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Abstract— This work addresses the problem of motion plan-
ning among obstacles for quadrotor platforms under external
disturbances and with model uncertainty. A novel Nonlinear
Model Predictive Control (NMPC) optimization technique is
proposed which incorporates specified uncertainties into the
planned trajectories. At the core of the procedure lies the
propagation of model parameter uncertainty and initial state
uncertainty as high-confidence ellipsoids in pose space. The
quadrotor trajectories are then computed to avoid obstacles
by a required safety margin, expressed as ellipsoid penetration
while minimizing control effort and achieving a user-specified
goal location. Combining this technique with online model
identification results in robust obstacle avoidance behavior.
Experiments in outdoor scenarios with virtual obstacles show
that the quadrotor can avoid obstacles robustly, even under the
influence of external disturbances.

I. INTRODUCTION

Aerial robotic vehicles such as quadrotors are beginning
to enable a range of useful capabilities. Current and future
applications of quadrotors operating in natural environments
include delivery of packages [1], inspection of a building
infrastructure and power lines [2], aerial photography, and
traffic surveillance [3]. With the increasing use of quadrotors,
their safety and reliability are becoming essential. This paper
focuses on designing control laws that can predict the vehicle
motion for a short time horizon and ensure that it steers
away from predicted collisions with approximately high
probability.

Several prior works focused on generating reliable
controllers for guaranteeing safety and stability of the
quadrotor under external disturbances. For instance, the
quadrotor dynamics has been estimated online using the
autoregressive-moving-average with exogenous inputs (AR-
MAX) model [4], [5] and has been applied to model and con-
trol quadrotor platforms [6]. Model Reference Adaptive Con-
trol (MRAC) algorithms that estimate the system parameters
while stabilizing the quadrotor under actuator uncertainty
have been developed in [7], [8], [9]. These methods, however,
do not account for modeling uncertainty and actuator bounds.
Robust control techniques, on the other hand, can reject
uncertainty in system dynamics [10] and account for actuator
limits [11]. A robust backstepping controller for quadrotors
which is globally asymptotically stable has been designed
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Fig. 1: a) DJI Matrice quadrotor with Guidance sensor suite
and an additional short-range stereo used for experiments, b)
Simulated safe obstacle avoidance trajectory for the quadro-
tor. The blue region corresponds to propagated uncertainty
denoted by a 2σ standard deviation ellipsoids around the
pose of the quadrotor, and red regions show two cylindrical
obstacles.

in [12]. Robust controllers have been used in practice to
track an aggressive figure eight maneuver accurately [13].

Introducing obstacles into the quadrotor’s environment fur-
ther complicates the safe operation of quadrotors. Potential
field methods have been used in [14] to generate an optimal
obstacle free path that handles both static and dynamic
obstacles. This method uses only the kinematics of the
quadrotor model to generate the trajectory. On the contrary,
a Linear Quadratic Regulator (LQR) based feedback scheme,
combined with a direct collocation-based obstacle avoidance
planner has been used to plan dynamically feasible knife-
edge maneuvers for fixed wing aircraft in [15]. The feedback
system generates a time-varying locally stable feedback
control law using LQR optimization. Instead of offline gen-
erated feedback controllers, real-time kinodynamic planning
using sampling-based motion planning of a quadrotor among



dynamic obstacles has been demonstrated in [16].
Obstacle avoidance in the presence of external distur-

bances is dealt with using recent extensions in Learning-
Based Model Predictive Control (LBMPC) [17], [18]. This
method allows for online learning of quadrotor dynamics
and the generation of optimal trajectories that guarantee
convergence. LBMPC has been used to learn ground effects
on quadrotors and to predict the trajectory of balls for the
purpose of catching them. LBMPC has also been used in
controlling other systems with unknown dynamics such as
a 3DOF robot arm [19] and the energy management of
air conditioners in a building [20]. This method linearizes
the dynamics and solves the MPC problem formulated as a
quadratic program in an efficient onboard implementation.

Robust motion planning for fixed wing aircraft and
quadrotors under the influence of parametric uncertainty and
external disturbances has been studied recently by Majumdar
et al. [21]. This work computes an offline library of feedback
funnels to provide a reliable system that will remain inside
the funnel when the feedback law is executed. The feed-
back funnels are sequenced together in real time to avoid
obstacles reactively based on their positions. This method
has the drawback that it does not account for online changes
in model parameters and deviations in the uncertainty of
external disturbances.

This work focuses on robust obstacle avoidance of quadro-
tor in an outdoor scenario with varying external disturbances.
A nonlinear stochastic quadrotor model incorporating exter-
nal disturbances is learned online. The learned model has
been employed in a novel Nonlinear Model Predictive Con-
trol (NMPC) optimization framework that plans quadrotor
trajectories to avoid obstacles by a required safety margin.
The safety margin is computed based on propagating the
model parameter uncertainty and initial state uncertainty as
high-confidence ellipsoids in pose space and minimizing the
ellipsoid penetration into the obstacles while minimizing
control effort, and achieving a user-specified goal location.
Figure 1 shows an optimal trajectory for a quadrotor avoiding
obstacles. This method propagates the uncertainty due to
initial state measurements, model parameters, and external
disturbances to uncertainty in state trajectory. Sensor uncer-
tainty is not accounted for in this method.

The proposed method is applied towards reactive avoid-
ance of virtual obstacles in an outdoor scenario. The ob-
stacles are detected online using a virtually-rendered image
and a safe trajectory is planned and executed reactively.
Additionally, the ability of the learned model to predict the
quadrotor’s state is verified through multiple experimental
trials.

The rest of the paper is organized as follows. In section II,
a simplified nonlinear model of quadrotor dynamics that is
appropriate for system identification is proposed. Further, the
parameters for the nonlinear model are identified using an
online setup of a maximum likelihood estimation framework.
In section III, an NMPC based optimization scheme is
designed that takes into account uncertainty in state space
explicitly and plans trajectories that avoid obstacles by a

safety margin. Finally, in section IV, the results of avoiding
an obstacle using the current framework are demonstrated.

II. SYSTEM IDENTIFICATION

The quadrotor is modeled as a rigid body attached with
four axially aligned rotors. The rotors apply a thrust force
along a known body fixed axial direction and torques along
three mutually perpendicular body axes. The quadrotor is
usually equipped with an autopilot module that converts
commanded Euler angles into rotor velocities using a linear
Proportional-Integral-Derivative (PID) controller [22]. The
goal of this section is to propose a second-order closed-loop
model that models both the rigid body dynamics and the
autopilot control loop.

The state of the quadrotor system is given by the position
p, rotation matrix R, velocity ṗ measured with respect to an
inertial frame and angular velocity ω in body frame. The
rotation matrix is decomposed into body Euler angles as
R(ξ) = eξ3ê3eξ2ê2eξ1ê1 . The inputs for the second order
closed-loop model are the commanded rate of body Euler
angles as ξ̇c and the commanded thrust ut. A quadrotor
model emulating a second order rotational dynamics has been
proposed in Eq (1). Similar simplified models have been used
in system identification of quadrotors [6], [17].

d

dt


p
R
ṗ
ω
ξc

=


ṗ
Rω̂
g + ae

−kp(ξ − ξc)− kdξ̇ + αe
0


︸ ︷︷ ︸

f(x,θ)

+


0 0
0 0

ktRe3 0
0 kd
0 1


︸ ︷︷ ︸

g(x,θ)

[
ut
ξ̇c

]
.

(1)

The hat operator ·̂ maps a vector in R3 to se(3) as shown
in Eq (2).

ω̂ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,∀ω ∈ R3. (2)

The unknown parameters for the model are the proportional
and derivative gains kp, kd, thrust gain kt, and external
accelerations ae, αe ( θ = [kTp , k

T
d , kt, a

T
e , α

T
e ]T ). Using

position and orientation measurements of the quadrotor and
assuming the parameters and the measurements are dis-
tributed according to a Gaussian distribution, standard MLE
techniques can be applied to find the unknown parameters
under sufficient excitation [23]. For the quadrotor system,
exciting the quadrotor in roll, pitch, and yaw directions with
constant thrust is sufficient to estimate the parameters. Fig-
ure 2 compares the predicted Euler angles and body angular
velocities with measurements from an Inertial Measurement
Unit (IMU) during an experimental flight path.

III. OBSTACLE AVOIDANCE USING NONLINEAR MODEL
PREDICTIVE CONTROL

In this section, an optimization scheme is designed to
produce NMPC trajectories that avoid obstacles using the
quadrotor model identified in (1). Uncertainty in the model



0 0.2 0.4 0.6 0.8 1.0

-0.05

0

0.05
A

n
g

le
(r

a
d

)
Measured roll

Predicted roll

0 0.2 0.4 0.6 0.8 1

Time(sec)

-0.4

-0.2

0

0.2

R
a

te
(r

a
d

/s
)

Measured ω
1

Predicted ω
1

0 0.2 0.4 0.6 0.8 1

0.01

0.02

0.03

0.04

0.05

Measured pitch

Predicted pitch

0 0.2 0.4 0.6 0.8 1

Time(sec)

-0.1

0

0.1

0.2

0.3 Measured ω
2

Predicted ω
2

0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0 Measured yaw

Predicted yaw

0 0.2 0.4 0.6 0.8 1

Time(sec)

-0.8

-0.6

-0.4

Measured ω
3

Predicted ω
3

Fig. 2: The graphs show predicted and observed body Euler
angles and body angular rates for the quadrotor on a test data
set. The predicted Euler angles are close to the measured
values using the second order closed-loop model.

is taken into account by planning a trajectory that stays away
from obstacles by a safety margin based on the uncertainty
propagation from the estimated parameters to trajectory
uncertainty.

A. Discrete Dynamics

NMPC optimization requires a discrete version of the
dynamics specified in Eq (1). The control inputs to the
second order closed-loop model (i.e. the commanded thrust
ut and commanded Euler angle rates ξ̇c) are assumed to be
constant during a time step of duration h. The discrete state
consisting of position pi, velocity vi, rotation matrix Ri, and
body angular velocity ωi is propagated as

pi+1

Ri+1

vi+1

ωi+1

ξci+1


︸ ︷︷ ︸
xi+1

=


pi + 1

2 (vi + vi+1)h
Ri exp( 1

2 (ωi + ωi+1)h)
vi + h(g + a0)

ωi + h(−kp(ξi − ξci+1
)− kdξ̇i + αe)

ξci


︸ ︷︷ ︸

fi

+


0 0
0 0

ktRie3 0
0 kd


︸ ︷︷ ︸

gi

[
uti
ξ̇ci

]
︸ ︷︷ ︸
ui

The linear and angular velocities vi+1, ωi+1 are propagated
first. The average linear and angular velocities in turn are
used in the position and orientation updates using a semi-
implicit scheme in the above equation.

B. Propagating Uncertainty

The uncertainty of parameters obtained from MLE is prop-
agated to the uncertainty in the states using the unscented
transform proposed by Jullier et al. [24]. The uncertainty
in states is then used to plan safe trajectories for avoiding
obstacles. The unmodeled dynamics are included in the
uncertainty through external accelerations and torques ae, τe.
The uncertainty in detecting the obstacles is not included in
this propagation scheme.

The uncertainty propagation scheme finds the mean and
covariance of the states along the trajectory given the es-
timated mean and covariance of the unknown parameters
in dynamics. The mean and covariance of the estimated
parameters θ obtained using MLE estimation are denoted
by

θ∗ = [k∗p, k
∗
d, k

∗
t , āe, ᾱe], Σθ∗ = [Σk∗p,k∗d,k∗t ,Σāe ,Σᾱe ].

(3)

The unscented transform perturbs the mean parameters θ∗

along the major axis of the uncertainty distribution to obtain
sigma point parameters. The controls are propagated using
these parameters to obtain sample trajectories. Then, the
mean and covariance of the quadrotor along the trajectory are
obtained as a weighted sum of the samples. The unscented
transform function can be written as

(x̄0:N−1,Σx0:N−1
) = UnscentedTransform(u0:N−1, θ

∗,Σθ∗)

where the x̄0:N−1 is the mean state along the trajectory,
Σx0:N−1

is the covariance of the the state along the trajectory,
and u0:N−1 is the control trajectory.

Fig. 3: The predicted mean position and 2σ region of the
quadrotor obtained using unscented transforms is shown in
blue. The measured position of the quadrotor is shown in
red.

Figure 3 shows the plot of a predicted trajectory distri-
bution obtained using unscented transforms based on pa-
rameters estimated from real data. It can be observed that
the navigated trajectory in red falls within the predicted 2σ
region in blue, indicating that the model is a good fit for the
dynamics. The uncertainty in the predicted trajectory is used
to avoid obstacles using an NMPC formulation explained
next.

C. NMPC Formulation

The NMPC problem can be formulated as finding a
trajectory for the quadrotor system with states and controls
given by x0:N , u0:N−1 which minimizes a cost function
L(x0:N , u0:N−1) while satisfying the system dynamics. The
cost function incorporates the specifications of a problem
such as minimization of control effort ui and state velocities
vi, ωi along the trajectory, while achieving a goal state xN ,



and avoiding obstacles. The NMPC problem for a generic
system can be mathematically stated as:

NMPC Framework
Given x0, θ

∗, xf ,

u∗1:N = arg min

N−1∑
i=0

Li + LN ,

s.t xi+1 = fi + giui.

The cost function for trajectory tracking is chosen to be a
quadratic cost that minimizes the control effort and state
velocities along the trajectory. The terminal cost LN is
designed to force the system to achieve a desired terminal
state xf . The cost function is formulated as

Li =
1

2
xTi Qxi +

1

2
uTi Rui, (4)

LN =
1

2
(xN − xf )TQN (xN − xf ), (5)

where the gain matrix QN penalizes the difference between
the end of the trajectory xN and the goal state xf , while the
gains Q and R determine the trade-off between minimizing
the state velocities and control effort along the trajectory,
respectively. The state of the quadrotor as shown in (1) lives
on a manifold and cannot be subtracted in a trivial way. The
operator − in the above cost function is overloaded to be the
distance between two states on the manifold as explained in
[25], [26].

The NMPC formulation is augmented with an additional
constraint to ensure obstacle avoidance. We define an in-
equality constraint for every obstacle at every point along
the trajectory as

Define: Pi = {p : (p− pi)TΣ−1
pi (p− pi) ≤ k2

σ} (6)

di,j = Dist(Pi, oj) ≥ 0 (7)

The standard deviation ellipsoid Pi consists of all the points
which are within kσ standard deviations from the current
position pi. The signed distance function Dist is then defined
as the closest distance between the boundary of the ellipsoid
and the boundary of an obstacle as shown in Figure 4. The
distance between the ellipsoid Pi and a cylindrical obstacle
with center Opj , major axis Oaj and radius Orj can be
approximated in closed form1 as shown in Eq (9), where
the symbol 〈, 〉 denotes the dot product. When the ellipsoid
intersects with the obstacle, the distance function returns a
negative value. Therefore, minimization of the constrained
NMPC cost function finds a trajectory that avoids obstacles
by kσ standard deviations. In this work, a 2σ standard
deviation boundary has been chosen.

Dist(Pi, oj) = ‖ei,j‖ −
kσ‖ei,j‖√
eTijΣ

−1
pi ei,j

−Orj , (8)

eij = (Opj − pi)− 〈Opj − pi, Oaj〉Oaj . (9)

1This distance is only an approximation that performs well in practice.
The true closest distance cannot be computed in closed form.
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Fig. 4: Plot of a sample trajectory with standard deviation
ellipsoids Pi and the distance to obstacle di. The ellipsoids
Pi consist of points which are closer than kσ standard
deviations from the quadrotor position.

D. Optimization Scheme

The Levenberg–Marquardt algorithm is used to find the
optimal controls u∗ since the cost functions Li, LN are
of the least-squares form. To reduce the dimension of the
optimization, the control inputs ui are produced using a
uniform B-spline of second order with knots given by ψ.
The control can be recovered from the knots as

u0:N−1 = B(t0:N−1)ψ. (10)

The knot matrix ψ ∈ Rk×4 has each row as a knot vector
which contains a thrust ut and commanded body Euler angle
rates ξ̇c. The basis matrix B ∈ RN×k is dependent on the
time sequence t0:N−1 and the order of the B-spline. A second
order B-spline has been used in this work.

The residual function and update step for the Levenberg-
Marquardt algorithm are then given by

e(ψ) =



√
Qx1(ψ)√
Ru1(ψ)√
koD1,j(ψ)

...√
QN (xN (ψ)− xf )

 , (11)

J = ∂ψe(ψ), (12)
Di,j = min(di,j , 0), (13)

ψi+1 = ψi − (JTJ + λI)−1JT e(ψ).. (14)

The obstacle avoidance constraint is enforced as a soft
penalty in the residual function ((11)). The residual√
koDi,j(ψ) minimizes the intersection between the standard

deviation ellipsoids Pi and the obstacle oj . The optimization
algorithm is iterated multiple times by increasing the obstacle
gain ko after every run. This procedure smoothly transitions
from a trajectory with Pi intersecting the obstacle to a
trajectory with Pi slightly grazing the obstacle as the gain ko
becomes very large. The complete optimization procedure is
listed as follows:

Obstacle Avoidance using Levenberg-Marquardt



0. Start with initial optimal parameter distribution
(θ∗,Σθ∗), fixed obstacle gain ko and initial guess for
current control knots ψ

1. Compute the standard deviation of the state trajectory
at the current control knots using UnscentedTransform

2. Evaluate the residual e and Jacobian J of the trajectory
at the current control knots

3. Update the knots ψ according to Eq (14); If iteration
converged GOTO step 4, else GOTO step 1

4. Increase gain ko by a fixed factor. If ko reaches an
upper limit exit else GOTO step 1

Figure 1 shows an example obstacle avoidance scenario,
where the quadrotor avoids two cylinders in front of it while
flying at 5m/s. The goal for the quadrotor is to reach 10
meters in front of it while avoiding obstacles. The opti-
mization algorithm finds a trajectory for which the standard
deviation ellipsoids in blue do not intersect the obstacles in
red while achieving the final goal. Thus, following this open-
loop trajectory approximately guarantees that the quadrotor
can navigate safely around the obstacles.

IV. EXPERIMENT SETUP

The goal of the experiments is to demonstrate safe obstacle
avoidance behavior for a quadrotor by following an open-
loop trajectory computed using the NMPC optimization tech-
nique. The obstacle avoidance experiments are conducted on
a real quadrotor in an outdoor scenario, subject to unknown
external disturbances, and surrounded by virtual obstacles.
The obstacle avoidance behavior has been demonstrated in
two ways. First, multiple executions of open-loop trajectories
have been performed to verify that the quadrotor model can
predict the quadrotor pose well. Next, the quadrotor is set
to avoid three consecutive virtual obstacles reactively. The
obstacle avoidance experiments require several components
such as an obstacle detection algorithm, a position controller,
and an online parameter estimation framework to work
together as discussed below.

A. Subsystems

1) Hardware: A research grade Matrice quadrotor made
by DJI [27] is used in the experiments. The quadrotor is
equipped with a Guidance stereo camera sensor [28] whose
data is used to produce high-quality position and orientation
measurements at 100 Hz. The DJI autopilot is used to achieve
desired body Euler angles roll, pitch, yaw and desired thrust.
Figure 1 shows the quadrotor setup connected with Guidance
and DJI autopilot.

2) Obstacle Detection: A virtual camera image is ren-
dered on a georeferenced virtual map using the Open Source
3D Graphics Engine library [29] to provide a depth map
for estimating the distance to obstacles. The virtual cam-
era avoids the issue of sensor uncertainty in detecting the
obstacles and allows for safe experimental testing of the
quadrotor in an outdoor scenario. Figure 5 shows an example
virtual image rendered from the quadrotor’s position. The
obstacle position is determined from the rendered frame by
segmenting the depth map into foreground and background

Fig. 5: An onboard image rendered using a virtual camera.
The green dot shows the mean of the closest 20 percent
points in the foreground which represents the obstacle and
the red dot shows the center of the image.

based on the global velocity direction of the quadrotor. The
pixels inside a tolerance cylinder of 0.5m radius around
the global velocity direction and within a maximum depth
tolerance of 6m are considered to be foreground. The closest
obstacle position is then specified to be the average of the
closest 20 percent points in the foreground.

3) Online Parameter Estimation: The obstacle avoidance
experiments are conducted in an outdoor environment with
unknown external disturbances. The quadrotor is also subject
to thrust depreciation over time due to limited onboard
power. These effects are compensated using MLE online
parameter estimation. The initialization of MLE optimization
requires a good prior on the system parameters. Therefore,
a manually flown ten-second trajectory is utilized in an
initial optimization to produce a tight prior for the system
parameters. The system parameters are further refined based
on this prior using online optimization running at a frequency
of 0.5Hz using the position and orientation measurements
collected at 100 Hz. The covariance on the parameters is
continuously tracked by the program and is used for fault
detection in the case of bad parameter learning.

4) NMPC Trajectory Optimization: The NMPC optimiza-
tion is performed when an obstacle is within a user specified
tolerance distance of 3 meters. The goal of the optimization
is to reach 3 meters behind the obstacle within the next two
seconds while avoiding the obstacle and achieving a terminal
velocity that is equal to the initial velocity. The two second
trajectory is broken down into 100 discrete segments (50
Hz) for optimization. In this experiment, the obstacles are
avoided one at a time. Hence, a second order B-spline with
four knots was sufficient to represent the control trajectory.

The computational resources available onboard are limited
and only allow for a 10Hz frequency of the NMPC optimiza-
tion loop. This restricts the frequency at which the optimal
trajectory can be updated. Thus, the quadrotor is run open-
loop using the roll, pitch, yaw and thrust inputs to autopilot



until the MPC horizon time is complete.
5) Waypoint Tracker: A linear PID position controller is

designed to track user-defined waypoints. The external force
parameters and thrust gain obtained from MLE optimization
are incorporated into the PID controller.

V. RESULTS

A. Verification of quadrotor model

The ability of the quadrotor model to predict the quadrotor
pose is demonstrated by executing open-loop trajectories
multiple times to show that the quadrotor stays within the
standard deviation funnel almost all the time. The trials
require the quadrotor to fly at a speed of 3m/s and execute
an open-loop NMPC trajectory to avoid a virtual obstacle
assumed to be 3m in front of it. The data samples from the
trials are segregated into a bar graph in Figure 6 based on the
distance to the ellipsoid surface. Around 89.89% of the 2000
sample data points are within the ellipsoid as observed from
the distance metric being negative in the bar graph. These
results suggest that by following the NMPC trajectory, the
quadrotor is likely to avoid the obstacle with approximately
high probability. Figure 7 shows the predicted and measured
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Fig. 6: The bar graph shows the number of data samples at
different distances to ellipsoid. Around 89.89% of the sam-
ples along the quadrotor trajectories are within the standard
deviation ellipsoids and thus are safe for obstacle avoidance

open-loop Euler angles and Figure 3 shows the predicted and
measured position of the quadrotor along an experimental
trajectory for a single obstacle avoidance trial. It can be
observed that the predicted position stays within the standard
deviation funnel and predicted Euler angles matched well
with the measured Euler angles. These results indicate that
the identified model approximates the quadrotor well, and
NMPC trajectories are safe for avoiding a real obstacle.

B. Consecutive Virtual Obstacle Avoidance

In this experiment, the quadrotor is tasked to avoid a series
of three virtual cylindrical obstacles 0.3m in diameter and
spaced 5m apart while following a waypoint path at 3m/s.
The quadrotor determines a obstacle avoidance path when it
sees a cylinder at 3 meters in front of it. The path is required
to reach 3 meters beyond the obstacle within the next two
seconds while maintaining the current quadrotor velocity.
The combined subsystems of online parameter estimation,
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Fig. 7: The graphs show the predicted, commanded and
measured body Euler angles for a quadrotor during a single
obstacle avoidance run. It can be observed the measured
angles are very close to the predicted Euler angles.

obstacle detection, NMPC trajectory optimization, and way-
point tracking are tested through this experiment. The upper
half of Figure 8 shows the quadrotor positions in the virtual
map overlayed with detected obstacles in red and computed
NMPC trajectories with covariance ellipsoids in blue. The
obstacles are inflated by 0.3m to include the envelope of the
quadrotor. The series of pictures in the lower half of the
figure show the quadrotor flying through the virtual obstacle
course. The figures show that the quadrotor avoids the
obstacles successfully while staying in the predicted standard
deviation funnel when executing the NMPC trajectory.

The following steps are performed during an obstacle
avoidance experiment:

1) Identify model parameters online by running MLE-
based parameter estimation at 0.5Hz

2) Follow a waypoint path using PID position controller
3) When an obstacle is detected in the path within a

user specified tolerance, compute and execute NMPC
trajectory

4) Resume following waypoint path
5) A human operator takes over the controls if any of the

above steps go wrong

VI. CONCLUSIONS

This work proposes an NMPC trajectory generation tech-
nique that combines online parameter estimation with uncer-
tainty propagation to generate approximately safe obstacle
avoidance trajectories. The ability of the nonlinear stochastic
quadrotor model to predict the quadrotor state has been
demonstrated through multiple open-loop trajectories. Fur-
ther, the quadrotor is able to reactively avoid consecutive
virtual obstacles while staying in the standard deviation
funnel while following the NMPC trajectories. Future work
will enable obstacle avoidance in a real cluttered environment
by performing closed-loop NMPC trajectory optimization.
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