
Fast Approximate Path Coordinate Motion Primitives for Autonomous
Driving

Matthew Sheckells1, Timothy M. Caldwell2, and Marin Kobilarov3

Abstract— In autonomous driving, it is often useful to plan
trajectories in a curvilinear coordinate frame with respect to a
given reference curve, such as a path produced by a high-level
route planner. In this domain, standard planning methods rely
on expensive coordinate transformations or on solving com-
putationally intensive boundary value problems for computing
motion primitives between states. This work develops efficient,
approximate path coordinate motion primitives appropriate for
fast planning in autonomous driving scenarios. We gain a 1000x
speed-up in primitive computation time relative to standard
approaches at the loss of some precision with respect to the
position along the reference line, which we statistically quantify.
Motion primitive properties like path length, acceleration, and
the reference line offset are exactly preserved.

I. INTRODUCTION

Fast path planning is essential for navigating dynamic
environments, since a system must quickly respond to the
actions of other agents. A planner must also produce a
dynamically feasible path, which can be accurately and
safely tracked by the vehicle. Dynamic feasibility can be
achieved during planning by restricting the set of permitted
motions to a finite number of dynamic motion primitives.
These primitives can be pre-computed to make the plan-
ning process efficient, with important characteristics such
as energy expenditure and path length stored along with
the primitive [1]. For example, a graph-based planner can
sequence pre-computed primitives of known cost together
instead of employing a costly boundary value optimizer or
integrator to connect neighboring states at each step in the
planning process [2].

In the realm of autonomous driving, it is useful to specify
the state of the vehicle with respect to some curvilinear
reference line (e.g. the center of the road) instead of with
respect to a Cartesian coordinate system [3]. Numerous
feedback control methods have been developed to track such
reference lines [4], [5], [6], [7]. A significant benefit is that
one can easily specify corridor constraints along the refer-
ence line that correspond to road boundaries or parked cars,
oftentimes as simple piecewise box constraints on the state.
The challenge in using motion primitives in a path coordinate
representation is that the dynamics strongly depend on the

*This work was supported by and conducted at Zoox Inc.
1Matthew Sheckells is with the Department of Computer Science, Johns

Hopkins University, 3400 N Charles Str, Baltimore, MD 21218, USA
msheckells@jhu.edu

2Timothy M. Caldwell is with Zoox Inc., Menlo Park, California, USA
timbot@zoox.com

3Marin Kobilarov is with Zoox Inc., Menlo Park, California, USA and
with the Johns Hopkins University, 3400 N Charles Str, Baltimore MD
21218, USA marin@zoox.com

Fig. 1. Illustration of path coordinate system

curvature of the path, which is not known ahead of time.
Even with knowledge of the path, it is impractical to pre-
compute a full library of fully-defined motion primitives.

To our knowledge, no pre-defined primitive for path co-
ordinate motion planning has been developed previously.
Several existing techniques plan in path coordinates using
motion primitives (e.g. [8], [9], [10]), but they rely on expen-
sive coordinate transformations or boundary value problem
solvers to fully compute characteristics of the primitives at
run-time.

Ziegler et al. develop a graph-based path planner which
samples points on a spatiotemporal lattice in path coor-
dinates [8]. The points are then converted to Cartesian
coordinates and a boundary value problem is solved to obtain
quintic spline motion primitives between states. Converting
to Cartesian splines is useful since closed form expressions
exist to describe the integral of squared jerk, the maximum
speed, and the maximum acceleration along the splines.
However, this method maps from path coordinate space
to Cartesian space by evaluating or approximating Fresnel
integrals, which is computationally expensive. Although the
graph search itself is fast, construction of the graph takes
on the order of seconds, and the construction is completely
dependent on the road geometry, which changes as the car
moves.

Li et al. propose a planner which employs motion primi-
tives connecting the system’s current state to sampled looka-
head points on a lattice in a curvilinear path coordinate
system [9]. The control trajectory between states on the
lattice is given as a cubic spline over the curvature of the
primitive, where a boundary value problem must be solved
using a nonlinear optimization involving forward simulation
of the vehicle model to get the control spline coefficients.
Although the authors note that this numerical method results
in easily enforced control and actuator physical constraints,
it is computationally expensive.

Hudecek et al. develop transformations between Cartesian
and curvilinear reference path space and perform planning
in path coordinate space, using the transformations to then
convert back to Cartesian space [10]. However, the trans-
formations are computationally intensive when the refer-
ence clothoid has non-zero curvature derivative, as Fres-
nel integrals must be evaluated. Additionally, transforming
from Cartesian space back to path coordinates requires an
expensive numerical cross point search. The authors do
approximate some aspects of the primitives in order to make
the process efficient, as they develop bounds on curvature and
sharpness in regard to feasibility of the primitive maneuvers.

In this work, we propose an easily computed path coordi-
nate motion primitive whose state transition and control cost
are almost fully specified. That is, particular characteristics
of the motion primitive, such as the acceleration, are pre-
computed and known regardless of the reference curvature,
whereas other characteristics, such as the arc length travelled
along the curvilinear reference coordinates, are unknown but
efficiently bounded at run-time given the reference curvature.
We review path coordinate dynamics in §II and use them to
develop our motion primitives, including proofs for bounded
quantities, in §III. Experimental results in §IV show that the
primitives are fast to evaluate given a reference trajectory
and that the approximated values are accurate.

II. PATH COORDINATE DYNAMICS

During motion planning, it is useful to express the state
of an autonomous vehicle with respect to some path-centric
coordinate system. We define the state of the vehicle as
x = (s, er, eθ, v) ∈ R4, where s is the arc length along the
reference path, er is the lateral offset from the path, eθ is the
angular offset from the path tangent at s, and v is the forward
body-velocity. Figure 1 illustrates the coordinate system. The
controls of the system consist of the acceleration a ∈ R and
steering angle δ ∈ R. Typical bicycle dynamics expressed
using path coordinates are given as

ṡ =
v cos eθ

1− κ(s)er
, (1)

ėr = v sin eθ, (2)

ėθ = v

(
tan δ

L
− κ(s)ṡ

)
= v

(
tan δ

L
− κ(s) cos eθ

1− κ(s)er

)
,

(3)
v̇ = a,

where κ(s) is the curvature of the path at s and L is the
length of the vehicle [3].

We assume that the reference line is composed of piece-
wise geometry segments whose curvature is linear in s,
i.e. each segment is a clothoid curve. This is a standard
assumption, as railroad and highway engineers use clothoids
as transition curves for roads between straight and circularly
curved sections [11], [12]. We parameterize the curvature
of the i-th segment along the reference line as κi(s) =
κi0 + κi1s with κi0, κi1 ∈ R and define the end point of
the segment as sκi

. Then, N segments can be appended
piecewise to form a full reference curve

κ(s) =

κ0(s), 0 ≤ s < sκ0

κ1(s), sκ0
≤ s < sκ1

...
...

κN (s), sκN−1
≤ s ≤ sκN

,

where κ(s) must be continuous. In the next section, we use
these dynamics to develop the proposed motion primitives.

III. PATH COORDINATE MOTION PRIMITIVES

A. Primitive Parameterization

Ideally, one would like to generate a motion primitive
for which the state and control trajectories are fully defined
analytically, either regardless of curvature or as a simple
function of the curvature. Additionally, the mapping from
the motion primitive at some current state to its final state
should be efficient. A naive approach defines the motion
primitives in Cartesian space since the cost of a primitive
can usually be computed analytically there. At run-time, the
approach maps the primitives back to the path coordinate
frame when given the curvature. However, the mapping from
Cartesian space to the path coordinate frame involves either
an expensive cross-point search [10] or Euler integration
of the path dynamics (1). This transformation makes the
naive approach inappropriate for use in a motion planning
algorithm which must efficiently evaluate motion primitives
to operate in real-time.

We now propose a more efficient motion primitive which
trades some precision with respect to the position along the
reference line for a faster computation time. The motion
primitives are time-invariant, so we define the primitive itself
over the time interval t ∈ [0, tf], where tf is a parameter
of the primitives controlled by the user. We propose a
motion primitive for which some of the state and control
profiles, specifically a(t), v(t), er(t), and eθ(t), are fully
defined and for which the arc length s(t) can be bounded
and approximated when given the reference curvature. The
quality of the approximation depends on the variability of
er(t) and we experimentally verify in §IV that the error does
not exceed 4% of the true value on average for reasonable
boundary conditions and road curvatures. This formulation
allows for fast, approximate planning in addition to slower,
more precise planning by numerical integration of ṡ to
retrieve s(t).

To create such a primitive, we parameterize the accel-
eration as a constant value across time, i.e. a(t) = a,
and the lateral path offset as cubic in time, i.e. er(t) =
er0 + er1t + er2t

2 + er3t
3. We use a cubic track offset so

that the constants {er0 , er1 , er2 , er3} satisfy the boundary
conditions er(0), ėr(0), er(tf), ėr(tf) imposed by the state
transition, i.e. continuity in er and eθ. Since tf is chosen by
the user, v(t) is known.

Given a(t) and er(t), the angular offset trajectory eθ(t)
can be recovered. Rearranging (2) to solve for eθ, we get

eθ(t) = arcsin

(
ėr(t)

v(t)

)
. (4)

Using (4) for eθ in (1), the dynamics for s can then be written
as

ṡ =

√
v(t)2 − ėr(t)2
1− κ(s)er(t)

. (5)

Note that, even with knowledge of κ(s), (5) cannot be solved
analytically for s(t).

However, if the track offset trajectory is constant, i.e.
er(t) = er0 , then, by noting that eθ(t) = 0 or π in this case,
we can solve for s(t) analytically. We have the following
result:

Proposition 1: Let q(t) ,
∫ t
0
v(t′) dt′ be the total dis-

tance travelled (see Figure 1). Let the track offset trajectory
be constant, i.e. er(t) = er0 . Let the reference line consist
of a single clothoid segment, so κ(s) = κ0 + κ1s. Assume
that er0 < 1/κ(s), v(t) ≥ 0, and eθ(t) = 0 (as opposed to
π) along the interval considered. The arc length trajectory
s(t) is related to q(t) by

s(t) =

(1−er0κ0)−

√
(1−er0κ0)2−2er0κ1q(t)

er0κ1
, er0κ1 6= 0

q(t)
1−er0κ0

, er0κ1 = 0.

Proof: Starting from (1), we have

ds

dt
=

v cos eθ
1− er0κ(s(t))

=
1

1− er0κ(s(t))
dq

dt
.

Bringing s terms to the left side and integrating gives∫
1− er0κ(s) ds =

∫
dq

s− er0(κ0s+
1

2
κ1s

2) = q

−1

2
er0κ1s

2 + (1− er0κ0)s− q = 0. (6)

When er0κ1 = 0, then the equation can be immediately
solved for s = q/(1 − er0κ0). When er0κ1 6= 0, we solve
the quadratic in (6) to yield

s(t) =
(1− er0κ0)±

√
(1− er0κ0)2 − 2er0κ1q(t)

er0κ1
, (7)

where the assumption er0 < 1/κ(s) guarantees a real
solution (and is not restrictive in practice).

Of the two real solutions to the quadratic, the physically
meaningful solution must be chosen. Since we have v(t) ≥ 0
and eθ(t) = 0, we must have s(t) ≥ 0 and q(t) ≥ 0.

First, consider the case where er0κ1 < 0. The denominator
of (7) is negative in this case. Thus, numerator must be
negative to give s(t) ≥ 0. Since er0κ1 < 0 and q(t) ≥
0, then

√
(1− er0κ0)2 − 2er0κ1q(t) ≥ (1 − er0κ0). So,

choosing the solution with numerator as (1 − er0κ0) −√
(1− er0κ0)2 − 2er0κ1q(t) gives the only positive solution

to s(t) in this case. So,

s(t) =
(1− er0κ0)−

√
(1− er0κ0)2 − 2er0κ1q(t)

er0κ1
,

er0κ1 < 0.

Now, let er0κ1 > 0. In this case,√
(1− er0κ0)2 − 2er0κ1q(t) ≤ (1 − er0κ0), so both

solutions of (7) are always positive. The physically
meaningful solution is still the same as the previous
case, since it is the only solution that has s(t) increase
as a function of q(t). This condition is imposed by the
assumption that v(t) ≥ 0 and eθ(t) = 0, i.e. the system is
always moving forward along the reference line. Thus, we
now have

(1− er0κ0)−
√
(1− er0κ0)2 − 2er0κ1q(t)

er0κ1
, er0κ1 > 0,

as the only feasible solution, which completes the proof.

Note that the total distance travelled q(t) can be pre-
computed based on the acceleration primitive, so solving for
s(t) has the complexity of taking a square root. Next, we
use Proposition 1 to bound s(t) in the case that er(t) is not
constant. We start by bounding s(t) when the reference line
consists of a single geometry segment and later extend it to
the general case.

B. Bounds on Arc Length for a Single Segment

We now use the developments from §III-A to bound s(t)
when er(t) is not constant and when κ(s) consists of a single
geometry segment and has constant sign over the interval
considered.

Proposition 2 (Lower Bound on s(t) for Single Segment):
Let ermin

≤ er(t) ≤ ermax
. Assume κ(s) consists of a

single geometry segment, has constant sign over the interval
considered, and erminκ(s) < 1, ermaxκ(s) < 1. Define
the lower bound on the distance travelled parallel to the
reference curve as q`||(t) , q(t) −

∫ t
0
|ėr(t′)|dt′ and define

sc(er, q, κ) ,
(1−erκ0)−

√
(1−erκ0)2−2erκ1q

erκ1
. Then s(t) is

bounded below by

s(t)≥slb(t),

sc(ermin
, q`||(t), κ), ermin

κ1 6= 0, κ(s) > 0
q`||(t)

1−ermin
κ0
, ermin

κ1 = 0, κ(s) > 0

sc(ermax , q
`
||(t), κ), ermaxκ1 6= 0, κ(s) ≤ 0

q`||(t)

1−ermaxκ0
, ermaxκ1 = 0, κ(s) ≤ 0.

Proof: Define q̇||(t) , v(t) cos eθ(t) as the velocity
parallel to the reference line and q||(t) as the distance trav-
elled parallel to the reference line. Note that v2 = ėr

2+ q̇||
2

which gives

|v| =
√
ėr

2 + q̇||
2 ≤

√
ėr

2 +
√
q̇||

2

⇒ |q̇||| ≥ |v| − |ėr|. (8)

Assume v(t) ≥ 0, κ(s) ≥ 0, and −π/2 ≤ eθ(t) ≤ π/2 over
the path interval considered. From the dynamics in (1), we
have

ṡ =
v cos eθ

1− κ(s)er(t)
≥ v cos eθ

1− κ(s)ermin

=
q̇||

1− κ(s)ermin

.

Rearranging and integrating gives∫
(1− κ(s)ermin

)
ds

dt
dt ≥

∫
dq||

dt
dt

≥
∫
v − |ėr| dt (9)

= q −
∫
|ėr| dt

s− ermin(κ0s+
1

2
κ1s

2) ≥ q`||. (10)

We solve the quadratic in (10) for the lower bound of s(t).
Note that the solution has the same form as Proposition 1,
where sc defines that solution for a particular constant offset
and a particular path length.

The case for κ(s) ≤ 0 can be proven analogously by
replacing ermin with ermax .

Note that ermin
, ermax

, and
∫
|ėr| dt can be easily pre-

computed for cubic track offset trajectories, so computing the
lower bound on s(t) has the complexity of taking a square
root.

Proposition 3 (Upper Bound on s(t) for Single Segment):
Assume the same conditions as Proposition 2. Then, s(t) is
bounded above by

s(t)≤sub(t),

sc(ermax

, q(t), κ), ermax
κ1 6= 0, κ(s) > 0

q(t)
1−ermaxκ0

, ermax
κ1 = 0, κ(s) > 0

sc(ermin
, q(t), κ), ermin

κ1 6= 0, κ(s) ≤ 0
q(t)

1−ermin
κ0
, ermin

κ1 = 0, κ(s) ≤ 0.

Proof: Assume κ(s) ≥ 0 over the path interval
considered. From the dynamics in (1), we have

ṡ =
v cos eθ

1− κ(s)er(t)
≤ v

1− κ(s)er(t)
≤ v

1− κ(s)ermax

.

Fig. 2. A reference line composed of multiple geometry segments.
Transition points along the reference line, where the curvature changes sign
or switches to a new geometry segment, are marked by {s0, s1, s2}.

Rearranging and integrating gives∫
(1− κ(s)ermax

)
ds

dt
dt ≤

∫
v dt

= q

s− ermax
(κ0s+

1

2
κ1s

2) ≤ q. (11)

The upper bound can now be obtained by solving the
quadratic in (11). This is equivalent to solving for the change
in arc length when travelling at a constant offset ermax

for
a distance of length q, i.e. sc(ermax

, q, κ). The case for
κ(s) ≤ 0 can be proven analogously by replacing ermax

with ermin .
For the case when v(t) ≤ 0, reverse the sign of κ1 and

apply the same bounds given in Propositions 2 and 3, which
flips the direction of the reference line and the direction of
the vehicle so that v(t) ≥ 0. Then, transform the bounds
back to the original problem by taking the negative of the
upper bound as the lower bound and the negative of the lower
bound as the upper bound.

C. Bounds on Arc Length for Multiple Segments

Using the results developed in §III-B, we provide an algo-
rithm for computing bounds on the change in arc length of a
motion primitive that traverses a piecewise geometry whose
curvature possibly changes sign. First, transition points along
the reference line are identified. That is, an ordered list
(s0, s1, . . . , sn) is collected, where si corresponds to a point
along the reference line where the curvature changes sign
or where a new geometry segment begins (see Figure 2).
Between each transition point, the curvature of the reference

Fig. 3. Visualization of the proposed motion primitives. Note that the
quickly computed heuristic position is close to the true position given by
Euler integration.

line is linear in s and has constant sign, and we denote the
curvature function between si−1 and si as κi(s). Thus, the
bounds developed earlier can be applied to each section of
the reference line individually to come up with bounds for
the whole trajectory. We define the function qc(s, er, κ) =
s−er(κ0s+ 1

2κ1s
2) as the path length travelled for a constant

offset er and a distance s along the reference line. Algorithm
1 details a procedure for computing the lower arc length
bounds along a reference line with curvature that is piecewise
linear in s and when v(t) ≥ 0. The algorithm for computing
the upper bound is analogous, where the remaining path
length qr is instead initialized with q(tf) and erb is instead
set to ermax

when sign(κi) > 0 and set to ermin
otherwise.

One can see that the algorithms’ computational complexities
are linear in the number of transition points.

The previously developed algorithms assume a positive ve-
locity trajectory. Since the motion primitives are parameter-
ized by a constant acceleration, the velocity of the trajectory
can switch signs at most once. To extend the algorithm to
the full case, we divide the trajectory into two segments: one
with positive velocity and one with negative velocity. The
time horizon for each segment is easily computed based on
v(0) and a. The change in arc length for each time segment
can be bounded separately using Algorithm 1 and the upper
bound algorithm and combined together to get a bound over
the full time horizon, using the strategy outlined in §III-B
for getting the bounds on the negative velocity segment.

The bounds themselves can approximate the arc length
s(tf) of a primitive, but, based on experiments in §IV, we
propose using the heuristic sh(tf) ,

slb(tf)+sub(tf)
2 instead.

IV. EXPERIMENTAL VALIDATION

To validate that the bounds hold and that the heuristic
sh(tf) is a good approximation of the true arc length s(tf),

Algorithm 1 Lower bound s(t) for a reference line with
piecewise linear curvature.

Given q(t), er(t), tf
Compute ermax

, ermin
along interval [0, tf]

Compute transition points strans ← (s0, s1, . . . , sn)
qr ← q(tf)−

∫ tf
0
|ėr(t′)| dt′ // Remaining path length

i← 0
slbtotal

← 0
sstart ← 0
while qr > 0 do

if sign(κi) > 0 then
erb ← ermin

else
erb ← ermax

end if
if erbκi1 6= 0 then

slbsegment
← sc(qr, erb , κi)

else
slbsegment ←

qr
1−erbκi0

end if
if sstart + slbsegment

≥ strans[i] then
slbtotal

← slbtotal
+ strans[i]− sstart

qr ← qr − qc(strans[i]− sstart, erb , κi)
sstart ← strans[i]
i← i+ 1

else
slbtotal

← slbtotal
+ slbsegment

qr ← 0
end if

end while
return slbtotal

we randomly sample primitives and compare the approxi-
mated arc length with the true arc length which is computed
using Euler integration with a small time step. Furthermore,
we evaluate the computation time for approximating a path
coordinate primitive and compare it to the time taken to
forward integrate the primitive.

We randomly sample 1000 primitives with track off-
sets er(0), er(tf) ∈ [−3, 3]m, initial and final veloc-
ities v(0), v(tf) ∈ [1, 15]m/s, initial and final angles
eθ(0), eθ(tf) ∈ [− π

12 ,
π
12], and tf = 5 seconds. The reference

line curvature profiles are chosen randomly for each sample
but satisfy maximum curvature guidelines based on the
maximum velocity and the coefficient of friction for car tires
on a dry road. Table I gives average and maximum percent
errors of the bounds and the heuristic sh(tf) relative to the
true arc length. The proposed heuristic has a small percent
error relative to the true arc length and has a much smaller
maximum percent error than either of the bounds, motivating
its use as the approximate arc length in the motion primitive.
Figure 3 shows a set of primitives connecting a particular
initial state to different final states with different velocities
and track offsets. The position given by sh(tf) closely
approximates the true position for each of the primitives.

Avg. Perc. Error Max Perc. Error
slb 10.0%± 5.20% 46.2%
sub 2.44%± 3.14% 55.0%
sh 3.82%± 1.61% 11.0%

TABLE I
ERROR STATISTICS OF ARC LENGTH BOUNDS AND HEURISTIC

Fig. 4. Ratio of arc length bound computation time to arc length
integration time versus number of transition points in the reference curve
(left) and versus integration time step size (right). The bound computation
is orders of magnitude faster than Euler integration. Note that the bound
computation time increases about linearly with the number of transition
points as expected.

Figure 4 shows the ratio of the heuristic sh(tf) computa-
tion time to the integrated s(tf) computation time for dif-
ferent numbers of transition points and different integration
step sizes. As expected, the bound computation time varies
linearly with the number of transition points in the reference
path. Furthermore, the bound computation time achieves a
1000x speed-up over the arc length integration time when
using an Euler time step of 1ms. This improvement drops off
linearly with the integration step size. However, making the
integration step size too large actually makes the integrated
arc length s(tf) less accurate than the heuristic sh(tf). Even
with a large step size of 0.1s, the heuristic arc length is still
an order of magnitude faster to compute.

V. CONCLUSION

We presented a technique for the efficient computation
of approximate path coordinate motion primitives, suitable
for motion planning in autonomous driving scenarios. We
showed that important characteristics of the motion primi-
tives, such as path length, acceleration, and min/max velocity,
can be pre-computed. We discussed how the change in
arc length induced by the motion primitive is expensive to
compute at run-time and proposed an efficient algorithm
for bounding its value in terms of the reference curvature
and minimum and maximum track offsets. Furthermore, we
proposed an accurate heuristic approximation of the arc
length supported by experimental validation. Future work
will investigate bounds on the primitive’s lateral acceleration
given the reference curvature.

REFERENCES

[1] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[2] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[3] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a
nonholonomic car-like robot,” in Robot motion planning and control,
pp. 171–253, Springer, 1998.

[4] C. Samson, “Control of chained systems application to path following
and time-varying point-stabilization of mobile robots,” IEEE transac-
tions on Automatic Control, vol. 40, no. 1, pp. 64–77, 1995.

[5] J. M. Snider et al., “Automatic steering methods for autonomous
automobile path tracking,” Robotics Institute, Pittsburgh, PA, Tech.
Rep. CMU-RITR-09-08, 2009.

[6] P. F. Lima, M. Trincavelli, J. Mårtensson, and B. Wahlberg, “Clothoid-
based speed profiler and control for autonomous driving,” in IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC),
pp. 2194–2199, IEEE, 2015.

[7] P. F. Lima, M. Trincavelli, J. Mårtensson, and B. Wahlberg, “Clothoid-
based model predictive control for autonomous driving,” in European
Control Conference (ECC), pp. 2983–2990, IEEE, 2015.

[8] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 1879–1884, IEEE, 2009.

[9] X. Li, Z. Sun, Q. Zhu, and D. Liu, “A unified approach to local
trajectory planning and control for autonomous driving along a ref-
erence path,” in IEEE International Conference on Mechatronics and
Automation (ICMA), pp. 1716–1721, IEEE, 2014.

[10] J. Hudecek and L. Eckstein, “Improving and simplifying the generation
of reference trajectories by usage of road-aligned coordinate systems,”
in IEEE Intelligent Vehicles Symposium Proceedings, pp. 504–509,
IEEE, 2014.

[11] A. L. Higgins, The Transition Spiral and Its Introduction to Railway
Curves with Field Exercises in Construction and Alignment. Van
Nostrand Company, 1922.

[12] K. Baass, “Use of clothoid templates in highway design,” tech. rep.,
1982.

