the edge of the car to the edge
of the obstacle. The variables ohigh and olow are distance
thresholds that determine when the car incurs a small penalty
or a large penalty for being close to the obstacle, respectively.

For our experiments we set vgoal = 6.5m/s, tf = 7s, dt =
0.02s, R = 10−3, Qr = 0.25, Qv = 4, Clow = 800, Chigh =
80, olow = 0.5m, and ohigh = 1.0m.

Stochastic Policies: The surrogate policy p(·|ν) is a
Gaussian with a diagonal covariance matrix. We initialize
the surrogate policy to have a standard deviation of 2 in all
dimensions.

Environment: The robot attempts to follow a 22 m ×
14 m oval track at a goal velocity of 6.5 m/s. At the start of
each episode, an obstacle is randomly generated 8m in front
of the vehicle with a track offset uniformly distributed in the
range [−4m, 4m] and a radius uniformly distributed in the
range [0.3m, 1.0m]. An episode terminates either when the
robot has hit an obstacle or when tf seconds have elapsed.
When the episode terminates, the obstacle is cleared and
a new obstacle is generated at the beginning of the next
episode. The robot state at the end of one episode is the
same as its initial state at the beginning of the next episode,
i.e. the robot remains in motion from one episode to the next.

Policy Search: We train each policy for 260 iterations
using PROPS, collecting 50 episodes (i.e. trajectory roll-
outs) in each iteration and using a sliding window of 20
batches for each policy update. For the PROPS algorithm,
we set the bound confidence 1 − δ = .95 indicating that
the computed performance bound should hold with 95%
probability. PROPS is not sensitive to this user-selected
parameter and has no other tunable parameters.

E. Results and Discussion

Figures 5 and 6 show the convergence of the navigation
policy parameters and trajectory costs over time for the

2.5

5.0

k
v p

4

6

k
v d

2

4

k
r p

2.5

5.0

k
r d

10.0

12.5

k
z θ

2.5

5.0

k
d
et

0 200

0.0

2.5

k
sh

if
t

0 200

2.5

5.0
a
la
tm

a
x

Policy v.s. Iterations

0 50 100 150 200 250
Iterations

10

20

30

40

50

Cost v.s. Iterations

Ĵ

J +

Fig. 5. Convergence of navigation policy (left) and cost (right) for policy
optimized using a stochastic model of the car learned from real-world data.

2.5

5.0

k
v p

2.5

5.0k
v d

2.5
5.0

k
r p

2.5

5.0

k
r d

8

10

12

k
z θ

2.5

5.0

k
d
et

0 200

0

5

k
sh

if
t

0 200

2.5

5.0

a
la
tm

a
x

Policy v.s. Iterations

0 50 100 150 200 250
Iterations

0

10

20

30

40

50

Cost v.s. Iterations

Ĵ

J +

Fig. 6. Convergence of navigation policy (left) and cost (right) for policy
optimized using a simple kinematic car model.

learned stochastic model and simple car model, respectively.
The policy trained on the simple model learns to track
the reference much more aggressively with a larger krp
and smaller krd . It also computes a much larger obstacle
avoidance distance kshift and smaller detection radius kdet
compared to the policy trained on the stochastic model.

Table I compares the average absolute track offset |er|
and average velocity tracking error |v − vgoal| of the policy
trained on the stochastic model and the policy trained on the
simple model when executed on the real vehicle. The policy
trained on the stochastic model outperforms the one trained
on the simple model in terms of following the oval track
and achieving the goal velocity of 6.5 m/s. To visualize the
performance qualitatively, Figure 8 shows a representative
trajectory from each policy. Note that each policy exhibits
some degree of error in following the track due to the fact
that the vehicle must move away from the path to avoid
obstacles. Furthermore, slowing down to satisfy the learned
lateral acceleration constraint leads to some velocity tracking
error. The policy trained on dynamics closer to real vehicle is
able to find optimal parameters that minimize these tracking
error metrics while still safely avoiding obstacles.

PROPS provides a PAC performance guarantee for each
policy based on performance of previously executed poli-
cies. These guarantees are only expected to transfer from
simulation to the real vehicle if the simulation environment
distribution (i.e. the dynamics) matches that of the real vehi-
cle. Figure 7 compares the simulation-derived performance
bound to the actual mean performance of each policy when
executed on the real vehicle for 200 episodes. The real world
cost and collision probability of the policy optimized using
the learned stochastic dynamics is upper bounded by the
associated guarantees while the policy optimized using a
simple dynamic model is not. Training in simulation using
learned stochastic dynamics provides guarantees that actually

Stochastic Simple

Model

0

2

4

6

8

10

12

14

16

18
Cost

Type

Mean

Bound

Stochastic Simple

Model

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Collision Probability

Fig. 7. Mean cost and collision probability for policies executed on the real
vehicle compared to simulation-derived performance guarantees. The policy
trained using a learned stochastic model both satisfies the performance
bounds computed in simulation and outperforms the policy trained on a
simple kinematic car model.

-10 -5 0 5 10 15 20

X (m)

-5

0

5

10

15

20

25

Y
 (

m
)

-10 -5 0 5 10 15 20

X (m)

-5

0

5

10

15

20

25

Reference

Obstacles

3.2

3.6

4.0

4.4

4.8

5.2

5.6

6.0

V
e
lo

c
it

y
 (

m
/s

)

Fig. 8. Sample trajectories executed by the UGV using the policy trained
on a simple car model (left) and learned stochastic model (right). The color
of the arrow indicates the velocity of the UGV.

transfer to the real world, indicating that it is a powerful tool
to estimate the performance of a policy before executing it in
the reality. Furthermore, the policy trained on the stochastic
model outperforms the policy trained on the simple model
in terms of mean trajectory cost while maintaining a similar
collision probability.

Model Avg Offset Avg Vel Error Avg Vel Max Vel
Simple 1.8 m 2.8 m/s 3.69 m/s 5.79 m/s

Stochastic 1.4 m 1.8 m/s 4.72 m/s 6.53 m/s

TABLE I
POLICY TRACKING PERFORMANCE ON UGV

V. CONCLUSION

This work developed a technique for transferring control
policies from simulation to reality while preserving perfor-
mance guarantees. We achieved this by fitting a stochastic
dynamic model to data generated from a robotic car and then
used the model in simulation to optimize a control policy for
a car to navigate an oval track while avoiding obstacles. We
transferred the policy back to the real car and experiments
showed that it maintained a similar level of performance as in
simulation, whereas a policy trained using a simple kinematic
car model did not. Furthermore, experiments showed that
performance guarantees generated in simulation successfully
transferred to the real vehicle.

Future research will apply this policy transfer technique
to more general, unstructured control policies for more
aggressive off-road driving. We will also look at theoreti-
cally bounding the difference in simulated and actual policy

performance based on the discrepancy between the learned
model and the dynamics training data.

REFERENCES

[1] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 23–30, IEEE, 2017.

[2] OpenAI, “Learning dexterous in-hand manipulation,” 2018.
[3] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-

hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[4] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv:1710.06537, 2017.

[5] F. Sadeghi, A. Toshev, E. Jang, and S. Levine, “Sim2real viewpoint
invariant visual servoing by recurrent control,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4691–4699, 2018.

[6] M. Sheckells, G. Garimella, and M. Kobilarov, “Robust policy search
with applications to safe vehicle navigation,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 2343–2349,
IEEE, 2017.

[7] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on
neural networks, vol. 1, no. 1, pp. 4–27, 1990.

[8] S. Chen, S. Billings, and P. Grant, “Non-linear system identification
using neural networks,” International journal of control, vol. 51, no. 6,
pp. 1191–1214, 1990.

[9] A. Draeger, S. Engell, and H. Ranke, “Model predictive control using
neural networks,” IEEE Control systems, vol. 15, no. 5, pp. 61–66,
1995.

[10] S. E. Vt and Y. C. Shin, “Radial basis function neural network
for approximation and estimation of nonlinear stochastic dynamic
systems,” IEEE Transactions on Neural Networks, vol. 5, no. 4,
pp. 594–603, 1994.

[11] C. K. Williams and C. E. Rasmussen, “Gaussian processes for regres-
sion,” in Advances in neural information processing systems, pp. 514–
520, 1996.

[12] C. M. Bishop, “Bayesian neural networks,” Journal of the Brazilian
Computer Society, vol. 4, no. 1, 1997.

[13] R. M. Neal, “Bayesian training of backpropagation networks by the
hybrid monte carlo method,” tech. rep., Citeseer, 1992.

[14] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465–
472, 2011.

[15] A. G. Kupcsik, M. P. Deisenroth, J. Peters, G. Neumann, et al., “Data-
efficient generalization of robot skills with contextual policy search,”
in Proceedings of the 27th AAAI Conference on Artificial Intelligence,
AAAI 2013, pp. 1401–1407, 2013.

[16] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems, pp. 1071–1079, 2014.

[17] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft,
“Learning and policy search in stochastic dynamical systems with
bayesian neural networks,” arXiv preprint arXiv:1605.07127, 2016.

[18] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

[19] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning, pp. 745–750, ACM,
2007.

[20] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.,”
in AAAI, pp. 1607–1612, Atlanta, 2010.

[21] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a
nonholonomic car-like robot,” in Robot motion planning and control,
pp. 171–253, Springer, 1998.

[22] G. Garimella, M. Sheckells, and M. Kobilarov, “A stabilizing gyro-
scopic obstacle avoidance controller for underactuated systems,” in
IEEE 55th Conference on Decision and Control (CDC), pp. 5010–
5016, IEEE, 2016.

[23] M. T. Wolf and J. W. Burdick, “Artificial potential functions for
highway driving with collision avoidance,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 3731–3736,
IEEE, 2008.

[24] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 1, pp. 341–346, IEEE, 1999.

