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Abstract—This work considers the problem of avoiding ob-
stacles for general nonlinear systems subject to disturbances.
Obstacle avoidance is achieved by computing disturbance in-
variant sets along a nominal trajectory and ensuring these
invariant sets do not intersect with obstacles. We develop a novel
technique to compute approximate disturbance invariant sets
for general nonlinear systems using a set of finite dimensional
optimizations. A bi-level NMPC optimization strategy alternates
between optimizing over the nominal trajectory and finding
the disturbance invariant sets. Simulation results show that the
proposed algorithm is able to generate disturbance invariant sets
for standard 3D aerial and planar ground vehicles models, and
the NMPC algorithm successfully computes obstacle avoidance
trajectories using the disturbance invariant sets.

I. INTRODUCTION

Consider an agile aerial vehicle navigating autonomously
to a goal in an obstacle-ridden environment subject to natural
disturbances arising from wind or propeller downwash. This
type of task is challenging since one has to account for the
effect of disturbances on the system dynamics while planning
a trajectory to avoid obstacles. Moreover, the disturbances are
sometimes dependent on the state of the vehicle and, therefore,
have a nonlinear effect on the propagation of the dynamics. For
example, disturbances due to wall effects [15] scale based on
the distance to wall. To account for the effects of uncertainty,
current methods plan for a trajectory around the obstacles
such that the obstacles do not intersect with the invariant set
centered around the trajectory. The invariant set is defined as
the region in state space in which the system is guaranteed to
stay under the effect of disturbances for a given controller [10].
These methods usually depend on the structure of the dynam-
ics or the controller and are not applicable to general nonlinear
systems with nonlinear noise models. The goal of this work is,
therefore, two-fold. We first propose a novel method to find
approximate invariant sets for a general nonlinear dynamic
system that can handle nonlinear noise models and which
extends to higher dimensional systems. Next, we formulate
a Nonlinear Model Predictive Control (NMPC) optimization
that computes a nominal trajectory which avoids obstacles by
relying on the computed invariant regions. Combining both
the steps, we aim to tackle the obstacle avoidance problem for
general nonlinear systems under external disturbances without
any assumptions about the structure of the controller or the
dynamics. For instance, one such obstacle avoiding trajectory

generated for a simple wheeled vehicle with a nonlinear noise
model is shown in Figure 1.

Fig. 1. Unicycle model subject to external disturbances avoiding obstacles.
The blue dots and lines are the nominal trajectory while the red dots and lines
are sample trajectories propagated using the computed control law.

A. Related work

Disturbance-invariant sets provide one means of studying
the effects of uncertainty on dynamical systems. These are
regions in the state-space of a system that guarantee that if
the system starts in the invariant set, then the system will lie
in the invariant set under bounded disturbances. Conservative
approximations for invariant sets have been computed for
linear systems [20] and for piece-wise affine systems [21].

Tube-based Model Predictive Control (MPC) techniques
have been developed that compute the invariant sets online for
linear dynamics [14] and have also been extended to certain
classes of nonlinear-discrete systems [22]. These techniques
design controllers that provide “robust asymptotic stability”
to the control invariant region.

Semi-definite optimization techniques [17], such as sum-of-
squares (SOS) programming, search for polynomial functions
that are positive and produced from a sum of squared mono-
mials. Tobenkin et al. [26] use SOS programming to compute
funnels for nonlinear dynamics with a LQR controller. These
funnels are time-varying state space regions such that if the
system starts from the mouth of the funnel, it is guaranteed
to stay in the funnel for all future time and eventually end



up at the goal. By combining funnel computation with motion
primitives, Majumdar et al. [10] were able to compute robust
funnels for a few primitives and perform online optimization
on the order and duration of execution of each of the primitives
to avoid obstacles. [24] explored finite-time verification for
stochastic systems.

SOS programming has also been used to compute funnels
for general Lipschitz nonlinear systems [27]. This approach
computes the funnel around a nominal trajectory using in-
variant coordinates and optimizes only the nominal trajectory
online. Unlike the previous method, this approach does not
require recomputing funnels for every nominal trajectory since
the funnel is specified in invariant coordinates around the nom-
inal trajectory, and transformations to the nominal trajectory
also transform the funnel around it. The main drawback with
this approach is that the computation of the Lipschitz constant
for a system is non-trivial [23]. Gao et al. applied this work to
autonomous ground vehicles [6] and showed that tube MPC
can avoid obstacles safely while following a desired trajectory.

Manchester et al. introduced Control Contraction Metrics
(CCMs) as an alternative to Lyapunov functions to design
globally stabilizing controllers for general nonlinear sys-
tems [11, 12]. Singh et al. used CCMs to compute the funnels
for a nonlinear system [23]. In this approach, the funnel
is computed in invariant coordinates and only the nominal
trajectory is optimized online to perform obstacle avoidance.
The success of this method relies on computing a valid CCM
for the nonlinear system using SOS programming.

A different class of methods uses game-theory to find the
worst possible noise for a given control [2, 25]. These methods
usually contain a bi-level optimization [4] scheme in which the
outer optimization searches for the controller that stabilizes
the system while the inner-loop optimizes over the constraints
to satisfy the process noise. The usual drawback with these
methods is that they do not extend well to higher dimensional
systems [23]. The approach presented in this paper falls into
this class. The algorithm presented here alleviates to some
extent the curse of dimensionality by using a novel method to
find the funnel and avoids the usual inner-outer optimization
with a sequential optimization scheme that is shown to work
well in the experiments conducted.

In addition to funnel methods, there are a class of techniques
that treat states as a distribution and plan in the space of the
distributions known as belief space [16, 18]. These can handle
unbounded disturbances as long as the expected trajectory cost
which they minimize is finite. Chance constrained program-
ming [1] is a further extension of these methods to handle
probabilistic state constraints. In chance constrained program-
ming, the obstacle constraints and other state constraints are
respected only in probability. Although chance constrained
programming is usually restricted to linear systems due to
the difficulty in propagating multivariate distributions through
nonlinear dynamics, there have been some attempts to extend
these techniques to nonlinear systems [9, 5].

The methods discussed so far provide either deterministic
or probabilistic guarantees for the stability of a controller

under process noise. There also exists a class of risk-sensitive
controllers [3] that provide some robustness to process noise
without providing any guarantees on the performance of the
controllers. For example, Manchester et al. optimized con-
trollers to minimize their sensitivity to disturbances while
not necessarily providing guarantees in terms of state-space
funnels [13]. This method scaled well to higher dimensional
systems such as robot arms and quadrotor models.

B. Existing challenges

In general, the aim of the methods discussed above is to
stabilize a general nonlinear system to a goal state under
bounded disturbances. They use state-space funnels to describe
the possible paths the uncertain system might take for given
a noise model. The funnel computation described in the
methods discussed above are limited in several ways. Work
done Majumdar et. al [10] requires the computation of a
Lyapunov candidate using SOS programming and therefore is
limited to polynomial dynamics. Similarly, funnel computation
for Lipschitz nonlinear systems has been shown by [27],
which requires computing the Lipschitz constant of the system.
The work done by Singh et al. [23] also relies on SOS for
computing a Control Contraction Metric to define the funnel.
In addition, this method assumes an additive noise model
which can be restrictive in practice. In addition, most methods
discussed above presented results for systems with only a
small number of dimensions and assumed linear noise models.
For example, Singh et al. showed funnel computation for only
a planar quadrotor, which is a six dimensional system [23]
with crosswind disturbances. Work done by Majumdar et
al. [10] is among the few examples of high-dimensional funnel
computation for a quadrotor, a 12-dimensional system.

C. Contributions

Our approach to finding the disturbance invariant set is to re-
duce the invariant set computation to a set of finite dimensional
optimizations which provide an approximation to the invariant
set, and a sequential NMPC is formulated to avoid obstacles
using the approximate invariant sets computed. The NMPC
consists of two optimizations running one after another. In the
first optimization, the nominal trajectory is optimized to ensure
the approximate invariant set around it avoids the obstacles.
In the second optimization, the invariant set approximation is
improved given the dynamics, the nominal trajectory, and the
controller.

The algorithm, although providing only approximate guar-
antees, based on the experiments conducted, extends well for
higher dimensional systems and can handle nonlinear noise
models. For example, the quadrotor example shown in this
work is a 14 dimensional system with a nonlinear backstepping
controller. The presented approach does not rely on the specific
structure of the dynamics, controller, or noise. Hence, it can
be used to work with controllers without explicit stability
certificates. For example, this method allows learning based
controllers (e.g. [19, 7]) to be implemented in practice by
providing approximate guarantees using the invariant sets.



Based on experiments performed on different systems, we
show that the proposed method is able to compute good
approximations of the invariant sets for high dimensional
systems and effectively leverage them for robust obstacle
avoidance.

The rest of the paper is organized as follows. In §II, we
propose the algorithm to compute the invariant sets around a
nominal trajectory. Continuing, in §III, the invariant sets are
used to formulate a NMPC optimization to perform obstacle
avoidance under disturbances. Section IV shows simulation
results on unicycle and quadrotor models. Finally, conclusions
and future work are presented in §V.

II. COMPUTING INVARIANT FUNNELS

A. Disturbance Invariant Sets

Consider a discrete nonlinear dynamic system with state
x ∈ Rn, control u ∈ Rm, and a disturbance w ∈ Rn. The
dynamics can be written as

xi+1 = f(xi, ui, wi) (1)

where i denotes the discrete time index and the disturbance
is assumed to be bounded (i.e. ‖wi‖ ≤ εi). We assume a
feedback controller ψ based on the current state xi, a given
goal state x̄i, and feed-forward controls ūi to compute the
control ui:

ui = ψ(xi, x̄i, ūi). (2)

The controller usually has additional parameters, such as
feedback gains, which are assumed to be fixed and known
in the rest of the work.

Assuming the state at step i is in some enclosing region Pi

(i.e. xi ∈ Pi), the disturbance invariant set at stage i + 1 is
defined as

Pi+1 = {xi+1 = f(xi, ψ(xi, x̄i, ūi), wi) | xi ∈ Pi, ‖wi‖ ≤ εi}.

For a general nonlinear system with a nonlinear controller,
finding the disturbance set is intractable.

One solution to this problem [25] is to use a conservative
estimate of Pi denoted by Ci, i.e. Pi ⊆ Ci, and propagate Ci to
Ci+1 subject to the closed loop dynamics. Since the enclosing
region Ci contains Pi, the enclosing region Ci+1 also encloses
Pi+1. Constraints, such as obstacles, can then be handled in
a robust fashion by ensuring no overlap with the enclosing
regions Ci. For the rest of the section, we choose the shape of
Ci to be an ellipsoid with the same dimension as the state xi.
The choice of the family of enclosing region (e.g. ellipsoid,
cuboid, sphere) affects the dilation between Pi and Ci and
therefore how conservative the resulting obstacle avoidance
trajectory will be. Furthermore, the estimate Ci becomes more
and more conservative as the index i increases since the
ellipsoid Ci+1 is propagated from ellipsoid Ci instead of the
actual region Pi. In spite of these drawbacks, propagating
and reasoning in terms of conservative regions permits robust
NMPC-based obstacle avoidance under disturbances.

To formulate the ellipsoid propagation problem, first we
define the region of dynamics obtained by propagating the
ellipsoid Ci through the dynamics as

P̄i+1 = {x = f(xi, ψ(xi, x̄i, ūi), wi) | xi ∈ Ci, ‖wi‖ ≤ εi}.

Unlike, the region Pi+1 which is propagated from Pi, the
region P̄i+1 is propagated from the previous ellipsoid Ci (see
Figure 2). Hence, the region P̄i+1 contains the region Pi+1

(i.e. Pi+1 ⊆ P̄i+1 ⊆ Ci+1).
Finding the least conservative enclosing ellipsoid can be

mathematically stated as

min
Ci+1

V ol(Ci+1) s.t P̄i+1 ⊆ Ci+1, (3)

where V ol(·) denotes the volume of the ellipsoid. We simplify
the above problem by constraining the centers of the ellipsoids
to follow a nominal trajectory without disturbances. Assuming
the center of Ci to be µi and the center of the Ci+1 to
be µi+1, the nominal trajectory dynamics are written as
µi+1 = f(µi, ui, 0). The control ui used in the nominal
trajectory dynamics is provided by the controller with the goal
being the same as the current state, i.e ui = ψ(µi, µi, ūi). The
feed-forward terms in the controller move the nominal state
µi to the next nominal state µi+1. The control for any other
point in the invariant set is given by ui = ψ(xi, µi, ūi).

P̄i

Ci

Points of Contact

Ci−1

µi−1

f
µi

Fig. 2. The region P̄i is propagated from the previous ellipsoid Ci−1

using the closed-loop dynamics f . The algorithm for computing the enclosing
ellipsoids finds points in Ci−1 (shown in blue) that when propagated become
the points of contact between P̄i and the enclosing ellipsoid Ci.

The ellipsoid optimization problem is intractable since the
constraint P̄i+1 ⊆ Ci+1 should be satisfied for all the
disturbances ‖wi‖ ≤ εi and for all starting states xi ∈ Ci.
One approach to solve this problem is through SOS pro-
gramming [17] under certain assumptions on the structure
of the dynamics. In this work, we take a different approach
and transform the above optimization problem into a finite
dimensional optimization to find a feasible, but not necessarily
the least conservative, ellipsoid.

B. Algorithm to Find Enclosing Ellipsoid

The algorithm has to find the radii ri+1 ∈ Rn
>0 and principal

axes Ri+1 ∈ SO(n) of the ellipsoid Ci+1 = {ri+1, Ri+1}
which encloses the propagated region P̄i+1 assuming the



center of the ellipsoid is along some nominal trajectory.
The procedure to find the ellipsoid consists of n successive
optimization problems. Each optimization problem finds a
principal axis and the ellipsoid radius along that principal axis.
The first optimization simply searches for the farthest point
from the center in the region P̄i+1:

r2
i+1,1 = max

x∈P̄i+1

(x− µi+1)T (x− µi+1). (4)

The first radius and principal axis are chosen as ri+1,1 = ‖x1−
µi+1‖ and ei+1,1 = (1/ri+1,1)(x1−µi+1), respectively, where
x1 minimizes (4). Continuing, at step j of the optimization,
we find a point xj ∈ P̄i+1 that maximizes the radius along j-
th principal axis assuming the point is on the boundary of the
ellipsoid. The j-th radius ri+1,j and the principal axis ei+1,j

of the ellipsoid assuming the point is on the boundary of the
ellipsoid are given by

ri+1,j =
|xjj |√√√√1−

j−1∑
k=1

(
xjk
ri+1,k

)2
, (5)

ei+1,j = (xj − µ)−
j−1∑
k=1

ei+1,kxjk, (6)

where xjk is the projection of the point xj along kth principal
axis, i.e. xjk = (xj −µi+1)T ei+1,k. The vector ei+1,j is then
normalized to ensure the jth principal axis is a unit vector.
The j-th optimization problem can be formulated as

max
xj∈P̄i+1

r2
i+1,j , s.t. xjj 6= 0. (7)

The ellipsoid at Ci+1 is given by

Ci+1 = { ri+1 = (ri+1,1, · · · , ri+1,n),

Ri+1 = [ei+1,1 | ei+1,2 | · · · | ei+1,n] } (8)

Next, we prove that the ellipsoid generated by the above
algorithm completely encloses the region P̄i+1 induced by the
closed-loop dynamics. To start with we prove the following
lemma:

Lemma 1: The cost function used in optimization (7) is
bounded and ri+1,j−1 ≥ ri+1,j ∀j ∈ {2, · · · , n}.

Proof: For j = 1, ri+1,1 is given by (4). For any point
x2 in the region P̄i+1, using the definitions

x21 = (x2 − µi+1)T e1, x22 = ‖x2 − x21e1‖,

we have x2
21 + x2

22 = ‖x2 − µi+1‖2 ≤ r2
i+1,1. Using the

inequality, the cost function for j = 2 can be upper bounded
as

r2
i+1,2 =

x2
22

1−
(

x21

ri+1,1

)2 ≤
r2
i+1,1 − x2

11

1−
(

x21

ri+1,1

)2 = r2
i+1,1. (9)

Next, for any j > 1, we already have rj−1 obtained by
maximizing the cost function (7) at j − 1. Thus, for the point

xj in the region P̄i+1 which maximizes rj , the following
inequality holds

x2
jj + x2

j,j−1

1−
j−2∑
k=1

(
xjk
ri+1,k

)2
≤ r2

i+1,j−1, (10)

where xjj is the residual left over after subtracting the
components of (xj − µi+1) along the principal axes
{e1, e2, . . . , ej−1}. This inequality can be transformed as

x2
jj

r2
i+1,j−1

≤ 1−
j−1∑
k=1

(
xjk
ri+1,k

)2

. (11)

The cost function for the optimization at stage j can then be
bounded as

r2
i+1,j =

x2
jj

1−
j−1∑
k=1

(
xjk
ri+1,k

)2
≤ r2

i+1,j−1. (12)

Combining this inequality with the inequality for j = 1 given
in (9), the lemma holds.

Note that, we assume xjj is not equal to zero while opti-
mizing in (7). According to the inequality (11), for xjj 6= 0,
the right hand side of the inequality is greater than 0. Thus,
the denominator of the ri+1,j is greater than zero. When xjj is
exactly zero, the cost function is undefined as both numerator
and denominator are zero. Therefore, we avoid those points
while minimizing the cost function.

Theorem 1: The ellipsoid Ci+1 as defined in (8) encloses
the region P̄i+1.

Proof: Using the Lemma 1, we showed that the cost
function is bounded. Now, consider the n-th optimization
problem above which maximizes the last principal axis rn.
Since we find the maximum possible radius along the last
principal axis, the radius computed using any other point
xn ∈ P̄i+1 is going to be less than ri+1,n i.e.

xnn√√√√1−
n−1∑
k=1

(
xnk
ri+1,k

)2
≤ ri+1,n (13)

⇒
n∑

k=1

(
xnk
ri+1,k

)2

≤ 1 (14)

where xnk is the projection of the point xn along the principal
axis ek (i.e. xnk = (xn − µ)T ek). The inequality (14) then
implies that C encloses the region P̄i+1.

C. Simplification for cases near singularity

The cost function in (7) can become ill-defined when
xjj → 0. Close to the singularities, the maximization of the
cost function produces ellipsoids that are very conservative.
Therefore, we develop an alternative optimization scheme that
maximizes over xjj instead of rj when such singularities
are encountered. The simplification improves the convergence
of the optimization with the drawback that it produces an



ellipsoid which only approximately encloses the propagated
dynamics, i.e. the computed Ci may not completely enclose
P̄i. The possible error between an ellipsoid computed by
maximizing xjj instead of rj for a two-dimensional system is
illustrated in Figure 3. The maximum error in the radius that
can be encountered using this approximation is ‖rj − rj+1‖
where rj is computed by maximizing (7) and rj+1 is obtained
using the proposed simplification.

Fig. 3. Error induced by simplification of the maximizing cost function.
The ellipsoid obtained by maximizing only the projection xjj shown in blue
leads to a smaller ellipsoid, although it leaves out some parts of the dynamics
region shown in red. The ellipsoid obtained by maximizing the minor axis rj
is shown in black and completely encloses the dynamics region.

The optimization scheme used in practice at stage j is given
by

min
xj

(xjj − rmax)2, s.t xj ∈ P̄i+1, (15)

where the maximization in (7) is simplified and converted into
a nonlinear least squares minimization where rmax is chosen
such that xjj < rmax. The least squares minimization is a
local optimization technique, and hence the solutions obtained
are not guaranteed to be global minima.

D. Summary

In summary, the ellipsoid computation scheme follows these
steps:

1) Assume C0 is given, i.e we know the current ellipsoid
enclosing P̄0. This ellipsoid can be initialized based on
the sensor estimate or from user input.

2) Find p1:n in Ci and ‖wi‖ ≤ εi such that xi =
f(pi, ui, wi) minimizes (15).

3) Propagate the center of the ellipsoid µi using the closed
loop dynamics to obtain µi+1.

4) Find the radii and principal axes of the ellipsoid using
(5), (6).

The enclosing ellipsoid is completely defined by the starting
points p1:n, the noise terms w1:n and the center of the ellipsoid
µi. Hence the ellipsoid propagation can be written as

Ci+1 = g(p1:n, w1:n, µi), (16)

where the function g corresponds to the steps listed above.
The starting points and noise terms are used to formulate an
approximate ellipsoid propagation scheme later.

III. ROBUST OBSTACLE AVOIDANCE

The robust obstacle avoidance problem can be stated as find-
ing a nominal trajectory {x̄1:N} and the enclosing ellipsoids
centered around the nominal trajectory C1:N such that the
terminal state reaches some goal state xd and the enclosing
regions do not intersect with the obstacles o1:P . A system
is steered toward the nominal trajectory using a controller
with feed-forward control inputs i.e. ui = ψ(xi, x̄i, ūi). The
obstacle avoidance problem can be mathematically stated as

min
ū1:N

Lf (x̄N , xd) +

N∑
i=1

Li(x̄i, ūi)

x̄i+1 = f(x̄i, ui, 0),

Ci+1 = f+(Ci, ūi, x̄i),

dist(Ci+1, Oj) ≥ 0,

(17)

where f+ propagates the disturbance invariant regions as
described in §II and the dist function denotes the closest
distance between the disturbance invariant region and the jth
obstacle. The distance constraint should be satisfied for all
enclosing ellipsoids Ci and all the obstacles Oj . The cost
function Lf minimizes the distance between the nominal
terminal state x̄N and the desired state xd. The trajectory
cost Li minimizes the feed-forward controller inputs and the
nominal trajectory velocities. Thus, by minimizing the cost
function, we find a nominal trajectory that reaches the terminal
state while minimizing the control effort along the trajectory.
The inputs to the optimization problem are the feed-forward
control inputs ūi to the controller ψ.

The optimization problem described in (17) steers the
nominal trajectory to ensure the enclosing ellipsoids do not
intersect the obstacles. This optimization consists of a two-
level inner and outer optimization. The inner optimization
propagates the enclosing ellipsoids given the nominal state
and feed-forward control inputs as described in §II-B while
the outer optimization ensures the nominal trajectory is such
that it minimizes the cost specified in (17) and the enclosing
ellipsoids do not intersect with the obstacles.

This optimization is not practical since propagating en-
closing ellipsoids for every single nominal state and control
input is computationally expensive. Based on experiments con-
ducted, this algorithm works for double integrator dynamics
but takes too long for the optimization to converge even for
unicycle dynamics.

A. Approximate Ellipsoid Propagation

The ellipsoid propagation described in §II-B performs n
optimizations to find the points p1:n and the noise terms
w1:n that when propagated determine the ellipsoid radii and
principal axes completely as specified in (16). These points
and noise terms are a function of the starting ellipsoid and the
feed-forward control inputs. In the approximate propagation



algorithm, we map the starting points from the input ellipsoid
to a unit sphere as

ej = diag(1/ri)R
T
i (pj − µi), for j ∈ {1, · · · , n} (18)

where e1:n are points inside a unit sphere and ri, µi, Ri are
the radius, center and principal axes of the input ellipsoid Ci.
These mapped points are then assumed to be fixed even if
the input ellipsoid and controller change. Therefore, given a
new input ellipsoid C ′i = {r′i, µ′i, R′i} and feed-forward control
inputs ū′i, the points on the unit sphere e1:n are projected back
to the new input ellipsoid as

p′1:n = µ′i +R′i diag(r′i)(e1:n). (19)

The center of the ellipsoid at the next stage is found by
propagating the center of the current ellipsoid using the feed-
forward control inputs as

µ′i+1 = f(µ′i, ū
′
i, 0). (20)

The radii and the principal axes of the ellipsoid are found by
using the mapped points along with noise terms and the center
of the ellipsoid in the ellipsoid propagation function specified
in (16) as

Ci+1 = g(p′1:n, w1:n, µi+1). (21)

B. Sequential NMPC

This approach consists of running repeatedly two optimiza-
tion steps. The first step optimizes the feed-forward control
terms assuming the ellipsoid is propagated using the approxi-
mate ellipsoid propagation algorithm. Given points e1:n inside
a unit sphere, the feed-forward control optimization can be
written as

min
ū1:N

Lf (x̄N , xd) +

N∑
i=1

Li(x̄i, ūi)

x̄i+1 = f(x̄i, ui, 0),

pi,j = x̄i,j +Ridiag(ri)ei,j

Ci+1 = g(pi,1:n, wi,1:n, x̄i+1),

dist(Ci+1, oj) ≥ 0.

(22)

The approximate ellipsoid propagation is used to propagate
the ellipsoids along the nominal trajectory assuming the input
points used for propagation are fixed. This avoids a costly
inner loop optimization while incurring an error due to not
updating the propagation points. In practice, as the controller
converges to the optimal value, there is no change in the
controller, and therefore, the error incurred due to not updating
the propagation points is negligible.

In the second optimization step, the points p1:n used for
ellipsoid propagation are optimized using (15) for the updated
controller and nominal trajectory. This updates the worst
possible propagated points and the noise at those points
for a given controller and nominal trajectory. The combined
algorithm therefore successively tries to steer the nominal
trajectory and improve the enclosing ellipsoid approximation.
As both the optimization steps converge, we obtain an optimal

nominal trajectory with approximate disturbance invariant sets
surrounding the trajectory. The pseudo-code for the sequential
optimization scheme is summarized in (1)

Algorithm 1 Sequential NMPC for Robust Obstacle avoidance
Given C0, x0, xd, Li, Lf , max iters
Start with an initial guess of e1:n on unit sphere
i← 0
iters← 0
for iters <max iters do

minū1:N
Lf (x̄N , xd) +

∑N
i=1 Li(x̄i, ūi),

assuming approximate ellipsoid propagation to update
C1:N .

for i in 1 to N do
for j in 1 to n do

Given ūi,
minpi,j ,wi,j

(xjj − rmax)2,
s.t xj = f(pi,j , ūi, wi,j),
pi,j ∈ Ci, ‖wi,j‖ ≤ εi.

end for
µi+1 ← f(µi, ūi,0).
Use (5), (6) to find the enclosing ellipsoid Ci+1 =

{ri, Ri}.
Project: ei,1:n = diag(1/ri)R

T
i (pi,1:n − µi).

end for
end for

1) Computational Complexity: The computational com-
plexity of the NMPC algorithm is evaluated in terms of
the number of calls to the closed loop dynamics of the
system. The sequential NMPC method contains two steps
of optimization. The first step is a regular NMPC step with
the additional complexity of propagating the ellipsoids. The
ellipsoid propagation requires n calls to the dynamics to
propagate the input points from one ellipsoid to the next.
Thus, to propagate ellipsoids for an entire trajectory requires
O(Nn) calls to the dynamics. The usual NMPC approach
without encoding sparsity takes O(N2m) calls for one step
of optimization, assuming the gradient (of dimension Nm)
is computed using a finite-difference approximation. Thus,
the first optimization step of the proposed sequential NMPC
approach takes O(N2(m+mn)) = O(N2mn) function calls
to the dynamics to compute gradients and update the feed-
forward controls and the nominal trajectory. Ellipsoid propa-
gation creates a linear dependence on the state dimension.

The second step of the sequential NMPC performs n least
squares minimizations along each step of the trajectory. Each
of those least squares minimizations makes 2n function calls
to update the corresponding input point and the noise at
that point. Therefore, the second step of the optimization
takes O(Nn2) calls to update the ellipsoids along the entire
trajectory. Therefore, a single step of the entire sequential
NMPC optimization takes O(N2mn + Nn2) function calls.
The additional burden of using the sequential NMPC is a term
that is only linear in the number of trajectory steps and is
quadratic in state dimension.



IV. COMPUTATIONAL RESULTS

We evaluate the robust obstacle avoidance procedure de-
scribed in section III on two dynamical systems. The goal of
the experiments is to show that the NMPC optimization can
compute a feasible nominal trajectory that can avoid obstacles
even when the system is subject to external disturbances. In
addition, we show by sampling the disturbances and propagat-
ing several trajectories that most of the samples lie within the
computed ellipsoids.

The first system is a dynamic unicycle model where the
inputs to the model are the longitudinal acceleration a and
the angular velocity ω of the vehicle. This system has a four
dimensional state consisting of x and y positions, orientation
θ and velocity v of the vehicle. The external disturbances
w ∈ R4 are added into the model nonlinearly under the as-
sumption that ‖w‖ ≤ 1. The first two components of the noise
correspond to the longitudinal and lateral noise respectively.
The last two components of the noise correspond to the noise
in angular velocity and acceleration. These components are
scaled based on the velocity of the vehicle. The individual
components of w are further scaled based on error magnitude
rw ∈ R4. The unicycle dynamics can be written as

d

dt


x
y
θ
v

 =


v cos(θ)
v sin(θ)
ω
a

+


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 v 0
0 0 0 v

 diag(rw)w.

(23)
A feedback linearizing controller is used to track the nominal
trajectory. The controller is designed only for the nominal
dynamics assuming the disturbances are zero. Thus, the con-
troller is not Lyapunov stable under the disturbances. The noise
added to the dynamics is nonlinear in terms of the state, which
further complicates the ellipsoid computation.

The NMPC optimization formulated in (22) is applied to this
model where the nominal trajectory acceleration is optimized
to steer around the obstacles. Figure 1 shows a trajectory com-
puted using the NMPC optimization. The nominal trajectory
goes around the obstacles and the enclosing ellipsoids do not
intersect with the obstacles. The noise entering the system
is nonlinear and is higher in the longitudinal direction than
in the lateral direction. This causes the ellipsoids to align
with the trajectory heading as the system progresses. This
example demonstrates that the algorithm can effectively handle
nonlinear noise models.

Figure 4 shows that the ellipsoid constraint (14) for sampled
trajectories evaluated on the ellipsoids projected onto the xy
plane. The ellipsoid constraint being less than zero implies
that the trajectories lie within the ellipsoids computed. Among
1000 samples evaluated only one sample trajectory violated the
ellipsoid constraint. This suggests that the computed ellipsoids
are able to capture the effect of disturbances on the unicycle
dynamics. Thus, by following the nominal trajectory using
the feedback linearizing controller, the unicycle can avoid the
obstacles even under external disturbances.

The effect of the uncertainty on the planning process is

Fig. 4. Ellipsoid constraint for ellipsoids projected along the xy plane
evaluated for 1000 sample trajectories with uniformly randomly sampled
disturbances and initial state. The constraint is less than zero if the sampled
trajectory is within the invariant set.

explained in Figure 5. In this experiment, the process noise
is increased in successive steps keeping the obstacles and the
controller gains the same. Further, the NMPC optimization has
been initialized using the same initial feed-forward controls
in all the cases. As the process noise increases, the NMPC
chooses a trajectory that is farther away from obstacles which
increases the trajectory cost. It also shows that the above
NMPC optimization succeeds in finding a safe trajectory even
under increased process noise conditions.

Fig. 5. The effect of the process noise on the trajectory planning for a
fixed set of controller gains and obstacles. As the process noise increases,
the NMPC still succeeds in reaching the goal by taking a more conservative
trajectory.

The second system considered is a quadrotor aerial ve-
hicle. A standard backstepping controller (such as the one
described in [8]) is used for the nominal dynamics and
while asymptotically stable in general, it loses strict stability
guarantees under external disturbances. After performing a
required dynamic extension of the model by adding the thrust
and its time-derivative to the state, the state space becomes
14-dimensional. Figure 6 shows a nominal trajectory along
with enclosing ellipsoids avoiding obstacles while reaching
the goal. Figure 7 shows the ellipsoid constraint for 1000
sampled trajectories, where only two samples fall outside of
the computed approximate invariant set. Figure 8 shows the
14 states along with the error bars along each axis that the



states are expected to stay within. The error bars on the states
converge to a small value suggesting that the controller is
converging to a small region around the nominal trajectory.
This example shows that the NMPC optimization can readily
extend to higher dimensional systems such as an agile aerial
vehicle in 3D.

Fig. 6. Quadrotor avoiding obstacles while reaching a goal. The nominal
trajectory is blue while sample trajectories under the influence of disturbances
are red. Obstacles are magenta, and the disturbance invariant sets are black
ellipsoids surrounding the nominal trajectory. Note that the sample trajectories
all fall within the computed approximate disturbance invariant sets.

Fig. 7. Ellipsoid constraint evaluated for 1000 sample trajectories with
uniformly randomly sampled initial state and disturbances along the trajectory.
The constraint is less than zero if the sampled trajectory is within the ellipsoid.

V. CONCLUSION

This work developed an algorithm for computing approx-
imate disturbance invariant sets around a nominal trajectory
for general nonlinear systems governed by nonlinear feedback
controllers under external disturbances. We used the computed
disturbance invariant sets to address the problem of robust
obstacle avoidance by formulating a sequential NMPC opti-
mization that optimizes over the nominal trajectory of the non-
linear dynamics while ensuring the approximate disturbance
invariant sets do not intersect with the obstacles. Simulation
results showed that the computed sets contain most of the
samples and, therefore, are a good enough approximation to
avoid obstacles under disturbances. We also demonstrated that
the algorithm extends to nonlinear noise models in the case of

Fig. 8. Quadrotor states along the nominal trajectory. Error bars denote the
extent of the disturbance invariant set about the nominal trajectory. The black
dashed line shows the desired state at the goal. The variables v, ω, r, u, and
du are the velocity, angular velocity, RPY rotation, thrust, and thrust time
derivative, respectively.

a unicycle model and higher dimensional systems such as a
quadrotor system with a backstepping controller. Future work
will focus on reducing the dilation between the true region
of the propagated dynamics and the approximate enclosing
region by evaluating different families of regions other than
ellipsoids. Currently, the external disturbances are assumed
to be within a bounded sphere. Future work will model the
external disturbances using high confidence bounds computed
from sample trajectories and will treat the obstacle avoidance
constraints as a probabilistic constraints.
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