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Abstract— This work studies the design of reliable control
laws of robotic systems operating in uncertain environments.
We introduce a new approach to stochastic policy optimization
based on probably approximately correct (PAC) bounds on
the expected performance of control policies. An algorithm
is constructed which directly minimizes an upper confidence
bound on the expected cost of trajectories instead of employing
a standard approach based on the expected cost itself. This
algorithm thus has built-in robustness to uncertainty, since the
bound can be regarded as a certificate for guaranteed future
performance. The approach is evaluated on two challenging
robot control scenarios in simulation: a car with side slip and
a quadrotor navigating through obstacle-ridden environments.
We show that the bound accurately predicts future performance
and results in improved robustness measured by lower average
cost and lower probability of collision. The performance of
the technique is studied empirically and compared to several
existing policy search algorithms.

I. INTRODUCTION

Consider an autonomous vehicle executing a task, such
as safely reaching a desired goal location while avoiding
obstacles in an uncertain environment. The vehicle is guided
using a control policy, i.e. a function mapping from the
perceived robot and environment state to the vehicle con-
trol inputs. Complete knowledge of the vehicle model and
sources of uncertainty might not be available. This work is
motivated by the question: can such a policy be computed to
satisfy high-confidence guarantees for successful completion
of the task? Such guarantees correspond to statements such
as “with 99% confidence the robot will reach the goal within
the next 60 seconds,” or “with 99% chance the robot will
not collide with obstacles.” Deriving such guarantees before
actually executing the policy effectively certifies the vehicle
performance and safety with respect to the uncertainty in the
world, and could prove essential for deploying truly reliable
robotic systems.

This work introduces a stochastic policy search method
that is based on direct optimization of such high-confidence
bounds. At the core of the approach lies a recently derived
sample complexity bound for stochastic optimization [1]
which provides guarantees on the performance of a policy
based on previous executions of (possibly) different policies.
Using the probably approximately correct (PAC) learning
framework first introduced by [2], the bound certifies the
performance of the policy with some probability 1 − δ,
where δ ∈ (0, 1) denotes the confidence level. In this work,
we propose a new policy search algorithm which directly
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minimizes this PAC bound. The algorithm offers several
advantages over existing methods. Since it minimizes the
bound on the cost instead of the standard average cost
itself, the algorithm is expected to have some degree of
“built-in” robustness. The bound provides a certificate which
could prove crucial for deploying the algorithm on real-
world systems operating in performance and safety-critical
settings. Furthermore, this technique does not require any
parameter tuning since all parameters are computed directly
from the optimization and are automatically refined as the
vehicle gains new experience. Finally, the approach does not
make any simplifying assumptions about the vehicle model
or form of uncertainty, such as linearity or Gaussianity, and
is applicable to any general stochastic optimization problem,
beyond policy optimization in robotics.

Problem Formulation: A common way to pose a policy
search problem is through the optimization

ξ∗ = arg min
ξ

Eτ∼p(·|ξ)[J(τ)], (1)

where ξ is a vector of decision variables, τ represents the
system response through the probability density p(τ |ξ), and
J(τ) defines a positive cost function. It is assumed that
p(τ |ξ) is known or can be sampled from (e.g. from a real
system or from a high-quality physics simulator). Instead
of directly optimizing ξ, a typical approach in stochastic
optimization and policy search (e.g. see [3], [4] for an
overview) is to construct a stochastic policy, for instance
encoded as ξ ∼ π(·|ν), where the vector ν denotes the
stochastic policy parameters. Policy search then takes the
form

min
ν
Ĵ (ν) + αD(ν, ν0), (2)

where Ĵ is an empirical average of the cost (or regret)
over N past experiences, D(ν, ν0) is a regularizing distance
to a prior policy ν0, and α > 0 is a manually chosen
mixing factor (or in some cases corresponds to a Lagrangian
multiplier for a constraint D(ν, ν0) ≤ ε with manually
chosen ε). In contrast, the proposed algorithm performs an
optimization of the form

min
ν,α
Ĵα(ν) + αd(ν, ν0) + φ(α,N, δ), (3)

where Ĵα is a robust empirical estimate of J , E[J ], with
d(·, ·) denoting a distance between distributions different
than D(·, ·) defined in (2) and to be given in more detail later.
The additional concentration-of-measure term φ reflects the
discrepancy between the empirical cost Ĵα and the true mean
cost J . The expression in (3) (denoted J +) is in fact a high-
confidence bound on the expected cost, i.e. with probability



1− δ it holds that J ≤ J +. This paper implements a policy
search algorithm minimizing bounds of the form (3) and
investigates the resulting performance in comparison with
related standard methods.

Related Work: The proposed algorithm falls in the
category of direct policy search techniques closely related to
several prior methods. Reward-Weighted Regression (RWR)
is an iterative policy search algorithm that was first intro-
duced in [5] to perform system identification for operational
space control and has since been used for policy search.
Relative Entropy Policy Search (REPS) is an extension
of RWR, which uses an information-theoretic approach to
bound how much the policy is allowed to change between
iteratons [6]. Policy learning by Weighting Exploration with
Returns (PoWER) [7] uses step-based weighted maximum
likelihood estimates to perform policy updates. We compare
the proposed algorithm to both RWR and REPS in §IV.

Policy gradient algorithms use gradient descent to mini-
mize the expected cost of a policy [8]. As it is nontrivial
to compute the gradient of the expected cost with respect to
the policy, research in this area focuses on techniques for
estimating it. REINFORCE [9] estimates the policy gradient
using the likelihood ratio trick and subtracts a constant
baseline from the rewards used in the gradient computa-
tion to reduce variance in the estimate. The Least-Squares
Finite Difference (LSFD) gradient is a simple method to
approximate the policy gradient and has been used with
success to tune controllers for bipedal robots [10]. The
Policy Gradients with Parameter based Exploration (PGPE)
method samples directly in policy parameter space and uses
an optimal baseline for the trajectory cost which reduces
variance in the gradient estimate [11]. It has been used for
learning parameters for robust standing with a humanoid
robot [12]. We compare our algorithm to both LSFD and
PGPE in §IV.

Natural gradient methods use the Fisher information ma-
trix of the distribution to limit the KL divergence between
trajectory distributions before and after the policy update to
avoid overaggressive steps and premature convergence. The
strongest theoretical advantage of this technique is that its
performance is agnostic to the parameterization of the policy
and, therefore, is safe to be used with arbitrary policies. This
approach originated in supervised learning [13] and was first
introduced to reinforcement learning by Kakade [14]. It was
then extended to a natural covariant algorithm that considers
the induced path-distribution manifold of the policy [15].
Natural gradient methods have been used in the context of
humanoid robots [16], in actor-critic methods [17], and in the
autonomous learning of motor skills [18]. These techniques,
however, require that the KL divergence constraint be chosen
by the user, whereas in our approach an appropriate weight
on the information distance penalty is chosen automatically
by the optimization procedure.

Conservative Policy Iteration (CPI) computes an updated
policy as a weighted sum of a prior policy and a greedy
approximator, where the weighting factor is chosen to
maximize a lower bound on the policy improvement [19].

Schulman et. al. extend the policy update scheme to include
more general stochastic policy classes and use it for optimiz-
ing neural network controllers for swimming, hopping, and
walking tasks [20]. As noted by the authors, this approach is
similar to natural gradient techniques, except that the exact
KL divergence is used (instead of a quadratic approximate)
and the KL divergence constraint is strictly enforced. As
such, it still has the drawback that the information distance
constraint must be manually tuned by the user.

Taking a dynamic programming approach, [21] uses sam-
ples to approximate a value function and then chooses a
policy which maximizes the value while keeping the trajec-
tory close to past samples. Guided Policy Search (GPS) uses
model regression and trajectory optimization to guide the
search away from local minima and is especially effective at
learning policies with a large number of parameters [22].
This method has been used with success to learn neural
network policies in systems with unknown dynamics [23].
Similar to our approach, GPS makes use of importance
sampling to estimate the behavior of a policy; however,
it uses a heuristic regularizer to keep policies close to
past samples instead of using a more theoretically founded
approach based on performance bounds.

Evaluation: The performance of the algorithm is inves-
tigated by learning control policies for two robotic systems:
a car with side slip and a quadrotor platform, each set in
an obstacle-ridden environment. The performance is evalu-
ated in how efficiently the robotic system is able to avoid
obstacles and safely reach a goal state. To generalize the
policy to arbitrary environments, the obstacles, initial state
and the goal state are sampled from a random distribution
and uncertainty is added to the system dynamics. We statis-
tically compare the performance of policies learned with our
method, RWR, REPS, PGPE, and LSFD for these scenarios.

II. BACKGROUND

A. Iterative Stochastic Policy Optimization (ISPO)

The goal of ISPO is to generate an optimal control policy
which minimizes a cost function as shown in (1). This work
considers episodic policy search techniques, which generate
a stochastic policy on the parameter space ξ. Episodic tasks
are those that end after a given number of time steps, for
example execution of a finite-time control policy. These
methods iteratively build a surrogate stochastic model π(ξ|ν)
from which ξ can be sampled, with parameters ν ∈ V
where V is a vector space. Employing probabilistic models
is a also common technique in non-linear and stochastic
optimization [24], [25], [26], [27], [28], [29] for adaptive
exploration of the parameter space during the optimization
of complex non-convex functions. The surrogate stochastic
model induces a joint density p(τ, ξ|ν) = p(τ |ξ)π(ξ|ν)
which contains the natural stochasticity of the system p(τ |ξ)
and artificial control-exploration stochasticity π(ξ|ν) due
to the surrogate model. The goal is to then minimize the
expected cost

J (ν) , E τ,ξ∼p(·|ν) [J(τ)]



iteratively until convergence. This usually corresponds to
π(ξ|ν) shrinking to a tight peak around ξ∗ or around several
peaks if the distribution is multi-modal. The general frame-
work for solving the problem is described in Algorithm 1.

Algorithm 1: Iterative Stochastic Policy Optimization
(ISPO)

1: Initialize hyper-distribution ν0, i← 0
2: while Bound on expected cost greater than threshold

do
3: for j = 1, . . . ,M do
4: Sample trajectory (ξj , τj) ∼ p(·|νi)
5: Compute a new policy νi+1 using observed costs
{J(τ1), . . . , J(τM )}, set i = i+ 1

end
A key step in ISPO is computing the new policy based on

the observed costs of previous policies. The specific imple-
mentation of Step 5 corresponds to different algorithms such
as RWR, REPS, etc. This work proposes a new algorithm for
updating the policy based on minimizing an upper confidence
bound on its expected future cost.

B. PAC Bounds for Iterative Policy Adaptation

The proposed technique relies on a recently derived
probably approximately correct (PAC) bound [1] on the
performance of a stochastic policy given past observations
of performance of possibly different policies. While the
bound in [1] was originally introduced for the purposes of
algorithm performance analysis, in this paper we employ it
for synthesis of a new algorithm. A brief overview of the
bound is given next due to its central importance.

Given a prior distribution π(·|ν0) on control parameters
and M executions based on the prior, the expected cost of a
new policy π(·|ν) is given by

J (ν) , Eτ,ξ∼p(·|ν)[J(τ)] = Eτ,ξ∼p(·|ν0)

[
J(τ)

π(ξ|ν)

π(ξ|ν0)

]
,

(4)

which can be approximated by the empirical cost using
samples ξj ∼ π(ξ|ν0) and τj ∼ p(τ |ξj), i.e. J (ν) ≈
1
M

∑M
j=1

[
J(τj)

π(ξj |ν)
π(ξj |ν0)

]
. As noted in [30], the change-of-

measure likelihood ratio π(ξ|ν)
π(ξ|ν0) can be unbounded, so a

standard Hoeffding or Bernstein bound becomes impractical
to apply. The bound derived in [1] employs a recent robust
estimation technique [31] to deal with the unboundedness of
the policy adaptation. Instead of estimating the expectation
m = E[X] of a random variable X ∈ [0,∞) using its
empirical mean m̂ = 1

M

∑M
j=1Xj , a more robust estimate

can be obtained by truncating its higher moments, i.e. using
m̂α , 1

αM

∑M
j=1 ψ(αXj) for some α > 0 where ψ(x) =

log(1+x+ 1
2x

2). As a result, as long as x has finite variance
it is possible to obtain practical bounds even if x itself is
unbounded.

To obtain tight bounds, it is useful to use samples created
during previous iterations of ISPO, say from L previous
policies ν0, ν1, . . . , νL−1 from iterations i = 0, . . . , L−1. Let

z = (τ, ξ) and define `i(z, ν) , J(τ) π(ξ|ν)
π(ξ|νi) . The expected

cost based on multiple iterations can now be expressed as

J (ν) ≡ 1

L

L−1∑
i=0

Ez∼p(·|νi)`i(z, ν).

This, again, can be approximated by the empirical mean
J (ν) ≈ 1

ML

∑L−1
i=0

∑M
j=1[`i(zij , ν)] . The more robust esti-

mate is then given by

Ĵα(ν) ,
1

αLM

L−1∑
i=0

M∑
j=1

ψ (α`i(zij , ν)) .

The main result obtained in [1] can now be stated as
follows:

Theorem 1: With probability 1 − δ the expected cost of
executing a stochastic policy with parameters ξ ∼ π(·|ν) is
bounded according to

J (ν) ≤ inf
α>0

{
Ĵα(ν) +

α

2L

L−1∑
i=0

b2i e
D2(π(·|ν)||π(·|νi))

+
1

αLM
log

1

δ

}
,

(5)

computed after L iterations, with M samples zi1, . . . , ziM ∼
p(·|νi) obtained at iterations i = 0, . . . , L − 1, where
Dβ(p||q) denotes the Renyii divergence between p and q.
The constants bi are such that 0 ≤ J(τ) ≤ bi at each
iteration.

III. PAC ROBUST POLICY SEARCH (PROPS)
We now introduce PROPS: a new policy optimization

algorithm which follows the ISPO framework described in
Section II-A, at the core of which lies the minimization of
the bound (5) described in Section II-B. A new policy νi+1

is computed using observed costs from previous iterations
by optimizing the bound (5) jointly over the “annealing
coefficient” α and the policy ν. That is we solve

ν∗ = arg min
ν

min
α>0
J +
α (ν), (6)

and set νi+1 = ν∗ where the value of the bound J +
α (ν) is

defined as

J +
α (ν), Ĵα(ν)+

α

2L

L−1∑
i=0

b2i e
D2(π(·|ν)||π(·|νi))+

1

αLM
log

1

δ
,

employing information from L past iterations with a batch
of M samples per iteration.

A gradient-based method is used to find a (locally) optimal
solution to (6). The details of the gradients are discussed
next.

A. PAC Bound Gradients

The derivative of the bound with respect to α is given by

dJ +
α (ν)

dα
=
dĴα(ν)

dα
+

1

2L

L−1∑
i=0

b2i e
D2(π(·|ν)||π(·|νi))

− 1

α2LM
log

1

δ
,



Fig. 1. The PROPS algorithm is evaluated on two challenging control
tasks: a car with side-slip (left) and a quadrotor (right) navigating through
an obstacle-ridden environment.

where the derivative of the robust empirical cost with respect
to α is

dĴα(ν)

dα
=

1

αLM


L−1∑
i=0

M∑
j=1

[
ψ′ (α`ij) `ij −

ψ (α`ij)

α

] ,

using the shorthand notation `ij , `i(zij , ν) and ψ′ =
1+x

1+x+ 1
2x

2 denoting the derivative of ψ(x). The gradient of
the bound with respect to the policy parameters ν is

∇νJ +
α (ν) = ∇νĴα(ν)

+
α

2L

L−1∑
i=0

b2i e
D2(π(·|ν)||π(·|νi))∇νD2 (π(·|ν)||π(·|νi)) ,

where the gradient of the robust empirical cost with respect
to ν is given by

∇νĴα(ν) =
1

LM

L−1∑
i=0

M∑
j=1

ψ′ (α`i(zij , ν))∇ν`i(zij , ν)

and the gradient of `i(zij , ν) is ∇ν`i(zij , ν) =
J(τij)
π(ξij |νi)∇νπ(ξij |ν).

IV. EMPIRICAL EVALUATION

To investigate the performance of the PROPS algorithm,
we apply it to two different control policy design scenarios:
choosing appropriate non-linear controller gains for a car
driving on a slippery surface and selecting controller gains
for a quadrotor. In each scenario, the objective, quantified
by the cost described in Section IV-A, is for the robot to
move from a randomly generated initial state to a static goal
location in the presence of process noise while minimizing
control effort and avoiding obstacles placed at random loca-
tions. The stochasticity in the problem arises from the vehicle
dynamics, start states, and obstacle shapes and configura-
tions.

A. Application to Discrete-Time Stochastic Control

The classic discrete-time optimal control problem consid-
ers a discrete-time dynamical model with state xk ∈ X ,
where X is an n-dimensional manifold, and control inputs
uk ∈ Rm at time tk ∈ [0, T ] where k = 0, . . . , N indicates
the time step. The system process is defined by

xk+1 = fk(xk, uk, wk),

subject to gk(xk, uk) ≤ 0, gN (xN ) ≤ 0,

where fk corresponds to the system dynamics, gk cor-
responds to system constraints, like not intersecting with
obstacles, and wk is process noise. The system trajectory
is thus defined as τ = ({x0, . . . , xN}, {u0, . . . , uN−1}). We
seek an optimal control policy of the form uk = Φk(xk, ξ)
parametrized using a vector ξ and depending on the current
state xk. In addition, the policy should be understood as
implicitly depending on the current environment state, e.g.
containing a distribution of obstacles.

Costs: The policy is computed to minimize a given cost
J(τ). The cost can correspond to optimizing performance

J(τ) , LN (xN ) +

N−1∑
k=0

Lk(xk, uk),

where LN is a terminal cost on the final state and Lk are
given non-linear functions. The cost J can be arbitrary but is
defined here with Lk(x, u) = 1

2‖u‖
2
R for some matrix R > 0

and LN (x, u) = 1
2‖x−xf‖

2
Qf

for some matrix Qf > 0. The
cost can also be related to safety, e.g.

J(τ) = Ig(τ)>0,

where {g(τ) ≤ 0},
∧N−1
k=0 {gk(xk, uk) ≤ 0}∧{gN (xN ) ≤

0}.
Finally, the density of the trajectory is expressed as

p(τ |ξ) = p(x0)ΠN−1
k=0 p(xk+1|xk, uk)δ(uk − Φk(xk, ξ)),

where δ(·) is the Dirac delta. The goal of PROPS in this
setting, then, is to compute feedback control policies which
minimize the PAC bound (5) on the expected value of J
over this density. It should be noted that, in general, PROPS
can handle any arbitrary cost function, not just the costs
described for this setting.

B. Algorithm Benchmarking

We compare the performance of PROPS to that of existing
ISPO algorithms mentioned in Section I, namely RWR,
LSFD, PGPE, and REPS. The RWR method uses a surrogate
distribution to sample different policy parameters and uses
weighted maximum likelihood estimates (MLE) to compute
a new surrogate distribution based on the performance of
policies sampled from the previous distribution. The weights
chosen for each sample are typically a soft-max function
e−βJ(τ), where β is a parameter which must be tuned by the
user. REPS also uses weighted MLE to iteratively update a
surrogate distribution, but it chooses a specific β at each
iteration which bounds the distance between the updated
policy and the old policy in terms of KL divergence. LSFD
samples finite-difference steps to take with respect to the
parameters, and the gradient of the expected cost is then
estimated using least squares. PGPE also estimates the policy
gradient by sampling finite-difference steps to take with
respect to the parameters, but it uses a different update step
than LSFD and adaptively updates the sampling variance
instead of using a variance schedule predetermined by the
user.

To benchmark our algorithm against these existing meth-
ods, we perform ten training trials. In a single trial, each



algorithm is given the same samples with which to train.
The samples that are used for training are randomly selected
and are different between trials. After each algorithm is
run until convergence for each trial, the trained policies
are used on 1000 sampled contexts (i.e. starting states and
obstacle positions) and a statistical test on matched pairs
of costs is used to determine any performance difference
between the algorithms. Collision probabilities of the policies
learned with each algorithm are also compared. Parameters
for LSFD, RWR, PGPE, and REPS were chosen empirically
to yield the best possible result and provide a fair benchmark.
All bounds are computed using M = 300 samples per batch,
a maximum batch size of L = 20, and a confidence of
1 − δ = 0.95. In each simulation, we assume that the state
of the system is perfectly measured.

C. Stochastic Policies

Gaussian distributions with diagonal covariance matrices
are used for the surrogate distribution and context sampling.
As such, the Renyii divergence between two Gaussian dis-
tributions will take the form

Dβ (N (·|µ0,Σ0)‖N (·|µ1,Σ1)) =
β

2
‖µ1 − µ0‖2Σ−1

β

+
1

2(1− β)
log

|Σβ |
|Σ0|1−β |Σ1|β

,

where Σβ = (1 − β)Σ0 + βΣ1. Note that the divergence
(and, thus, (5)) will become undefined if Σβ is not positive-
definite, which can occur if the Σ0 has diagonal terms larger
than the matching terms in Σ1. Therefore, in the implemen-
tation of the PROPS algorithm, we impose a constraint in
the optimization such that Σβ is always positive-definite. In
the other algorithms, we impose no such constraint as to
not alter the algorithms, so it is possible for the PAC bound
on the performance to become undefined when using these
methods.

D. Car with Slip

Consider a rear-drive bicycle model with side slip operat-
ing in a planar environment among obstacles. The state of the
system is defined as x = (px, py, v, ψ, ψ̇, β) where (px, py)
is the position, v is the forward speed, ψ is the angle between
the x-axis of the body coordinate frame and the x-axis of
the world frame, β is the angle between the velocity and the
x-axis of the body frame. The control inputs are u = (δ, up),
defining the driving force up and steering angle δ. The car
has mass m and length L. For brevity, we do not include
the dynamics equations here and instead refer the reader to
[32], [33] for details. We inject noise into the forces exerted
on the wheels of the car to simulate terrain inconsistencies.

We employ the complex model with side slip for simulat-
ing the true vehicle response, but assume that the model is
not available for control design. Instead, we construct a non-
linear controller assuming a simplified car model given by
ẋ =

[
v cosψ, v sinψ, 1

mup, v tan δ/L, 0, 0
]>

that does not
reflect slip dynamics and other non-linear effects. Based on
previous work by [34], a backstepping gyroscopic obstacle

iteration #1 iteration #100
collision prob.=75.7% collision prob.=2.0%

Fig. 2. Visualization of trajectories of the car on a static obstacle set using
the PROPS policy solution at iterations 1 and 100 when starting from a
random initial state. Red trajectories indicate a trajectory that collided with
an obstacle while blue trajectories are collision free.
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Fig. 3. Convergence of the policy and cost for the car policy learned using
our algorithm. Note that the 95% confidence bound on performance (red)
is tight yet not exceeded during 100 iterations of training, which indicates
it is an accurate certification of the robustness of the learned policy.

avoidance controller of the form u = Φ(x, ξ) with param-
eters ξ = (k1, k2, ko, kd) using the simplified dynamics is
employed, where Φ implicitly also depends on the randomly
sampled environmental obstacles. The problem constraints
gk(x, u) ≤ 0 include circular obstacles O ⊂ R2 and
control bounds defined as ‖δ‖≤ δmax, ‖up‖≤ upmax. There
are four gains which tune the performance of this controller.
Two backstepping gains (k1, k2) specify the rate at which
backstepping errors go to zero. The obstacle avoidance gain
ko controls the virtual velocity introduced by an obstacle,
which is only detected within a radius that scales with
the obstacle size based on the detection gain kd. Figure 1
shows a visualization of the environment and Figure 2 shows
resulting control policies for the driving scenario over several
iterations of the optimization.

E. Aerial Vehicle

Next, consider a quadrotor system operating in 3D among
obstacles. The quadrotor is treated as a rigid body and takes
control inputs as a thrust force u along the axial direction
e ∈ R3 and torques τ ∈ R3 in the body frame. The dynamics
are a standard quadrotor model, e.g. as used in [34], with
Gaussian noise injected into the dynamics as a random
external force. A backstepping Lyapunov stable controller
has been designed for the quadrotor to avoid obstacles and
reach a goal position, with details available in [34].

In this scenario, PROPS will optimize over nine controller
gains which affect the cost of trajectories taken by the
quadrotor system and the probability of collision of the tra-
jectories. Figure 4 shows a visualization of the environment
and resulting control policy for the quadrotor scenario over



iteration #1 iteration #100
collision prob.=61.3% collision prob.=5.7%

Fig. 4. Visualization of quadrotor trajectories on a static obstacle set using
the PROPS solution at iterations 1 and 100 when starting from a random
initial state.
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Fig. 5. Convergence of the cost and collision probability for the quadrotor
policy learned using our algorithm. Note that the 95% confidence bound
on performance (shown in red) is exceeded slightly only once over 100
iterations of training, which indicates it is an accurate certification of the
robustness of the policy.

several iterations of the optimization.

F. Discussion

The convergence of the policies, trajectory costs, and
collision probabilities when using our algorithm are shown
in Figures 3 and 5 for the car and quadrotor scenarios,
respectively. One can see that as the bound is minimized, the
empirical cost also drops. Furthermore, the bound is a clear
predictor of future performance as it is never breached by the
empirical cost for the case of the car and is breached only
once in the case of the quadrotor. The tightness of the bound
guarantees a high performing policy with 95% confidence.

Figure 6 shows, for each algorithm, the convergence of
the empirical cost, collision probability, and associated PAC
bounds. PROPS directly minimizes the PAC bound on the
expected cost of a policy. As a result, the costs resulting from
the final distribution of parameters chosen by the algorithm
has a tighter PAC bound than that of the other algorithms
tested. This bound shows that future samples from the dis-
tribution have a tightly bounded cost with a high probability,
certifying the policy’s robustness. The probability of collision
for the final distribution of each scenario is shown in Table II.
One can see that PROPS consistently has a small probability
of collision across all scenarios with no parameter tuning
involved.

The performance of the PROPS algorithm is also com-
pared with the other algorithms using a matched two sample
t-test. For each of the ten training trials, we use a sample
size of 1000 with matched uncertainty to compare the mean
empirical cost of trajectories obtained from the final param-
eter distributions of each algorithm. The 95% confidence

bounds on the mean difference between the empirical cost of
trajectories obtained from the final converged distribution of
PROPS and that of the other algorithms is shown in Table I
(all p-values < 5×10−7, except for PGPE in the car scenario
where p = .045). One can see that under similar conditions,
PROPS performs better than other algorithms in terms of
trajectory costs.

Compared to other algorithms, the performance of PROPS
is not sensitive to any user-selected parameters. One need not
specify the learning rate or the maximum distance between
the iterating parameter distributions.

V. CONCLUSION

This work introduced a new algorithm for iterative
stochastic policy optimization based on minimizing an upper
confidence bound on the performance of a policy. We demon-
strated the effectiveness of the algorithm on two challenging
robot control problems and compared it to existing methods.
The approach achieved small collision probabilities and
tighter guarantees on expected future performance compared
to other techniques. Future work will apply this technique
to more general function approximators, e.g. neural net-
works, to learn robust general-purpose controllers instead
of domain-specific non-linear controllers defined by a small
set of gains. Another direction of interest is to apply the
framework to more general reinforcement learning methods
that exploit the recursive nature of sampled trajectories
(e.g. [21], [23], [35]), for instance by establishing bounds on
the quality of both policy and value function approximations.
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