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Abstract— This work introduces a hybrid visual servoing
technique for differentially flat, underactuated systems that
is well suited for aggressive dynamics. Standard Position-
Based Visual Servoing (PBVS) and Image-Based Visual Ser-
voing (IBVS) approaches for underactuated systems, such as
quadrotors, oftentimes do not explicitly ensure that the relevant
image features stay in the camera’s field of view, especially
while the system is performing agile maneuvers. We present
a control technique that is designed to mitigate this issue and
that results in increased robustness. Given a goal image, we
first solve a constrained Perspective-n-Point (PnP) problem to
find an equilibrium pose which aligns the camera with the
goal. We then formulate the task of navigating to the goal
pose as an optimal control problem, where a cost over the
resulting image feature tracks along the trajectory is minimized
which implicitly keeps features in the field of view over the
course of the trajectory. The optimization is performed over a
polynomial parametrization of the flat outputs of the system to
decrease the dimensionality of the optimization. Simulations
and physical experiments are performed with a quadrotor
system to benchmark the algorithm’s performance against a
typical PBVS approach.

I. INTRODUCTION

Imagine a quadrotor equipped with a camera that is
observing an object of interest, where it must use aggressive
maneuvers to track the object. The quadrotor must accelerate
quickly and move toward the target, potentially losing sight
of the target as the quadrotor tilts. This type of motion would
result in a system failure for a typical visual controller that
does not take into account the complex interaction between
vehicle dynamics and image features. In this paper, we
consider a robust visual servo control technique that can
perform agile maneuvers without losing track of important
image features.

Visual servoing is concerned with using visual feedback in
the control loop of a robot in order to increase the flexibility
and accuracy of the robot’s positioning system [1] and has
been thoroughly studied over the past two decades [2], [3],
[4]. Recent research has looked at applying visual servoing
methods to quadrotor vehicles to perform complex tasks
like autonomous landing [5], grasping and perching [6], and
object tracking [7]. Visual servoing techniques are typically
divided into two classes: Position-Based Visual Servoing
(PBVS) and Image-Based Visual Servoing (IBVS). PBVS
estimates the goal position using visual information and uses
standard state-space control methods to navigate to the goal.
In contrast, IBVS formulates the control task directly in
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Fig. 1: Pictured is the modified Matrice quadrotor used
for the experiments. The environment is the Johns Hopkins
University campus.

terms of image features. By steering the image features to
a desired configuration, the Cartesian space motion-planning
problem is implicitly solved [8]. It has been shown that both
IBVS and PBVS strategies have their own weaknesses [9].
For instance, although the control design is straightforward
in PBVS, the goal state solution is sensitive to camera
calibration errors and to errors in the 3D environment model
used to compute the goal position [1]. Notably, one of the
drawbacks of PBVS is that it cannot guarantee that the target
features stay in the field of view of the camera. Originally
developed for kinematic systems, IBVS remains particularly
challenging for underactuated dynamic systems since for
such systems the relationship between control inputs and
image features is often complex.

Considerable research has been conducted in applying
both PBVS approaches [10], [11] and IBVS techniques [12],
[13], [14] to aerial vehicles. Since PBVS approaches only use
visual information to compute a desired goal pose, the con-
trol strategy completely ignores feature locations when pro-
viding inputs to the system, so it is possible that the features
could leave the camera’s field of view. For quadrotors, certain
ad-hoc approaches can be employed to mitigate the issue, like
limiting the roll and pitch of the vehicle, but this severely
limits the maneuverability of the aircraft. Oftentimes, IBVS
approaches decouple the rotational kinematics of the vehicle
from the image features by expressing the image feature
error in a “rotation-compensated” camera frame whose roll
and pitch are always zero [5], [7], [15], [6]. Although these
works develop controllers that guarantee the image error in
the rotation-compensated frame will converge to zero, it is
still possible for the image features to completely leave the
camera field of view if the system has significant rotation,



resulting in tracking failure. Bourquardez et. al. present
several IBVS control techniques which decouple the image
space from the task space by using spherical image moments
as features [16]. Since the image error becomes a function
of position only, large rotations could still occur, making
the system vulnerable to failure as previously described.
Ozawa et. al. present an IBVS method that does not neglect
the rotational dynamics of the quadrotor [17]. It uses a
virtual spring force to keep the quadrotor from rotating too
much relative to a gravity-aligned frame. This technique was
successful for the case considered, but in practice will limit
the ability of the quadrotor to move aggressively.

Hybrid visual servoing techniques, such as 2-1/2-D visual
servoing [18], combine image features and 3D data to create
a control law which is more stable and/or efficient than IBVS
or PBVS alone. For instance, Hafez et. al. use a boosting
technique to combine the outputs of an IBVS and PBVS
controller to form a more robust hybrid controller [19],
and Silveira et. al. use a Linear-Quadratic Regulator (LQR)
controller to stabilize an airship, where the system model is
augmented by the inclusion of image feature dynamics [20].

We propose a hybrid visual servoing technique for under-
actuated systems based on an optimal control formulation of
the objective behavior. The algorithm first solves a modified
Perspective-n-Point (PnP) problem to find a relative goal
state which minimizes the distance between point image
features matched between the camera image and a goal set
of features. With the final state fixed, a trajectory ending at
the desired state is optimized to minimize a cost function
which includes both control effort and image feature tracks.
This special cost ensures that the image features remain in
view of the camera so long as it is dynamically feasible
for the system. The optimization is performed over a poly-
nomial parametrization of the flat outputs of the system to
increase efficiency. To solve the PnP problem, it is assumed
that a depth map is available or can be estimated for the
image stream, e.g. from a stereo camera, SLAM system, or
Structure-from-Motion (SfM) algorithm.

Our approach differs from previous methods in several
ways. First, unlike typical visual servoing techniques, the
computed output is an entire dynamically feasible trajectory
instead of an instantaneous control law. Second, the cost
function used in the optimization-based formulation naturally
ensures that enough features remain in the field of view
even in the presence of aggressive dynamics. This makes
the method suitable for tracking while performing highly
agile maneuvers. The resulting computed trajectory can be
tracked using a traditional non-linear controller. Experimen-
tal results show the feasibility of this approach in Section IV.
Alternatively, the approach can be employed in a receding-
horizon Model Predictive Control (MPC) framework where
only the first few controls of the computed trajectory are
executed and the entire trajectory is reoptimized at each time
step [21]. Simulation experiments compare this method to a
traditional PBVS approach in Section III, and validate its
increased robustness.

The structure of the rest of the paper is as follows. The

Fig. 2: Example feature matches between an initial image
(left) and goal image (right).

algorithm is first described in Section II. We then show
the results of computer simulations of a quadrotor with
a front-facing camera in Section III. Experimental results
implemented on a real quadrotor are presented in Section IV,
and a conclusion is given in Section V.

II. OPTIMAL VISUAL SERVOING (OVS)

Consider a system with state x(t) and control inputs
u(t) with dynamics given by ẋ = f(x, u). The state space
X = SE(3) × R6 includes a Euclidean pose which for
simplicity we assume coincides with the pose of a camera
rigidly attached to the system. Given a goal image Ig and a
camera image stream Ic(t) at time t, feature sets are extracted
from each image and denoted as Fg = {fg1, . . . , fgM} and
Fc(t) = {fc1(t), . . . , fcM (t)}, where fci corresponds to
fgi, respectively. The objective is to create a control law
u(Fg, Fc(t)) that will minimize an error metric defined over
the feature sets e(Fg, Fc(t)), thus aligning Ig and Ic(tf ) at
some final time tf . Here, we assume that Fg and Fc(t) are
sets of point features in 2D image space. We take the error
metric to be the Euclidean distance between features matched
between Fg and Fc(t).

The proposed algorithm for minimizing e consists of two
steps. The first finds an equilibrium state of the system
relative to its current pose that minimizes e(Fg, Fc(tf )),
denoted xf . By equilibrium state, we mean xf must be such
that there exists a control u so that f(x, u) = 0. Thus, upon
reaching xf , the system should be able to maintain this state
and keep the images aligned. The second step of the proposed
method optimizes the trajectory from the current pose to
the goal state xf so that the image feature error along the
trajectory is minimized, which implicitly forces the features
to stay in the camera’s field of view. We discuss the two
steps in detail in the following sections.

A. Goal Pose Computation

In this step, we find an equilibrium state of the system
xf that will minimize the image error e(Fg, Fc(tf )). First,
SURF point descriptors [22] are extracted from Ig and Ic(t)
and matched. The matches are filtered using a ratio test as
suggested by Lowe [23] to give the corresponding feature
sets Fg and Fc (with perhaps false correspondences). An
example set of feature matches is shown in Figure 2. Here,
we assume that a depth map D can be obtained for Ic(t) and
that the intrinsic calibration parameters π (e.g. focal length
and principal point) are known for the camera. D is used



to back-project the features in Ic(t) to 3D world points to
give a set of 2D-3D feature correspondences between the
two images. We now denote the 3D features as Pi ∈ R3

and the corresponding 2D features as pi ∈ R2. Finding the
relative pose between two images with a set of 2D-3D feature
correspondences, or the PnP problem, is well-studied [24].
Here, we use a Gauss-Newton optimization in a RANSAC
framework [25] to minimize the reprojection error of the
inlier features, subject to the constraint that the resulting pose
must be an equilibrium point for the system. That is we solve

xf = arg min
x

∑
i∈I
‖P(x, Pi;π)− pi‖2

s.t. f(x, u) = 0 for some u,

where P : X × R3 → R2 is the standard pinhole camera
projection function and I is the set of inlier features. To
enforce the equilibrium constraint, we fix state variables to
an equilibrium solution known a priori and only allow the
solver to vary parts of the state for which the equilibrium
is invariant. For the case of the quadrotor, we fix the roll,
pitch, velocity, and angular velocity of the state to be zero
during optimization and allow the solver to vary the position
and yaw of the system to minimize the reprojection error.

This step alone is enough to perform typical PBVS, where
the computed goal pose xf can be used in a 3D control law. It
does not, however, ensure that the image features stay in the
field of view of the camera. Take, for example, a quadrotor
with a fixed, downward-facing camera. If it is looking at a set
of features on the ground plane and determines that it needs
to move parallel to the plane to reduce the image error, then
it must first tilt its frame (and, thus, the camera) in order
to generate a force in that direction. For situations where a
high degree of agility is required, the quadrotor may need to
tilt significantly, causing the features to leave the camera’s
field of view. Without features in view, the controller would
not be able to produce a new input to the system. In the
next section, we describe the second step of the proposed
algorithm which mitigates this issue.

B. Trajectory Optimization

The goal is to generate a discrete trajectory consisting
of N segments x0:N , {x0, x1, . . . , xN} and a set of
corresponding controls u0:N−1 , {u0, u1, . . . , uN−1} for
ui ∈ Rm which minimize a cost J(x0:N , u0:N−1) subject
to a chosen time-stepping rule of the dynamics expressed
as xk+1 = fk(xk, uk). The time-step of the dynamics is
given as tf/N so that each xi occurs at a time ti = itf/N ,
where tf is a fixed final time chosen by the user. Although
it is possible to optimize over tf as part of the formulation,
we manually choose it here for simplicity and so that the
trajectory will have some nominal speed snom (i.e. we
choose the final time as tf = ∆p/snom where ∆p is the
distance from the start to the goal position). The standard
approach is to express the cost as

J(x0:N , u0:N−1) = LN (xN ) +

N−1∑
k=0

Lk(xk, uk),

where LN is a terminal cost and Lk is a cost along the
trajectory. We exclude LN for the remainder of this work
since we fix the final state in the trajectory. Typically, the
control cost is defined as

L′k(xk, uk) =
1

2
(xk − xf )TQk(xk − xf ) +

1

2
uTkRkuk,

where Qk ≥ 0 and Rk > 0 are matrices which define the
control objective. However, we use an augmented cost Lk

with terms over each image feature reprojection error

e(xk)i = P(xk, Pi;π)− pi,

where P : X × R3 → R2 is the camera projection function
and π are the camera intrinsics. This gives

Lk(xk, uk) = L′k(xk, uk) +
1

2
Hk

[
1

M

M∑
i=1

ei(xk)>ei(xk)

]
as the cost along the trajectory, where Hk > 0 is a scalar
weight. Since we include the feature errors at each step along
the trajectory in J , an optimal solution which minimizes the
cost will naturally reduce the reprojection error along the
course of the trajectory, which will keep the desired set of
features in view.

To optimize the trajectory, we use a well-established
optimal control technique called direct shooting [26], which
exploits the least-squares nature of J . In direct shooting,
the discrete control trajectory is parametrized by a vector
ξ ∈ Rl≤Nm, e.g. ξ could be control points of a polynomial
spline. The parametrization ξ can be mapped back to the
controls by using a function φk (which depends on the
chosen parametrization) to give uk = φk(ξ) for each k =
0, . . . , N − 1. Each state can be expressed as a function
of ξ by using the dynamics, so we have xk = ηk(ξ).
The cost is then expressed as J(ξ) = 1

2h(ξ)Th(ξ), where
h : Rl → RNm+(N−1)(n+2M) is given by

h(ξ) =



√
R0φ0(ξ)√

Q1(η1(ξ)− xf )√
R1φ1(ξ)√

H1/Me1(η1(ξ))
...√

H1/MeM (η1(ξ))
...
...√

QN−1(ηN−1(ξ)− xf )√
RN−1φN−1(ξ)√

HN−1/Me1(ηN−1(ξ))
...√

HN−1/MeM (ηN−1(ξ))



.

Since Ri > 0, the Jacobian ∂h(ξ) is guaranteed to be
full rank and one can apply a Gauss-Newton (GN) iterative
method to optimize the trajectory. That is, we update ξ →
ξ + δξ where δξ = −(∂hT∂h)−1∂hTh. A major advantage
of the GN algorithm is its simplicity and robustness by using



standard regularization and line-search techniques [27]. Note
that we overload ± to be a valid operator on SE(3) as in
[28], [29].

In this work, we actually parametrize the flat outputs of
the trajectory instead of the controls. This allows the final
state of the trajectory to be fixed during optimization, as
explained in Section II-C.

C. Differential Flatness and Trajectory Parametrization

We next present an extension to the basic flatness approach
which can handle arbitrary linear boundary constraints. A
system with state x ∈ Rn and inputs u ∈ Rm is differ-
entially flat if one can find outputs y ∈ Rm of the form
y = h(x, u, u̇, . . . , u(a)) and functions ψ and α such that
x = ψ(y, ẏ, . . . , y(b)) and u = α(y, ẏ, . . . , y(c)), where y(a)

is taken to mean the a-th order derivative of y.
To reduce the number of optimization parameters, the

trajectory is parametrized in time as a Bézier curve over the
flat outputs y(t) of the chosen system. This parametrization is
infinitely differentiable which ensures continuity in the state
trajectory x(t). After optimizing y(t), the states and controls
necessary to produce the trajectory can be recovered using
α and ψ.

The number of control points used to define the curve is
nk, the dimension of the flat output space is m, and the
control points are denoted by ki ∈ Rm for i = 1, . . . , nk.
The Bézier basis for the i-th control point is given by

Bi =

(
nk
i

)
(1− t)nk−iti.

The flat outputs are then given by

y(t) =

nk∑
i=0

Biki.

The derivatives of the Bézier basis can be defined recursively
in terms of the basis itself.

To fix the initial and final states of the trajectory, the first
b derivatives of y(t) must be fixed at times t = 0 and t = tf .
The fixed conditions of the trajectory can be described by a
linear system of equations BK = Y defined by

B1(0) · · · Bnk
(0)

B′1(0) · · · B′nk
(0)

...
...

B
(b)
1 (0) · · · B

(b)
nk (0)

B1(tf ) · · · Bnk
(tf )

B′1(tf ) · · · B′nk
(tf )

...
...

B
(b)
1 (tf ) · · · B

(b)
nk (tf )


︸ ︷︷ ︸

B


kT1
kT2
...
kTnk


︸ ︷︷ ︸

K

=



yT (0)
y′T (0)

...
y(b)

T
(0)

yT (tf )
y′T (tf )

...
y(b)

T
(tf )


︸ ︷︷ ︸

Y

. (1)

We require nk ≥ 2(b+ 1) so that at least one solution exists
for K. In this approach, we choose nk > 2(b + 1) so that
the system is underdetermined and yields infinitely many
solutions. We find a particular solution KR with KR =
B†Y , where B† is the Moore-Penrose pseudoinverse of B

and the subscript R denotes that fact that the solution is in
the range of B. Note that if KN is in the nullspace of B,
then KN+KR also satisfies Equation 1. So, we can optimize
over KN while guaranteeing that the boundary conditions of
the resulting trajectory will always be satisfied. One can see
that for nk > 2(b + 1), the rank of B is at most 2(b + 1).
Thus, the dimension of its nullspace is at least nk−2(b+ 1)
by the rank-nullity theorem. A basis BN for the nullspace
of B can be found by numerically computing its singular
value decomposition (where B = UΣV T ) and then taking
BN = [V2b+2 · · ·Vnk

], where Vi is the ith column of V .
For a matrix of weights S ∈ Rnk−2(b+1)×m, a trajectory

parametrization which satisfies the boundary conditions can
be given as K = KN + KR = BNS + KR. The objective
then is to find S which minimizes J , so for our GN
formulation we have ξ = vec(S), where vec(·) denotes the
vectorization of the input matrix by stacking its columns
into a single column. Once the optimal null space weights
S∗ are obtained, the optimal Bézier knots are given as
K∗ = BNS∗ + KR. The i-th trajectory segment can then
be recovered as

xi = ψ

 nk∑
j=1

Bj(ti)k
∗
j ,

nk∑
j=1

B′j(ti)k
∗
j , . . . ,

nk∑
j=1

B
(b)
j (ti)k

∗
j


ui = α

 nk∑
j=1

Bj(ti)k
∗
j ,

nk∑
j=1

B′j(ti)k
∗
j , . . . ,

nk∑
j=1

B
(c)
j (ti)k

∗
j

 ,

where k∗j is the j-th row of K∗.
In summary, we have proposed a parametrization which

automatically produces dynamically feasible boundary con-
ditions matching the initial and desired states exactly and
that can be further optimized in view of the cost function.

D. Trajectory Initialization

In practice, we initialize S from an existing trajectory
xinit(t), uinit(t), e.g. a straight line to the goal or a pre-
viously computed optimal trajectory. We do this by solv-
ing a weighted least-squares problem. First, we convert
xinit(t), uinit(t) into flat output space yinit(t). Then for time
samples t0, . . . , tf we setup a linear system of equations
AK = Yinit defined by

B1(t0) · · · Bnk
(t0)

B1(t1) · · · Bnk
(t1)

...
...

B1(tf ) · · · Bnk
(tf )

B
(d)
1 (t0) · · · B

(d)
nk (t0)

B
(d)
1 (t1) · · · B

(d)
nk (t1)

...
...

B
(d)
1 (tf ) · · · B

(d)
nk (tf )


︸ ︷︷ ︸

A


kT1
kT2
...
kTnk


︸ ︷︷ ︸

K

=



yT (t0)
yT (t1)

...
yT (tf )

0
0
...
0


︸ ︷︷ ︸

Yinit

, (2)

where d is the d-th derivative of the flat outputs that we
would like to minimize in addition to fitting the given
trajectory. For the case of the quadrotor, we have d = 4 to



minimize the snap of the resulting trajectory, which produces
a smooth control response. We can write Equation 2 as

AK = A(KR + KN ) = A(BNS + KR) = Yinit.

We then solve for S using weighted least-squares as S =
[(ABN )TW (ABN )]−1(ABN )TW (Yinit−AKR), where
W is a matrix of weights that determines the tradeoff
between smoothness and fitting the given trajectory.

III. MODEL PREDICTIVE CONTROL SIMULATION

We next analyze the performance of the algorithm de-
scribed in Section II to control a quadrotor in a MPC
framework. That is, we fly the quadrotor with the controls
computed by the algorithm for a small duration of time and
then regenerate the optimal trajectory from the resulting state
of the quadrotor. This is repeated until convergence. We
compare our method to a PBVS approach which finds the
position of the goal image relative to the current position
and then computes an optimal trajectory to the goal state
which minimizes control effort, i.e. we find controls which
minimize J with Hk = 0. This is also done in a MPC
framework. Thus, the methods compared are identical except
for the introduction of feature error terms in J for the
proposed method, which allows for a fair evaluation of the
algorithm.

A. System

The system simulated is a simplified quadrotor model
with a front-facing camera. It takes four controls as input:
three torques that correspond to the body x, y, and z axes
τ = (τ1, τ2, τ3) and a thrust force T along the z-axis of
the quadrotor. It is also subject to gravity. This system has
a state x = (p,R, v, ω) ∈ SE(3) × R6 and is known to be
differentially flat [30]. The dynamics are given as

ṗ = v,

v̇ =
1

m
Re3T + g +

w

m
,

Ṙ = Rŵ,

ẇ = J−1[Jω × ω + τ ],

where g is the gravity vector, J is the inertia tensor, m is
the mass of the quadrotor, and w ∼ N(0, Iσ2) is additive
Gaussian noise corresponding to external disturbance forces.

The flat outputs are given as y = (p1, p2, p3, γ) ∈ R4,
where γ is the yaw of a roll-pitch-yaw parametrization of
the rotation matrix R. Denote yt = (y1, y2, y3). We recover
the full state and controls from the flat outputs using the
following relations: p = yt, ṗ = ẏt, T = ‖m(ÿt − g)‖
and the three columns of the rotation matrix Rx, Ry, Rz are
reconstructed as

Rz = m(ÿt − g)/T,

Ry = Rz ×

cos y4
sin y4

0

 /

∥∥∥∥∥∥Rz ×

cos y4
sin y4

0

∥∥∥∥∥∥ ,
Rx = Ry ×Rz.

Fig. 3: The simulated quadrotor flies in the urban environ-
ment above. The blue line illustrates an example optimal
trajectory. The image on the lower right corner shows the
goal image for the simulation experiments.

The angular velocity is recovered as

ωx = −Ry ·
...
yt/T,

ωy = Rx ·
...
yt/T,

ωz = ẏ4(e3 ·Rz).

as derived in [31], where e3 is the standard unit vector along
the z-axis. To recover τ , we first recover ω̇. Note that from
the dynamics

my
(4)
t = (Rω̂2 +R ˆ̇ω)Te3 + 2Rω̂Ṫ e3 +RT̈e3.

Solving this for ω̇ gives

ω̇x = (−mRy · y(4)t − wywzT + 2wxṪ )/T

ω̇y = (mRy · y(4)t − wxwzT − 2wyṪ )/T

ω̇z = ÿ4e3 ·Rz + ẏ4e
T
3 Rω̂e3.

Then, we use the dynamics τ = Jω̇ − Jω × ω and τ is
recovered.

B. Virtual Reality Setup using Real Outdoor 3D Data

We execute the proposed method and the PBVS method
given the same goal image and starting from the same initial
state for multiple trials. We vary the nominal speed by
adjusting tf across trials to evaluate how well the methods
perform during more aggressive dynamics.

The workspace environment considered is a small section
of the Johns Hopkins University campus. A to-scale 3D
model of the area was created using the Agisoft Photoscan
SfM software [32].

The initial attitude of the system was always specified to
have zero roll and pitch. When performing the first stage
of the algorithm, we constrained the optimization to only
consider final states with zero roll and pitch with v = 0 and
ω = 0. The quadrotor starts at a static position about 8m
away from the goal pose, which is not known beforehand.
The goal image and a picture illustrating the setup are shown
in Figure 3.



Fig. 4: Sequence of onboard camera images from the MPC
simulations for OVS (top) and PBVS (bottom) over the first
0.4s of the trajectory. The green circle marks a prominent
image feature in the field of view. Note that, in contrast to the
OVS case, the image feature is close to exiting the camera’s
field of view during execution of the PBVS controller.

The Bézier curve parametrization in our approach used
nk = 20 control points to provide enough degrees of freedom
for shaping the trajectory. We used N = 64 trajectory
segments in the optimization. The GN trajectory optimization
used numerically calculated gradients. We simulated MPC at
a rate of 10Hz with the underlying controls being executed
at 500Hz. Gaussian noise was added to the dynamics to
simulate unknown external forces with σ = 1N. Since
ground truth feature matches are not known, the system
must deal with possibly false matches that are not filtered
out by the steps described in Section II-A. Measurements of
rotation are assumed to be perfect since an IMU can provide
an accurate estimate on a real system. The depth map of
the features is also assumed to be perfect in this simulation,
though in practice this is not always the case.

C. Results

Image error trajectories for the OVS and PBVS methods
for various values of tf are shown in Figure 6b. Quantitative
measures of the image error trajectories are given in Table
I. Notably, for the proposed method, the maximum feature
error never exceeds 210 pixels and the average feature errors
and max pixel errors are well below those of the PBVS
approach in all cases. Furthermore, the PBVS system totally
fails due to lack of features for maneuvers with nominal
speeds greater than 2.75m/s, whereas the proposed method
succeeds. However, the reduced image error of OVS comes
with a performance trade-off. The RMS thrust of each OVS
trajectory is noticeably larger than that of the corresponding
PBVS trajectories as shown in Table II. The OVS RMS
torque is actually reduced compared to the PBVS values in
this situation. Putting a cost on image feature error reduces
the overall rotation of the system, which results in smaller
angular accelerations. The tuning parameters Hk, Rk can be
adjusted by the user to obtain the desired trade-off between
control effort and image error.

Example position space trajectories for the two methods
are shown in Figure 6a. Qualitatively, the OVS trajectory
begins by ascending so that when it pitches forward the
goal features will remain in view. The trajectory also dips
slightly at the end so that the features remain in view when
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Fig. 5: Comparison of simulated MPC PBVS and OVS
trajectories for snom = 2.07m/s (left) and snom = 2.95m/s
(right). A red ’x’ marks a system failure.

Avg. Pixel Error Max Pixel Error
tf (s) snom (m/s) OVS PBVS OVS PBVS

4.0 2.07 63.8 75.8 127.6 291.6
3.8 2.17 68.0 90.9 130.7 192.8
3.6 2.30 71.6 104.4 155.4 202.9
3.4 2.43 74.1 105.3 157.4 202.9
3.2 2.58 77.1 128.1 159.8 265.2
3.0 2.75 85.3 Failure 195.1 Failure
2.8 2.95 90.7 Failure 207.9 Failure

TABLE I: Comparison of simulated image error trajectory
statistics for each method across different nominal speeds.

it pitches backward to slow down. The PBVS trajectory
has to pitch forward significantly in the beginning in order
to move as fast as the OVS trajectory. This causes many
features to move out of or near the edge of the camera’s
field of view as depicted in Figure 4, increasing the feature
error relative to OVS as shown in an overlaid comparison
of image error trajectories given in Figure 5. The OVS
trajectory also has a significantly larger curvature compared
to that of PBVS. In the current formulation this could make it
more difficult to navigate in a cluttered environment among
obstacles. However, state constraints can be imposed on the
optimization which guarantee an obstacle-free trajectory or
additional cost terms can be added to penalize intersection
with obstacles. This is left for future work.

IV. TRAJECTORY TRACKING EXPERIMENT

A. Experimental Setup

Our prototype platform is a DJI Matrice quadrotor with the
DJI Guidance sensor suite. We use an onboard Intel NUC
computer for processing. A picture of the platform is shown
in Figure 1. Deph estimation of the environment is performed

RMS Torque (Nm) RMS Thrust (N)
tf (s) snom (m/s) OVS PBVS OVS PBVS

4.0 2.07 0.0087 0.0213 5.27 5.06
3.8 2.17 0.0105 0.0183 5.36 5.13
3.6 2.30 0.0189 0.0119 5.47 5.16
3.4 2.43 0.0128 0.0209 5.60 5.18
3.2 2.58 0.0276 0.0300 5.84 5.33
3.0 2.75 0.0323 Failure 5.9215 Failure
2.8 2.95 0.0322 Failure 6.1866 Failure

TABLE II: Comparison of control effort statistics from sim-
ulated trajectories for each method across different nominal
speeds.
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Fig. 6: The resulting simulated 3D trajectories from PBVS and OVS with snom = 2.07m/s are shown in (a). Shown in (b)
are resulting image error trajectories for PBVS and OVS for several different final times. A red ’x’ marks a system failure.

Fig. 7: Top shows the quadrotor following an OVS trajectory
using a velocity controller. Bottom shows the quadrotor
following a PBVS trajectory using the same method.

using a stereo camera pair. The depth map is passed to our
optimal visual servoing algorithm described in Section II.

As direct torque and thrust controls are not exposed to
the user, we control the quadrotor using velocity commands.
Instead of using MPC, the optimal trajectory is computed
all at once before motion begins and is then tracked using
a velocity controller with position feedback, where the local
position of the quadrotor is estimated using onboard fusion
of GPS, accelerometer, and velocity measurements (from
Guidance).

A series of four trajectories is executed for each control
strategy with varying nominal speeds. The quadrotor starts
from the same initial state each time and is given the same
goal image each time. The distance from start to goal is about
11m, and the environment is an outdoor university campus.

Note that the goal position is not known beforehand and
is computed from the goal image using image features as
decribed in Section II-A. The trajectory optimization can be
run at a rate of 10Hz on an i7 processor, so it is possible in
practice to perform OVS in a MPC framework; however, we
leave that demonstration for future work.

B. Results

Qualitative trajectories are given in Figure 7 and an
example initial image and goal image are shown in Figure
2. Notice that the shape of the trajectories matches those

Avg. Pixel Error
tf (s) snom (m/s) OVS PBVS

6.0 1.80 71.2 100.2
5.0 2.20 97.1 122.8
4.0 2.75 128.6 143.1
3.5 3.10 184.9 200.8

TABLE III: Comparison of average image error for each
method across different nominal speeds.

given in simulation. Table III gives the average image error
over each trajectory for each method. Note that the average
image error for OVS is consistently lower than that of the
PBVS method, demonstrating the robustness of the proposed
algorithm when implemented on a real system. Both OVS
and PBVS use a noisy depth map to help compute the goal
pose, leading to a noisy goal computation which results in
a non-zero final image error in both methods even though
the quadrotor ends up close to the goal state. In practice,
the quadrotor is not able to perfectly follow the computed
optimal trajectory, and the feedback controls for tracking the
trajectory are not computed to be optimal with respect to
the given cost (as they would be when using MPC). This
accounts for the increase in image error for OVS relative to
PBVS in certain parts of the image error trajectory as shown
in Figure 8.

V. CONCLUSION

This work considers a hybrid visual servoing technique
that is applicable to any differentially flat system and that is
well suited for aggressive dynamics. The method formulates
visual servoing in an optimal control context and uses a
direct shooting method to minimize an image-based cost
function. The trajectories are parametrized in flat output
space using Bézier curves to reduce the dimensionality of the
optimization problem. It has been shown experimentally that
this method shows increased performance when compared to
a traditional PBVS approach when applied to both simulated
and real quadrotor systems. It is capable of keeping the target
features in the view of the camera, even while flying highly
dynamic trajectories. The is expected to be especially advan-
tagous for tracking moving objects, which is left for future
work. Additional future research will consider performance
in the presence of image noise and will take obstacles into
account during trajectory optimization.
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Fig. 8: A comparison of the resulting image error trajectories for the OVS and PBVS approach for a snom = 1.8m/s
trajectory (left) and snom = 3.1m/s trajectory (right).
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