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Abstract

The goal of this work is to develop methods to optimally control autonomous robotic

vehicles in natural environments. The main contribution is the derivation of state-space

structure respecting integration and optimization schemes for mechanical systems with

symmetries, controllable shape dynamics, and nonholonomic constraints based on the

theory of discrete mechanics. At the core of this approach lies the discretization of

variational principles of mechanics that results in various numerical benefits previously

unexplored in the area. The resulting framework is then used as a basis for developing

optimal control methods applicable to various systems. Developed examples include sim-

plified models of a car, a helicopter, a snakeboard, and a boat. The resulting algorithms

are numerically stable, preserve the mechanical geometric structure, and are numerically

competitive to existing methods. In addition, two important extensions with view to-

wards practical applications are proposed. First, complex constraints are handled more

robustly using homotopy continuation – the process of relaxing nontrivial motion con-

straints arising either from complicated dynamics or from obstacles in the environment

and then smoothly transforming the solution of such easier problem into the original one

by deforming the constraints back to their original shape. Second, the optimality and

x



computational efficiency of solution trajectories is addressed by combining discrete me-

chanics and optimal control (DMOC ) with sampling-based roadmaps–a motion planning

method focused on global exploration of the state-space. This allows the composition

of simple locally optimal DMOC solution trajectories into near globally optimal motions

that can handle complex, cluttered environments.

xi



Chapter 1

Introduction

1.1 Problem setup

A vehicle is an actuated mechanical systems that moves, senses and performs a given

task in the environment. The vehicle is equipped with sensors such as motor encoders,

cameras, lasers or GPS. It uses these sensors to build a model of its surrounding, e.g.

a map of the terrain, and to estimate its own state, e.g. its joint angles and its global

position with respect to the environment. The following figure gives simplistic view of

how a robotic vehicle operates. The robot moves around and senses the environment,

then uses the sensor information to make decisions about the task to be executed, and

then it controls itself in order to in order to complete the task. Consequently, its state

Decision Making

Sensing Control

Figure 1.1: Vehicle operation
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Figure 1.2: Segway RMP robot equipped with laser sensor, GPS, and omnidirectional
camera (upper left). A typical scenario of following a fast moving person (upper right)
and a view of the camera image of another scenario as the robot moves around the
environment avoiding trees and tracking the correct person of interest

2



changes, it senses again, and so on. See Fig. 1.2 for an example of a vehicle performing

person tracking and following outdoors.

This thesis focuses on the control part of the vehicle operation. The main control

framework developed in this work relies on two major assumptions:

• the vehicle has perfect knowledge of the environment and its state,

• the vehicle dynamical model is known in advance.

Equivalently, it is assumed that accurate sensing is available and, and sensing uncertainty

is not fully considered at the control stage. Nevertheless, sensing is extremely important

and it is critical to account for the uncertainty in sensing and acting. Therefore, prelim-

inary results in considering the effects of uncertainty at the control stage are included as

an extension to our general framework.

The goal of this work is to develop numerical methods to optimally control vehicles to

achieve a given task. The task could be basic such moving to a goal state with minimum

fuel or more complex such as finding a target by maximizing the area covered by the

vehicle sensors in minimum time.

In general, finding a solution to this types of problems is a difficult task. The main

challenges lie in the fact that the vehicles can have complicated dynamics, are subject

to constraints and underactuation, and must avoid colliding with complex obstacles.

In contrast to local (or reactive) decision making and control, searching for an optimal

solution requires the computation of a complete global trajectory from the vehicle current

state to a desired state. This turns into the problem of searching among an infinite number

of possible paths. In practice, the trajectory of the vehicle is approximated using some

3



finite-dimensional representation or discretization. A major issue in this work is how to

construct such a discretization in order to properly account for the underlying dynamics

and to provide a numerically stable and efficient numerical framework.

1.2 General approach and summary of results

Our general approach is based on a combination of standard optimal control techniques,

and classical search and dynamic programming methods. These methods stand on top

of a robust numerical representation of the underlying vehicle dynamics derived using

the theory of discrete mechanics. The resulting formulation is general and applies to a

variety of models widely used in robotics.

In essence, this thesis develops a general control framework through a principled

approach that is applicable to various type of vehicles and environments. While general

optimal control frameworks exist, the proposed framework possesses benefits previously

unexplored in robotics. These can be summarizes as follows:

• structure-respecting geometric discretization of mechanical systems with symme-

tries, internal actuated shape, and nonholonomic constraints

• discrete optimal control formulation that respects the geometric structure

• more robust constraint handling through homotopy-continuation techniques

• combining the derived local optimal control techniques with global search methods

in order to guarantee near-globally optimal solutions

4



• extending the basic motion planning framework to handle more specific tasks such as

time-varying goal state, maximizing sensor coverage, deployment under goal motion

uncertainty, planning for multiple vehicles

The theoretical framework is implemented in software and applied to several problems.

Some of the developed simple models and simulated scenarios include (see Fig. 1.3)

• a helicopter flying to a goal state in a digital terrain with minimum control effort

(e.g., related to fuel consumption)

• a car moving optimally while avoiding other cars and static obstacles

• a boat performing optimal station keeping subject to currents

• a snakeboard generating optimal maneuvers

• computing a statically stable reference trajectory for the LittleDog robot

• computing optimal trajectories for cars and helicopters in cluttered urban environ-

ment

• computing trajectories to moving targets with known dynamics

• computing a trajectory that maximizes the information gained about the uncertain

position of a moving target in an environment with obstacles

• computing trajectory that maximizes the total area covered by a vehicle with a

limited circular sensing radius among obstacles

5
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Figure 1.3: Examples of developed vehicle models.

Real Vehicles We must acknowledge the important fact that this thesis does not report

any real-world experimental results. While this is unfortunate it does not mean that the

proposed methods are not applicable to realistic applications. In fact, this whole work was

motivated by the previous work of the author with real vehicles and the realization that a

more unified, more optimal, and more principled numerical framework would be beneficial

for the proper development of autonomous control techniques. Hence, the algorithms

developed here are aimed at and could soon be applied to useful robotics applications.

Yet, one of the biggest issues that must be addressed before the proposed methods can

be successfully used in practice the handling of uncertainty. Sensing uncertainty and

model/actuation uncertainty are inherent in real vehicles and at the end of the thesis we

would touch upon these issues and mention preliminary results and ongoing work that

would enable the application of the proposed discrete geometric control framework on

real systems.

1.3 Outline

Ch. 2 deals with a simpler, restricted class of vehicles, i.e. systems with symmetries

evolving on Lie groups, and develops their discretization and optimal control. Ch. 3

6



extends the discrete mechanical approach to systems with symmetries, shape variables,

and constraints described in terms of a principle bundle and connection that geometri-

cally encodes conservation laws and/or nonholonomic constraints. Ch. 4 proposes ways

to extend DMOC for finding near globally optimal trajectories efficiently by combining

optimal control solutions with classical probabilistic motion planning techniques. Ch. 5

deals exclusively with methods that increase the robustness of control methods in dealing

with complex constraints such as obstacles in the environment or mechanical constraints.

We propose novel (in the context of motion control) homotopy-continuation methods that

increase the efficiency and radius of convergence of optimization-based methods through

appropriate constraint deformation and embedding techniques.
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Chapter 2

A Discrete Geometric Framework for Optimal Control on

Lie groups

Summary

We consider the optimal control of mechanical systems on Lie groups that are left-

invariant with respect to group actions. Our approach is based on the discretization of

a Lagrange-d’Alembert-Pontryagin variational principle from which we derive structure-

preserving discrete equations of motion.

We first apply a direct approach which uses the equations of motion as constraints in

the optimization of a cost function (such as minimum control effort or minimum time)

and results in a nonlinear programming problem. Then we propose a different formulation

through the derivation of necessary conditions for optimality that results in a root-finding

problem. In this indirect approach we use geometric methods to reduce the problem and

transform it into numerically convenient form. Both approaches yield equivalent solutions

but have different structure which motivates our numerical comparison.
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We address the robustness and efficiency of the optimization algorithms by proposing

strategies for trajectory initialization and trajectory refinement.

The optimal control framework is demonstrated with several examples: rigid body

minimum control effort reorientation, boat navigation subject to external disturbances,

optimal trajectory computation of a simple helicopter in a digital terrain map.

2.1 Introduction

We consider the optimal control of a mechanical system on a finite dimensional Lie group

with Lagrangian that is left invariant under group actions. The goal is to move the system

from its current state to a desired state in an optimal way, e.g. by minimizing distance,

control effort, or time.

The standard way to solve such problems is to first derive the continuous equations

of motion of the system. Among the trajectories satisfying these equations one can find

extremal (cost function minimizing) ones by solving a variational problem. Either direct

methods using nonlinear programming or indirect methods based on the derivation of

necessary conditions for optimality and root-finding are used to find a solution. Both

approaches require the discretization of the equations of motion into equality constraints

suitable for numerical optimization. In contrast, we solve the optimal control problem

by discretizing a variational principle, called Lagrange-d’Alembert-Pontryagin Principle.

The principle yields a set of discrete trajectories that approximately satisfy the dynamics

and that respect the state space structure. Among these trajectories we find the ex-

tremal ones without any further discretization. This allows important properties of the
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mechanical system to be preserved and results in algorithms with provable accuracy and

stability.

We develop a general optimization framework for systems on Lie groups and apply it

to the computation of optimal rigid body motions on SO(3), SE(2) and SE(3), as well

as to general real matrix subgroups. In addition, we introduce techniques for trajectory

initialization and refinement that increase the algorithms performance.

The Lagrangian Mechanical System

Let the configuration space be a Lie group G with algebra g and Lagrangian L : TG→ R

that is left invariant under the action of G. Using the invariance we can left-trivialize such

systems by introducing the body-fixed velocity ξ ∈ g defined by translation to the origin

ξ = TLg−1 ġ and the reduced Lagrangian ` : TG/G→ R such that `(ξ) = L(g−1g, g−1ġ) =

L(e, ξ).

The Optimization problem

The system is required to move from a fixed initial state (g(0), ξ(0)) to a fixed final state

(g(T ), ξ(T )) during a time interval [0, T ] under the influence of a body-fixed control force1

f(t) ∈ g∗ (i.e. an internal force produced by actuators in the body reference frame) while

minimizing:

J(g, ξ, f) =
∫ T

0
C(g(t), ξ(t), f(t))dt, (2.1)

1In the Lagrangian setting a force is an element of the Lie algebra dual g∗, i.e. a one-form 〈f, ·〉 that

pairs with velocity vectors to produce the total work
R T
0
〈f, ξ〉dt done by the force along a path between

g(0) and g(T ).
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where C : G×g×g∗ → R is a given cost function. For example, in case of minimum control

effort C(g(t), ξ(t), f(t)) = 1
2‖f(t)‖2 or for minimum time problems C(g(t), ξ(t), f(t)) = 1.

2.1.1 Related work

Trajectory design and motion control of robotic systems have been studied from many

different perspectives. Of particular interest are geometric approaches [31, 46, 51] that

use symmetry and reduction techniques [43, 6]. Reduction by symmetry can be used to

greatly simplify the optimal control problem and provide a framework to compute motions

for general nonholonomic systems [47]. A related approach, applied to an underwater eel-

like robot, involves finding approximate solutions using truncated basis of cyclic input

functions [12]. There are a number of successful methods for motion planning with

obstacles—see [35] for references.

While standard optimization methods are based on shooting, multiple shooting, or

collocation techniques, recent work on Discrete Mechanics and Optimal Control (DMOC,

see [28, 30, 36]) proposes a different discretization strategy. At the core of DMOC is the

use of variational integrators [41] that are derived from the discretization of variational

principles such as Hamilton’s principle for conservative systems or Lagrange-D’Alembert

for dissipative systems. Unlike other existing variational approaches [47, 15] where the

continuous equations of motion are enforced as constraints and subsequently discretized,

DMOC first discretizes the variational principles underlying the mechanical system dy-

namics; the resulting discrete equations are then used as constraints along with a discrete

cost function to form the control problem. Because the discrete equations of motion

result from a discrete variational principle, momenta preservation and symplecticity are

11



automatically enforced, avoiding numerical issues (like numerical dissipation) that generic

algorithms often possess.

2.1.2 Contributions

In this chapter, we extend the generalized variational principle of [32, 5, 53] to the DMOC

framework to derive optimization algorithms based on structure-preserving, discrete-

mechanical integrators. In particular, we employ a discrete Lagrange-d’Alembert-Pontryagin

principle to characterize mechanical systems with symmetries and external forces. We use

this new discrete geometric optimal control framework for holonomic systems (possibly

underactuated and/or with symmetries) and illustrate the implemented algorithms with

a simulated example of a simplified helicopter flying through a canyon.

The numerical benefits of our discrete geometric approach are numerous. First, it

automatically preserves motion invariants and geometric structures of the continuous

system, exhibits good energy behavior, and respects the work-energy balance due to its

variational nature. Such properties are often crucial for numerical accuracy and stability,

in particular for holonomic systems such as underwater gliders traveling at low energies

along ocean currents. Second, it benefits from an exact reconstruction of curves in the

Lie group configuration space from curves in its Lie algebra. Thus, numerical drift, for

example associated with enforcing rotation frame orthogonality constraints, is avoided.

Third, the simplicity of the variational principle allows flexibility of implementation.

Finally, this framework is flexible enough to strike a balance between a desired order of

accuracy and runtime efficiency.
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In addition to these well-documented advantages of discrete variational methods, there

is growing evidence that DMOC methods are especially well suited for optimization prob-

lems. In particular, their discrete variational nature seems to offer very good trajectory

approximation even at low temporal resolutions. This stability vis-a-vis resolution is

particularly suitable for design and exploration purposes as well as for hierarchical opti-

mizations, as it leads to faster convergence towards optimal solutions.

It is also important to note that non-holonomic constraints can also be imposed in our

framework. While in this chapter we focus solely on holonomic systems with symmetries

Ch. 3 contains initial results in the structure-preserving discretization of nonholonomic

systems with symmetries and internal variables.

The derivation of an indirect method for solving the optimal control for systems on

Lie groups is another contribution described in this chapter. An indirect formulation

commonly requires the use of additional state variables, i.e. Lagrange multipliers, that

enforce the constraints. The main disadvantage of using an indirect method lies in the

increased dimension of the problem, in the lack of systematic way to initialize these

extra variables, and in increased problem sensitivity. These negative features reduce

the radius of convergence and stability of the optimization problem. Our discrete geo-

metric indirect formulation, on the other hand, possesses certain structure that permits

the removal of the multipliers and the option to redefine the problem in terms of its

original optimization variables alone. This results in higher order optimality conditions

with analogues form the continuous case [3] but with simpler and numerically convenient

structure upon discretization. Standard nonlinear root-finding is then sufficient to find a
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solution. Numerical evidence suggests that such a reduced problem does not suffer from

the aforementioned issues and exhibits faster and more stable convergence.

2.2 Overview of Mechanical Integrators

A mechanical integrator integrates a dynamical system forward in time. The construc-

tion of such numerical algorithms usually involves some form of discretization or Taylor

expansion that results in either implicit or explicit equations to compute the next state

in time. In an optimal control setting, these equations are then used as constraints.

Instead, the integrators employed in this work are based on the discretization of vari-

ational principles, i.e. variational integrators. In essence, they ensure the optimality (in

the sense of Hamilton’s principle, for instance) of the discrete path of the mechanical sys-

tem in space-time. In addition, certain systems have group structure and symmetries that

can be factored out directly in order to obtain more accurate and efficient integrators, e.g.

Lie group integrators. After giving a brief overview of such integrators below we present

a variational principle to derive more general integrators that account for symmetries.

2.2.1 Variational Integrators

Variational integrators [41] are derived from a variational principle (e.g., Hamilton’s prin-

ciple) using a discrete Lagrangian. Unlike standard integration methods, variational inte-

grators can preserve momenta, energy, and symplectic structure (i.e., a symplectic 2-form

in phase space) for conservative systems; in the presence of forces and/or dissipation, they

compute the change in these quantities with remarkable accuracy. Such features are ob-

viously desirable for accurate dynamics simulation. The underlying theory has discrete
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analogs of Noether’s theorem and the Legendre transform, and a Lagrange-d’Alembert

principle to handle non-conservative forces and constraints. Discrete mechanics, there-

fore, stands as a self-contained theory similar to Hamiltonian or Lagrangian mechanics

[5] and has already been applied to several domains: nonsmooth variational collision inte-

gration [20], elasticity simulation in computer graphics [32], satellite formation trajectory

design [29], optimal control of rigid bodies [36], of articulated bodies in fluid [30, 50], and

optimal control of wheeled robots [33].

In the variational integration setting, the state space TQ is replaced by a product

of two manifolds Q × Q [41]. Thus, a velocity vector (q, q̇) ∈ TQ is represented by a

pair of points (q0, q1) ∈ Q × Q. A path q : [0, T ] → Q is replaced by a discrete path

qd : {kh}Nk=0 → Q (qd = {q0, ..., qN}, qk = q(kh)), Nh = T . One formulates a discrete

version of Hamilton’s principle (i.e. δ
∫ T

0 L(q, q̇)dt = 0) by approximating the integral of

the Lagrangian L : TQ→ R between qk and qk+1 by a discrete Lagrangian Ld : Q×Q→ R

Ld(qk, qk+1) ≈
∫ (k+1)h

kh
L(q(t), q̇(t))dt.

The discrete principle then requires that

δ
N−1∑
k=0

Ld(qk, qk+1) = 0,

where variations are taken with respect to each position qk along the path, and the

resulting equations of motion become

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0.
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Example

For example, consider a Lagrangian of the form L(q, q̇) = 1
2 q̇
TMq̇ − V (q) and define the

discrete Lagrangian Ld(qk, qk−1) = hL
(
qk+ 1

2
, (qk+1 − qk)/h

)
, using the notation qk+ 1

2
:=

(qk + qk+1)/2. The resulting equations are

M
qk+1 − 2qk + qk−1

h2
= −1

2
(OV (qk− 1

2
) + OV (qk+ 1

2
)),

which is a discrete analog of Newton’s law Mq̈ = −OV (q). For controlled (i.e., non con-

servative) systems, forces can be added using a discrete version of Lagrange-d’Alembert

principle and discrete virtual work in a similar manner.

2.2.2 Lie Group Integrators

Lie group integrators preserve symmetry and group structure for systems with motion

invariants. Consider a system on configuration manifold Q = G ×M where G is a Lie

group (with Lie algebra g) whose action leaves the system invariant, i.e., it preserves

the induced momentum map. For example, G = SE(3) can represent the group of rigid

body motions of a free-floating articulated body while M is a space of internal variables

describing the joints of the body. The idea is to transform the system equations from

the original state space TQ into equations on the reduced space g×TM (elements of TG

are translated to the origin and expressed in the algebra g) which is a linear space where

standard integration methods can be used. The inverse of this transformation is then

used to map curves in the algebra variables back to the group. Two standards maps have

been commonly used to achieve this transformation for any Lie group G:
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• Exponential map exp : g → G, defined by exp(ξ) = γ(1), with γ : R → G is the

integral curve through the identity of the left invariant vector field associated with

ξ ∈ g (hence, with γ̇(0) = ξ);

• Canonical coordinates of the second kind ccsk : g → G, ccsk(ξ) = exp(ξ1e1) ·

exp(ξ2e2) · ... · exp(ξnen), where {ei} is the Lie algebra basis.

A third choice, valid only for certain quadratic matrix groups [7] (which include the rigid

motion groups SO(3), SE(2), and SE(3)), is the Cayley map cay : g → G, cay(ξ) =

(e − ξ/2)−1(e + ξ/2). Although this last map provides only an approximation to the

integral curve defined by exp, we include it as one of our choices since it is very easy

to compute and thus results in a more efficient implementation. Other approaches are

also possible, e.g., using retraction and other commutator-free methods; we will however

limit our exposition to the three aforementioned maps in the formulation of the discrete

reduced principle presented in the next section.

2.3 Lagrange-d’Alembert-Pontryagin Principle

The Lagrange-d’Alembert-Pontryagin (LDAP) principle is a generalization of the Lagrange-

d’Alembert variational principle and yields equivalent solution trajectories. The LDAP

principle, however, provides additional freedom in the choice of variations which turns

out to be crucial for obtaining symmetry and group structure preserving integrators and

solving optimal control problems based on such integrators.
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Continuous Reduced LDAP Principle

Define the reduced path (g, ξ, µ) : [0, T ]→ G×g×g∗, and the control force f : [0, T ]→ g∗.

The principle requires that

δ

∫ T

0

[
`(ξ) + 〈µ, g−1ġ − ξ〉] dt+

∫ T

0

[
TL∗g−1f · δg

]
dt = 0, (2.2)

for variations δg(t), δξ(t), δµ(t) that vanish at the endpoints. The curve ξ(t) describes

the velocity determined from the dynamics of the system. In view of the formulation, ξ

does not necessary correspond to the left-trivialized rate of change of the configuration g.

The additional variables µ, though, indirectly enforce this dependence and correspond to

both Lagrange multipliers and the momenta of the system. Thus, the principle generalizes

Lagrange-d’Alembert principle and is linked to Pontryagin maximum principle of optimal

control.

After taking variations the continuous equations of motion become

µ̇− ad∗ξ µ = f,

µ = `′(ξ),

ġ = gξ

(2.3)

These equations2 are called the Euler-Poincaré equations and µ denotes the system mo-

mentum.
2ad∗ξ µ is defined by 〈ad∗ξ µ, η〉 = 〈µ, adξ η〉, where adξ η = [ξ, η], η ∈ g.
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Discrete Reduced LDAP Principle

The discrete reduced Hamilton-Pontryagin principle for conservative systems was intro-

duced in [5]. We make an elementary extension to these results for systems with internal

forces. The discrete reduced path3 is denoted by (g, ξ, µ)0:N : {tk}Nk=0 → G×g×g∗. Define

the discrete control force f0:N : {tk}Nk=0 → g∗ which approximates a continuous control

force. The discrete reduced LDAP principle is formulated as:

δ
N−1∑
k=0

h
[
`(ξk) +

〈
µk, τ

−1(g−1
k gk+1)/h− ξk

〉]
+
N−1∑
k=0

[
TL∗

g−1
k

f−k · δgk + TL∗
g−1
k+1

f+
k · δgk+1

]
= 0,

(2.4)

where the map τ : g → G relates Lie algebra elements to discrete changes4 in the group

configuration. τ is selected as a local diffeomorphism such that τ(ξ) · τ(−ξ) = e [5]. The

left and right discrete forces f−k ∈ g∗ and f+
k ∈ g∗ (as shown below)

are such that the work done by f along each discrete segment is approximated using the

following quadrature (see [41] for more details):

TL∗
g−1
k

f−k · δgk + TL∗
g−1
k+1

f+
k · δgk+1 ≈

∫ (k+1)h

kh
TL∗g(t)−1f(t) · δg(t)dt

3The term discrete path x0:N is also used to denote the set of all discrete configurations, i.e. x0:N =
{x0, ..., xN}

4Essentially, the choice of τ answers the question: How do we define the difference between two
configurations gk and gk+1 on the curved space, and based on that how do we compute the velocity along
the segment between them.
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The total work is therefore approximated by

∫ T

0
TL∗g(t)−1f(t) · δg(t)dt ≈

N∑
k=0

TL∗
g−1
k

f̃k · δgk, (2.5)

where f̃0:N : {tk}Nk=0 → g∗ is the resulting force at each discrete point and is defined by

f̃0 := f−0 ,

f̃k := f+
k−1 + f−k , k = 1, .., N − 1,

f̃N := f+
N .

(2.6)

After taking variations in (2.4) we obtain the following discrete equations of motion (see

Sec. 4.2 in [5]).

(dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 = f̃k, k = 1, ..., N − 1, (2.7)

µk = `′(ξk), k = 0, ..., N − 1, (2.8)

g−1
k gk+1 = τ(hξk), k = 0, ..., N − 1, (2.9)

where dτ ξ : g→ g is the right-trivialized tangent of τ(ξ) defined by

D τ(ξ) · δ = TRτ(ξ)(dτ ξ ·δ), (2.10)

and dτ−1
ξ : g → g is its inverse5. Equations (2.7)-(2.9) can be considered as a discrete

approximation to equations (2.3).
5D is the standard derivative in the direction δ
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In addition, using arguments similar to Sec.3.2.3 in [41] the discrete forced Noether

theorem yields the following boundary conditions

(dτ−1
hξ0

)∗µ0 − `′(ξ(0)) = f̃0, (2.11)

`′(ξ(T ))− (dτ−1
−hξN−1

)∗µN−1 = f̃N , (2.12)

where ξ(0) and ξ(T ) are the initial and final velocities. Note the distinction between ξ0

and ξ(0) and ξN+1 and ξ(T ). These quantities are not necessary the same since ξ(t) refers

to the point on the continuous curve at time t while ξk can be thought of as an average

velocity along the k-th trajectory segment resulting from the discretization.

The exact form of (2.7), (2.11), and (2.12) depends on the choice of τ . It is important

to point out that this choice will influence the computational efficiency of the optimization

framework when the equalities above are enforced as constraints. There are several choices

commonly used for integration on Lie groups: the exponential map, canonical coordinates

of the second kind (CCSK), and the Cayley map. In this work we employ the first and

the third types of methods (CCSK methods are based on the exponential map and can

be considered closely related).
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Exponential map

The exponential map exp : g → G is defined by exp(ξ) = γ(1), where γ : R → G is a

one-parameter subgroup of G such that γ̇(0) = ξ. The right-trivialized derivative of the

map exp and its inverse are defined as

dexpx y =
∞∑
j=0

1
(j + 1)!

adjx y, dexp−1
x y =

∞∑
j=0

Bj
j!

adjx y, (2.13)

where Bj are the Bernoulli numbers. Typically, these expressions are truncated in order

to achieve a desired order of accuracy. The first few Bernoulli numbers are B0 = 1,

B1 = −1/2, B2 = 1/6, B3 = 0 (see [7, 24] for more details). Setting τ = exp, (2.7)

becomes

(dexp−1
hξk

)∗µk − (dexp−1
−hξk−1

)∗µk−1 = f̃k.

Cayley map

The Cayley map cay : g → R is defined by cay(ξ) = (I−ξ/2)−1(I +ξ/2). Based on this

simple form, the derivative maps become 6

dcayx y =
(

I−x
2

)−1
y
(

I +
x

2

)−1
, dcay−1

x y =
(

I−x
2

)
y
(

I +
x

2

)
. (2.14)

Using τ = cay (see also [5]) (2.7) simplifies to

µk − µk−1 − h

2

(
ad∗ξk µk + ad∗ξk−1

µk−1

)
− h2

4
(
ξ∗kµkξ

∗
k − ξ∗k−1µk−1ξ

∗
k−1

)
= f̃k. (2.15)

6see Sec.IV.8.3 in [24] for derivation
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The Cayley map provides only an approximation to the geodesic flow on the group (or

to the exponential map).

2.4 Direct Optimal Control Formulation

The most straightforward way to find a numerical solution to the optimal control problem

is to formulate a nonlinear program that minimizes the cost function over all discrete

configurations, velocities, and forces, while satisfying the boundary conditions and the

discrete equations of motion enforced as equality constraints.
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2.4.1 Problem Formulation

The optimal control problem for a system with reduced Lagrangian ` : g → R and fixed

initial and final states (g(0), ξ(0)) and (g(T ), ξ(T )) respectively can be directly formulated

as

Compute: ξ0:N−1, f0:N , h

minimizing Jd(g0:N , ξ0:N−1, f0:N , h) =
N−1∑
k=0

Cd(gk, ξk, fk, h)

subject to:

(dτ−1
hξ0

)∗µ0 − `′(ξ(0)) = f̃0,

(dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 = f̃k, k = 1, ..., N − 1,

`′(ξ(T ))− (dτ−1
−hξN−1

)∗µN−1 = f̃N ,

µk = `′(ξk),

g0 = g(0),

gk+1 = gkτ(hξk), k = 0, ..., N − 1,

τ−1(g−1
N g(T )) = 0,

ξk ∈ [ξl, ξu], fk ∈ [fl, fu], h ∈ [hl, hu]

(2.16)

where Cd is a discrete approximation of C defined in (2.1). The formulation allows

time to vary and the last constraint places bounds on the time variation as well as bounds

on all other variables.
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Average velocity

The variables denoted ξN and µN have no effect on the trajectory g0:N so we can treat

these last points as irrelevant to the optimization. This is coherent with thinking of

the velocities ξk as the average body-fixed velocity along the k-th path segment between

configurations gk and gk+1.

2.4.2 Algorithm Construction

Midpoint rule

We choose the midpoint rule as a natural way to construct f± and Cd. According to the

midpoint rule any discrete quantities defined over a trajectory segment are approximated

at the segment midpoint. Therefore, the left and right discrete forces at each segment

are equal:

f−k = f+
k =

h

2
1
2

(fk + fk+1),

The discrete cost function then becomes

Cd(gk, ξk, fk, h) = hC

(
gk+ 1

2
, ξk,

1
2

(fk + fk+1)
)

where gk+ 1
2

= gkτ(h2 ξk), i.e. the midpoint along the flow defined by τ .

Remark

There are other choices besides the Midpoint rule that can lead to integrators of arbi-

trary high order of accuracy, such as composition methods or symplectic Runga-Kutta
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methods [41]. The midpoint rule is an appropriate choice for optimization problem since

it provides a balance between accuracy and efficiency.

Implementation

The optimal control formulation (2.16) can be solved using a standard constrained opti-

mization technique such as sequential quadratic programming (SQP). One should choose a

sparse SQP implementation to achieve scalability in the number of time steps. Sec. 2.10.1

provides empirical results and analysis of our implementation for an example rigid body

control problem.

2.5 Indirect Approach

In contrast to the direct approach, the optimal control problem can be solved by further

analysis of solution trajectories through the derivation of conditions for optimality. An

optimal solution is then the root of a system of nonlinear equations corresponding to

these optimality conditions.

In this section we derive necessary conditions for optimality for the constrained non-

linear optimization problem (2.16) under some restrictions. The first restriction is to

assume that the reduced Lagrangian is of the form

`(ξ) =
1
2
〈I ξ, ξ〉, (2.17)
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where I : g → g∗ is a symmetric positive definite linear map7. The second restriction is

to specialize our derivation to systems with fixed time-step h, and with minimum control

effort cost function defined by

Jd(g0:N , ξ0:N−1, f0:N ) =
N∑
k=0

1
2
‖f̃k‖2, (2.18)

where f̃k was defined in (2.6). Such cost function is physically meaningful since it cor-

responds to the sum of the squared norm of the approximating force evaluated at each

discrete point (see (2.5)).

Since the evolution of the Lie algebra variables (2.7) is decoupled from the evolution

on the group (2.9) we can remove the discrete group path g0:N from the optimization

state vector and express the boundary conditions g0 = g(0) and gN = g(T ) in terms of

ξ0:N−1.

Define the variables

DEP0 := (dτ−1
hξ0

)∗`′(ξ0)− `′(ξ(0)), % initial momentum

DEPk := (dτ−1
hξk

)∗`′(ξk)− (dτ−1
−hξk−1

)∗`′(ξk−1), % momentum equation

DEPN := `′(ξ(T ))− (dτ−1
−hξN−1

)∗`′(ξN−1), % final momentum

REC := τ -1
(
τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T ))−1

)
, % reconstruction

7〈, 〉 is the standard pairing between covectors and vectors of coordinates in the chosen Lie algebra
basis
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for k = 1, ..., N − 1. The optimization problem is to compute ξ0:N−1 and f0:N that

minimize (2.18) subject to

DEPk = f̃k, k = 0, ..., N,

REC = 0.

(2.19)

Clearly, the quantity DEP0 is used to define the initial velocity boundary condition,

DEP–the discrete Euler-Poincaré equations or momentum balance equations along the

path, DEPN–the final velocity boundary condition, and REC–to define the reconstruction

equation.

Proposition 1. The gradients of the constraints (2.19) are linearly independent.

Proof. The proof follows directly from the fact that the DEPk constraints have full rank

dependence on different variables for each k (i.e. each equation is a function of different

pairs ξk, ξk+1, and fk, fk+1) and that the maps τ(ξ), dτ ξ, and dτ−1
ξ are non-singular for

any ξ.

This proposition guarantees linear independence constraint qualification (LICQ) con-

dition. Therefore, we can assume that necessary conditions for optimality do not include

abnormal solutions (i.e. solutions that satisfy the constraints but do not account for the

cost function).

Furthermore, based on the above definitions, the cost function (2.18) can be re-

expressed as

Jd(g0:N , ξ0:N−1, f0:N ) =
1
2

N∑
k=0

‖DEPk ‖2,
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and since now Jd is independent of the configurations and forces, the optimization problem

can be stated as minimizing Jd(ξ0:N−1) := Jd(g0:N , ξ0:N−1, f0:N ) subject to REC = 0.

Thus, the optimization can be performed with respect to the velocity variables alone.

Define the Lagrangian multipliers λ ∈ g∗ and the Hamiltonian function

H(ξ0:N−1, λ) = Jd(ξ0:N−1) + 〈λ,REC(ξ0:N−1)〉 (2.20)

By Prop. (1) any optimal solution is normal and, therefore, must satisfy δH = 0. Hence,

we have the following necessary conditions for an optimal solution

Dξk H · δξk = 0, k = 0, ..., N − 1,

DλH · δλ = 0,

(2.21)

for arbitrary variations δξk ∈ g, δλ ∈ g∗. These conditions are necessary but not sufficient

because, in general, the constraints are not affine and global optimality is not guaranteed.

Further analysis of (2.21) requires the following lemmas.

Lemma 1. The following relation holds for any ξ, ν, δ ∈ g

Dξ

(
Adτ(ξ) ν

) · δ = ad(dτξ(δ)) Adτ(ξ) ν

Proof. Using the identity dτ−ξ(δ) = Adτ(−ξ) dτ ξ(δ) (see [5]) we get

Dξ

(
Adτ(ξ) ν

) · δ = (dτ ξ(δ))τ(ξ) · ν · τ(−ξ)− τ(ξ) · ν · (dτ−ξ(δ))τ(−ξ)

= (dτ ξ(δ)) Adτ(ξ) ν − τ(ξ) · ν · τ(−ξ)(dτ ξ(δ)) = [dτ ξ(δ),Adτ(ξ) ν]
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Lemma 2. The differential of the reconstruction operator RECτ along a path ξ0:N−1 in

the direction of variations δξk is

Dξk RECτ (ξ0:N−1) · δξk = dτ τ−1(∆g)(hAdτ(hξ0)···τ(hξk−1) dτhξk(δξk)), k = 1, ..., N − 2,

where ∆g = τ(hξ0) · · · τ(hξN−1) · (g−1
i gf )−1

Proof. Differentiating

Dξk RECτ (ξ0:N−1) · δξk

= D τ−1(∆g) · τ(hξ0) · · · τ(hξk−1) · dτhξk(hδξk) · τ(hξk) · · · τ(hξN−1) · (g−1
i gf )−1

= dτ−1
τ−1(∆g)

(hAdτ(hξ0)···τ(hξk−1) dτhξk(δξk))

The following proposition is the main result in this section.

Proposition 2. The trajectory of a discrete mechanical system on a Lie group G with

algebra g and Lagrangian `(ξk) = 1
2〈I ξk, ξk〉, with fixed initial and final configurations and

velocities g(0) ∈ G, ξ(0) ∈ g and g(T ) ∈ G, ξ(T ) ∈ g, minimizes the total control effort∑N
k=0

1
2‖f̃k‖2 only if the discrete body-fixed velocity curve ξ0:N−1 satisfies the following
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Necessary Conditions for Optimality

(dτ−1
hξk

)∗ηk − (dτ−1
−hξk−1

)∗ηk−1 = 0, k = 1, ..., N − 1 (2.22)

τ−1(τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T ))−1) = 0, (2.23)

where ηk ∈ g∗is defined by

〈ηk, δ〉 =
〈

I(dτ−1
hξk

(νk))− h(dτhξk)∗ ad∗“
Adτ(hξk)

ef ]
k+1

”(dτ−1
hξk

)∗ I(ξk), δ
〉

+
〈

I(ξk), h
(

D dτ−1
hξk
·δ
)

(νk)
〉
,

(2.24)

νk = Adτ(hξk) f̃
]
k+1 − f̃ ]

k , (2.25)

f̃0 = (dτ−1
hξ0

)∗ I(ξ0)− I(ξ(0)), (2.26)

f̃k = (dτ−1
hξk

)∗ I(ξk)− (dτ−1
−hξk−1

)∗ I(ξk−1), k = 1, ..., N − 1 (2.27)

f̃N = I(ξ(T ))− (dτ−1
−hξN−1

)∗ I(ξN−1), (2.28)

Note: The proposition defines Nn equations (2.22)-(2.23) in the Nn unknowns ξ0, ..., ξN−1.

A solution can be found using standard nonlinear root finding.

Proof. The condition Dξk H · δ = 0 for an arbitrary δ ∈ g is equivalent to

Dξk

〈
I(ξk),dτ−1

hξk
(Adτ(hξk) f̃

]
k+1 − f̃ ]

k )
〉
·δ =

〈
λ,dτ−1

τ−1(∆g)
(hAdτ(hξ0)···τ(hξk−1) dτhξk(δ))

〉
,
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for k = 0, ..., N − 1 using the relation dτ−1
−ξ(δ) = dτ−1

ξ (Adτ(ξ) δ) [5] and Lemma (2).

Setting νk = Adτ(hξk) f̃
]
k+1 − f̃ ]

k and applying the derivative on the left hand side in the

above we get

〈
I(dτ−1

hξk
(ν̃k)), δ

〉
+
〈

I(ξk), h
(

D dτ−1
hξk
·δ
)

(νk) + hdτ−1
hξk

(ad(dτhξk (δ)) Adτ(hξk) f̃
]
k+1)

〉
=
〈
h(dτhξk)∗Ad∗τ(hξ0)···τ(hξk−1)(dτ

−1
τ−1(∆g)

)∗λ, δ
〉
,

(2.29)

where have used the symmetry of I in the first pairing and Lemma (1) in the second.

Now define the k-th reconstruction force ηk = h(dτhξk)∗Ad∗τ(hξ0)···τ(hξk−1)(dτ
−1
τ−1(∆g)

)∗λ.

Substituting it in (2.29) we find the quantity 〈ηk, δ〉 as defined by (2.24). The components

of ηk can be directly computed using (ηk)α = 〈ηk, Eα〉, where {Eα}nα=1 is the chosen Lie

algebra basis. By the definition of ηk it is true that ηk = Ad∗τ(hξk−1) ηk−1 and this relation

is added as an optimality condition (2.22).

The condition DλH = 0 simply enforces the constraint (2.23).

Geometric Interpretation We can think of the whole discrete trajectory as a single

mechanical system consisting of a chain of N+1 bodies, with the last body rigidly fixed at

configuration g(T ) and a force λ applied at configuration g(0) to keep the first body fixed

there. If the first body detaches from g(0) the instantaneous force that is pulling it back

to g(0) is (dτ−1
τ−1(∆g)

)∗λ. This force has different representation on each of the remaining

N bodies along the chain, i.e. through the Ad∗τ(hξ0)···τ(hξk) transformation. The dynamics

of the interaction between the k-th and (k+1)-th bodies is encoded by the velocities ξk−1,

ξk, and ξk+1 and the reconstruction force ηk (which is simply the transformed λ) and we
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are able to express this force in terms of these three velocities through (2.24). When we do

this for every segment along the chain we arrive at the relations (2.22) since it is the same

force, just transformed along the chain. Thus, the original force λ is implicitly accounted

for through the interactions of the bodies and need not be part of the optimization.

Implementing the necessary conditions Implementation of equations (2.22)-(2.23)

in Prop. (2) requires defining the maps τ , dτ−1, and D dτ−1. Two choices for τ discussed

in Sec. 2.3 were the exponential map exp and the Cayley map cay and formulas for dτ−1

were provided in (2.13) and (2.14) respectively. D dτ−1 can be computed as

(D dcay−1
ξ ·δ′)(δ) = −1

2
adδ′ δ − 1

4
(ξδδ′ + δ′δξ)

(D d exp−1
ξ ·δ′)(δ) = −1

2
adδ′ δ +

1
12

(adδ′ adξ δ + adξ adδ′ δ) + . . . ,

where the expression for D d exp−1 can either be truncated to achieve a desired order of

accuracy, or for groups such as rigid body motions can be redefined in closed form. In the

next section we provide more details about the algorithm implementation for the matrix

groups SO(3), SE(2), SE(3) whose algebra can be identified with R3 for the first two

groups and R3 ×R3 for the third. In these cases the operators Ad, ad, dτ−1 and D dτ−1

become matrices suitable for efficient implementation.
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Comparison to the Continuous Case Necessary conditions for the continuous ana-

log of the optimal control problem, i.e. minimizing
∫

1
2‖f‖2dt subject to the Euler-

Poincaré equations (2.3) and boundary conditions have been derived (e.g. [3]). For ex-

ample, in the case of semi-simple compact groups the necessary conditions become

D2

∂t2
I
Dξ

∂t
+R

(
I
Dξ

∂t
, ξ

)
ξ +

1
2

[
Dξ

∂t
, I
Dξ

∂t

]
+

1
2

I−1

[
I2 Dξ

∂t
,
Dξ

∂t

]
= 0, (2.30)

where D
∂t is the covariant time derivative and R is the curvature. The discrete version of

these equations shows up as (2.22) in Prop. 2. Numerical discretization of (2.30), even in

this simple case, would result into equations that would be no less complex than the ones

in Prop. 2. Furthermore, our formulation remains unchanged for non-compact groups

and, in fact, is readily applicable to general matrix subgroups as discussed below.

2.6 Computation on Matrix Groups

2.6.1 SO(3)

Define the map ·̂ : R3 → so(3) by

ω̂ =


0 −w3 w3

w3 0 −w1

−w2 w1 0

 (2.31)

A Lie algebra basis for SO(3) can be defined as {ê1, ê2, ê3}, êi ∈ so(3) where {e1, e2, e3} is

the standard basis for R3. Elements ξ ∈ so(3) can be identified with the basis coordinates
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ω ∈ R3, i.e. ξ = ωαêα, or ξ = ω̂. The commutator is identified with the cross product

through [ω̂, ρ̂] = ω × ρ, ρ ∈ R3. Using this identification we have

cay(ω̂) = I3 +
4

4 + ‖ω‖2
(
ω̂ +

ω̂2

2

)
. (2.32)

The linear maps dτ ξ, dτ−1
ξ , and (D dτ−1

ξ ·δ) can be expressed as 3 × 3 matrices. In the

Cayley map case these are

dcayω =
2

4 + ‖ω‖2 (2I3 + ω̂) , dcay−1
ω = I3 − ω̂

2
+
ωωT

4
(2.33)

D dcay−1
ω ·δ = − δ̂

2
+
δωT

4
+
ωδT

4
(2.34)

2.6.2 SE(2)

The coordinates of SE(2) are (θ, x, y) with matrix representation g ∈ SE(2) given by:

g =


cos θ − sin θ x

sin θ cos θ y

0 0 1

 . (2.35)

Using the isomorphic map ·̂ : R3 → se(2) given by:

v̂ =


0 −v1 v2

v1 0 v3

0 0 0

 for v =


v1

v2

v3

 ∈ R3,

{ê1, ê2, ê3} can be used as a basis for se(2), where {e1, e2, e3} is the standard basis of R3.
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The two maps τ : se(2)→ SE(2) are given by

exp(v̂)=




cos v1 − sin v1 v2 sin v1−v3(1−cos v1)

v1

sin v1 cos v1 v2(1−cos v1)+v3 sin v1

v1

0 0 1

 if v1 6= 0


1 0 v2

0 1 v3

0 0 1

 if v1 = 0

cay(v̂)=


1

4+(v1)2

 (v1)2− 4 −4v1 −2v1v3 + 4v2

4v1 (v1)2− 4 2v1v2 + 4v3


0 0 1


The maps [dτ−1

ξ ] can be expressed as the 3× 3 matrices:

[dexp−1bv ] ≈ I3 − 1
2

[adv] +
1
12

[adv]2, (2.36)

[dcay−1bv ] = I3 − 1
2

[adv] +
1
4

[
v1 · v 03×2

]
, (2.37)

where

[adv] =


0 0 0

v3 0 −v1

−v2 v1 0

 .
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2.6.3 SE(3)

We make the identification SE(3) ≈ SO(3)× R3 using elements R ∈ SO(3) and x ∈ R3

through

g =

 R x

0 1

 , g−1 =

 RT −RTx

0 1


Elements of the Lie algebra ξ ∈ se(3) are identified with body-fixed angular and linear

velocities denoted ω ∈ R3 and v ∈ R3, respectively, through

ξ =

 ω̂ v

0 0

 ,

where the map ·̂ : R3 → so(3) is defined in (2.31).

Using this identification we have

τ(ξ) =

 τ(hω̂k) hdτhωk vk

0 1

 ,

where, choosing τ = cay, τ : so(3) → SO(3) is given by (2.32) and dτω : R3 → R3

by (2.33).

The matrix representation of the right-trivialized tangent inverses dτ−1
(ω,v) : R3×R3 →

R3 × R3 are computed as

[dcay−1
(ω,v)] =

 I3 − 1
2 ω̂ + 1

4ωω
T 03

−1
2

(
I3 − 1

2 ω̂
)
v̂ I3 − 1

2 ω̂

 , (2.38)
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Note We should point out that the Cayley map yields a more computationally efficient

integrator. In addition, it is suitable for iterative integration and optimization problems

since the map and its derivatives do not have any singularities that might otherwise affect

gradient based methods.

2.6.4 General matrix subgroups

The Lie algebra of a matrix Lie group coincides with the one-parameter subgroup gen-

erators of the group. Assume that we are given a k-dimensional lie subalgebra g ⊂

gl(n,R). This subalgebra is isomorphic to the space of generators of a unique connected

k-dimensional matrix subgroup G ⊂ GL(n,R). Therefore, a subalgebra g determines the

subgroup G in a one-to-one fashion

g ⊂ gl(n,R)⇐⇒ G ⊂ GL(n,R).

The two ingredients necessary to convert the necessary conditions in Prop. (2) into alge-

braic equalities are: a choice of basis for g; and an appropriate choice of inner product

(metric) that satisfies the invariance assumptions.

Assume that the Lie algebra basis elements are {Eα}kα=1, Eα ∈ g, i.e. that every

element ξ ∈ g can be written as ξ = ξαEα. The following inner product for any ξ, η ∈ g

would be useful

〈〈ξ, η〉〉 = tr(KξT η),
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where K ∈ GL(n,R) is such that 〈〈Eα, Eβ〉〉 = δβα and tr is the matrix trace. Corre-

spondingly, a pairing between any µ ∈ g∗ and ξ ∈ g can be defined by

〈µ, ξ〉 = tr(Kµξ),

since the dual basis for g∗ is {[Eα]T }kα=1 in matrix form.

Example If g = so(3) with basis then setting K = diag(1/2, 1/2, 1/2) the pairing yields

the standard inner product if we identify so(3) with R3, i.e. 〈µ, ξ〉 = µαξ
α.

Example If g = se(3) with basis then setting K = diag(1/2, 1/2, 1/2, 1) the pairing

yields the standard inner product if we identify se(3) with R3 × R3.

Kinetic Energy-Type Metric After having defined a metric pairing, a kinetic energy

tensor I metric (such as the one used in 2.17) can be be expressed as

〈I(ξ), η〉 = tr(KIdξT η),

where Id ∈ GL(n,R) is a symmetric matrix.

Example Consider a rigid body on SO(3) with principal moments of inertia I1, I2, I3

and Lagrangian `(ξ) = 1
2Iiξ

2
i where the ξi are the velocity components in the Lie algebra

basis ?. The matrix Id must have the form

Id = diag(−I1 + I2 + I3,−I2 + I1 + I3,−I3 + I1 + I2)
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Example Consider a rigid body on SE(3) with principal moments of inertia I1, I2, I3,

mass m, and Lagrangian `(ω, v) = 1
2

(
Iiω

2
i +mv2

i

)
, where (ω, v) ∈ se(3) are the body-

fixed angular and linear velocities and their components (vi, wi) are with respect to the

Lie algebra basis ?. The Lagrangian in this case can be equivalently expressed as `(ξ) =

1
2 tr(KIdξ

T ξ), where ξ ∈ se(3) and

Id = diag(−I1 + I2 + I3,−I2 + I1 + I3,−I3 + I1 + I2,m).

2.7 Underactuated Systems with Control Parameters

The direct and indirect methods for mechanical systems on Lie groups can be generalized

to underactuated systems. Assume that the control forces are applied along body-fixed

directions defined by the control covectors {f1(φ), ..., f c(φ)}, c ≤ n, f i : M → g∗ which

depend on control parameters φ : [0, T ]→M, where M ⊂ Rm is the control parameter set.

One can think of these extra parameters as the shape variables of the control basis, i.e.

parameters that do not affect the inertial properties of the systems but which determine

the control directions. Assume that the system is controlled using control input u :

[0, T ]→ U, where U ⊂ Rc, is the set of controls applied with respect to the basis {f i(φ)}.

In addition, assume that the system is subject to position-dependent external force fext :

G→ g∗. This general definition accounts for various types of forces. For instance, forces

arising from a potential V : G→ R take the form fext(g) = TL∗gDV (g).
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The discrete equations of motion of such system are

(dτ−1
hξk

)∗ I ξk − (dτ−1
−hξk−1

)∗ I ξk−1 − h
c∑
i=0

uikf
i(φk)− hfext(gk) = 0 (2.39)

Define the Lagrangian multipliers λ ∈ g∗, ζk ∈ g and the Hamiltonian function

H(ξ0:N−1, u0:N , φ0:N , ζ0:N , λ)

=
N∑
k=0

(
h

2
uTk uk + 〈DEPk−h

c∑
i=0

uikf
i(φk)− hfext(gk), ζk〉

)
+ 〈λ,REC(ξ0:N−1)〉,

where DEP is defined in Sec. 2.5.

The necessary conditions for an optimal trajectory are defined in the following propo-

sition (which extends Prop. 2).

Proposition 3. The trajectory of a discrete mechanical system on a Lie group G with

algebra g and Lagrangian `(ξk) = 1
2〈I ξk, ξk〉, with fixed initial and final configurations and

velocities g(0) ∈ G, ξ(0) ∈ g and g(T ) ∈ G, ξ(T ) ∈ g, minimizes the total control effort∑N
k=0

h
2u

T
k uk only if the discrete body-fixed velocity curve ξ0:N−1 and control parameters

φ0:N satisfies the following
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Necessary Conditions for Optimality

(dτ−1
hξk

)∗ηk − (dτ−1
−hξk−1

)∗ηk−1 = 0, k = 1, ..., N − 1 (2.40)

τ−1(τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T ))−1) = 0, (2.41)

DEPk−h
c∑
i=0

〈f i(φk), ζk〉f i(φk)− hfext(gk) = 0, , k = 0, ..., N (2.42)

c∑
i=0

〈f i(φk), ζk〉Df i(φk)T ζk = 0, k = 0, ..., N (2.43)

where ηk ∈ g∗is defined by

〈ηk, δ〉 =
〈

I(dτ−1
hξk

(νk))− h(dτhξk)∗ ad∗(Adτ(hξk) ζk+1)(dτ−1
hξk

)∗ I(ξk), δ
〉

+
〈

I(ξk), h
(

D dτ−1
hξk
·δ
)

(νk)
〉

+

〈
h (dτhξk)∗

N∑
i=k+1

Ad∗τ(hξk)···τ(hξi−1)(Dgfext(gi) · g)T ζi, δ

〉
,

(2.44)

νk = Adτ(hξk) ζk+1 − ζk. (2.45)

Note: The proposition defines (Nn+ (N + 1)n+ (N + 1)m) equations (2.40)-(2.43) in the

(Nn+ (N + 1)n+ (N + 1)m) unknowns (ξ0:N , ζ0:N , φ0:N ). A solution can be found using

standard nonlinear root finding.

2.8 The sub-Riemannian case

Next we consider the case in which the body-fixed velocity ξ is restricted to lie in a

m-dimensional distribution h ⊂ g, where m < n. This problem is known as the the sub-

Riemannian optimal control problem. The continuous version has been studied by many

authors with the general case on Riemannian manifolds and compact Lie groups first

developed in [48], and extended in [23],[37] to the more general elastic sub-Riemannian
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interpolation problem and more recently used in an interesting imaging application [25]. In

this section we derive necessary conditions for optimality for discrete solution trajectories

of a discrete dynamic nonholonomic principle.

Assume that a basis for g can be constructed using the constant elements Xi ∈ g,

i = 1, ..., n in such a way that the first m elements span h, i.e.

h = span{X1, ..., Xm},

Assume that h is not a proper subalgebra of g but the iterated Lie brackets of X1, ..., Xm

span g so that the system is controllable. In order to make the derivations more clear, let

X1, ..., Xn be orthonormal. The more general case can be treated with slight modification

by the addition of normalizing terms and would not greatly affect the final results. Let

the orthogonal complement to h be defined by h⊥, i.e. g = h ⊕ h⊥. The nonholonomic

constraint ξ ∈ h can be written as

〈〈ξ,Xc〉〉 = 0, c = m+ 1, ..., n, (2.46)

since h⊥ = span{Xm+1, ..., Xn}. If we denote the velocity coordinates with respect to the

basis {Xi} by ξi, i.e. such that ξ = ξiXi, then the constraint is simply

ξc = 0.
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2.8.1 Discrete Equations of Motion

The discrete LDAP principle (2.4) can be easily extended to the sub-Riemannian case.

The discrete path is formally denoted (g, ξ, µ, ρ)0:N : {tk}Nk=0 → G × h × g∗ × h⊥
∗. The

only difference with the holonomic case is the addition of the constraint (2.46) as well as

restriction the allowable variations g−1
k δgk. The dynamic sub-Riemannian LDAP principle

is formulated as:

δ
N−1∑
k=0

h

[
1
2
〈I ξk, ξk〉+

〈
µk, τ

−1(g−1
k gk+1)/h− ξk

〉]
+

N∑
k=0

〈TL∗
g−1
k

f̃k, δgk〉 = 0,

where g−1
k δgk ∈ h, ξk ∈ h

(2.47)

where the discrete forces f̃k ∈ h∗ are also aligned with the constraints. After taking

variations in (2.47) we obtain the following discrete equations of motion.

〈(dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 − f̃k, Xi〉, i = 1, ...,m, k = 1, ..., N − 1, (2.48)

〈〈ξk, Xi〉〉 = 0, i = m+ 1, ..., n, k = 0, ..., N − 1, (2.49)

〈µk, Xi〉 =


〈I ξk, Xi〉, i = 1, ...,m

0, i = m+ 1, ..., n
k = 0, ..., N − 1, (2.50)

g−1
k gk+1 = τ(hξk), k = 0, ..., N − 1, (2.51)
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Following eq. (2.50)-(2.49) the momentum and velocity can be written written in

coordinates according to

µk :=
(
I1 ξ

1
k, ..., Im ξmk , 0, ..., 0

)
,

ξk :=
(
ξ1
k, ..., ξ

m
k , 0, ..., 0

)
.

(2.52)

2.8.2 Necessary Conditions for Optimality

Our goal is again to compute a discrete trajectory (g0:N , ξ0:N−1) the minimizes the total

control effort. The indirect method can be extended to the sub-Riemannian case by

introducing additional multipliers ρk ∈ h⊥∗ that enforce the constraint ξk ∈ h without

restricting variations on ξk. Define the Lagrangian multipliers λ ∈ g∗, ζk ∈ h and the

Hamiltonian function

H(ξ0:N−1, f0:N , ζ0:N , ρ0:N−1, λ)

=
N∑
k=0

(
1
2
‖f̃k‖2 + 〈DEPk−f̃k, ζk〉

)
+
N−1∑
k=0

〈ρk, ξk〉+ 〈λ,REC(ξ0:N−1)〉,

where the quantities DEP and REC were defined in Sec. 2.5. The necessary conditions for

an optimal trajectory are defined in the following proposition (which extends Prop. 2).

Proposition 4. The trajectory of a discrete mechanical system on a Lie group G with

algebra g and Lagrangian `(ξk) = 1
2〈I ξk, ξk〉, with fixed initial and final configurations and

velocities g(0) ∈ G, ξ(0) ∈ h and g(T ) ∈ G, ξ(T ) ∈ h, minimizes the total control effort∑N
k=0

1
2‖f̃k‖2 only if the discrete body-fixed velocity curve ξ0:N−1 satisfies the following

45



Necessary Conditions for Optimality

(dτ−1
hξk

)∗ηk − (dτ−1
−hξk−1

)∗ηk−1 = 0, k = 1, ..., N − 1 (2.53)

τ−1(τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T ))−1) = 0, (2.54)

where ηk ∈ g∗is defined by

〈ηk, δ〉 =
〈

I(dτ−1
hξk

(νk))− h(dτhξk)∗ ad∗“
Adτ(hξk)

ef ]
k+1

”(dτ−1
hξk

)∗ I(ξk) + ρk, δ

〉
+
〈

I(ξk), h
(

D dτ−1
hξk
·δ
)

(νk)
〉
,

(2.55)

νk = Adτ(hξk) f̃
]
k+1 − f̃ ]

k , (2.56)

f̃0 = (dτ−1
hξ0

)∗ I(ξ0)− I(ξ(0)), (2.57)

f̃k = (dτ−1
hξk

)∗ I(ξk)− (dτ−1
−hξk−1

)∗ I(ξk−1), k = 1, ..., N − 1 (2.58)

f̃N = I(ξ(T ))− (dτ−1
−hξN−1

)∗ I(ξN−1), (2.59)

Note: The proposition defines Nn equations (2.53)-(2.54) in the Nn unknown coordinates

[(ξ1
0 , ..., ξ

m
0 , (ρ0)1, ..., (ρ0)c), ..., (ξ1

N−1, ..., ξ
m
N−1, (ρN−1)1, ..., (ρN−1)c)), c = n −m. A solu-

tion can be found using standard nonlinear root finding.

2.9 Efficiency Techniques

There are several issues that are critical to the success of the optimization. One is the

question of trajectory initialization and region of convergence. Another is the issue of the

trajectory resolution and the balance between accuracy and efficiency for optimization

problems.
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2.9.1 Trajectory Initialization

We propose two ways to initialize a trajectory. None of these methods start with a near-

optimal trajectory but the initial guesses satisfy the system dynamics and the imposed

boundary conditions. The first method is based on turning the controls on only in the

beginning and end of the trajectory, and using constant velocity (geodesic) motion ev-

erywhere else. The second is based on a quadratic interpolation in the Lie algebra to

produce trajectories whose reconstruction to the group satisfies the boundary conditions

exactly.

2.9.1.1 Geodesic Interpolation

In the geodesic interpolation we simply find a velocity that is constant everywhere but

the first and last segment and such that the boundary conditions are satisfied.

ξk =
τ−1

(
τ(−hξi)(g−1

i gf )τ(−hξf )
)

h(N − 2)
, k = 1, ..., N − 2

After computing the velocities ξi the dynamics equations can be satisfied by adjusting the

forces which can be done by straightforward computation. Ideally, the map τ should be

the exponential map since it “reconstructs” the trajectory exactly. In general, there is no

closed form for the logarithm (since in this case τ−1 = log) of a matrix and approximations

can be used (in the case of SO(3) and SE(3) there is a closed form and this is not an
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issue). Alternatively, one can use the Cayley map but the initial trajectory would satisfy

the boundary conditions only approximately. The map cay−1 : G→ g is defined by

cay−1(g) = −2(I +g)−1(I−g) (2.60)

The Cayley map is not a good choice if the initial and final configurations gi and gf are

far apart. Instead, one should use a higher order approximation to the exponential map

and its inverse.

2.9.1.2 Lie Algebra Quadratic Interpolation

Continuous Interpolation

For the moment assume that we are working in a continuous setting and need to find a

trajectory that interpolates the boundary conditions at times t = 0 and t = T respectively.

Define the curve r : [0, T ]→ g by

r(t) = ξ0t+ c1t
2/2 + c2t

3/3

for some constant c1, c2 ∈ g. Let the continuous trajectory have the form

g(t) = g0τ (r(t)) ,

Then, since ξ(t) = g(t)−1ġ(t) ∈ g and using the right tangent trivialization the velocity

is

ξ(t) = dτ−r(t) ṙ(t)
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Therefore, the constants c1 and c2 determine a family of curves. Among these curves it

now becomes interpolating curves.

Proposition 5. A curve (g, ξ) : [0, T ]→ G×g of the form (g(t), ξ(t)) = (g0τ(r(t)), dτ−r(t)ṙ(t)),

where r(t) = ξ0t+ c1t
2/2 + c2t

3/3, t ∈ [0, T ], with c1, c2 ∈ g defined by

c1 =
6
T 2

(
τ−1(g−1

0 gT )− dτ−1
−r(T ) ξT

)
− 4
T
ξ0

c2 =
3
T 3

(
τ−1(g−1

0 gT )− ξ0T
)− 3

2T
c1

satisfies the given boundary conditions (g(0), ξ(0)) = (g0, ξ0) and (g(T ), ξ(T )) = (gT , ξT ).

Proof. The boundary configuration condition can be expressed as g−1
0 gT = τ(r(T )) which

is equivalent to

τ−1(g−1
0 gT ) = ξ0T + c1T

2/2 + c2T
3/3.

The final velocity boundary condition is equivalent to

ξ0 + c1T + c2T
2 = dτ−1

−r(T ) ξT

The above two conditions are combined to give the closed form solution for c1 and c2.

Corollary 1. If ξ0 = ξT = 0 then

c1 =
6
T 2
τ−1(g−1

0 gT ), c2 = − 1
T
c1
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and

g(t) = g(0)τ(c1t
2/2 + c2t

3/3) = g0τ

((
3t2

T 2
− 2t3

T 3

)
τ−1(g−1

0 gT )
)

Discrete Interpolation

The discrete interpolation follows the continuous one very closely with the exception that

the initial and final segments with fixed velocities (ξi and ξf ) have to be treated specially.

The trajectory is then constructed using

ξk = τ−1
(
g(kh)−1g((k + 1)h)

)
, k = 1, ..., N − 2,

and the dynamics equations satisfied by adjusting the forces correspondingly.

2.9.2 Trajectory Refinement

The efficiency of the optimization depends on choosing an initial trajectory guess that is

close to the optimal one. An obvious way to choose such an initial guess is by computing

a lower resolution trajectory that approximates the desired solution. Such trajectory is

easier to compute and at the same time can be used to construct a good initial guess for

successively refined trajectories. This process is repeated until the desired resolution is

reached.

For example, Fig. 2.1 shows the refinement of an initially coarse trajectory on SO(3).

Each point along the trajectory is represented by its rotation axis frame. While we do

not have detailed results on convergence and runtime efficiency comparisons, such type

of incremental refinement experimentally results into tremendous computational savings.
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Figure 2.1: Successive refinement of an optimal trajectory on SO(3)

2.10 Applications

2.10.1 Rigid Body Reorientation on SO(3)

Figure 2.2: Objective function convergence ratio vs. trajectory resolution. The graph
shows average results from 3000 Monte Carlo simulations.

We have implemented both the direct optimization method (defined by (2.16)) and

the indirect one (defined by Prop. (2)). The direct method is implemented using SQP

while the indirect using Newton’s root finding method.

Here we present results only from the direct formulation applied to a simple problem of

reorienting a fully-actuated asymmetric rigid body on SO(3) by applying torques around

its principal axes of inertia. Each solution is obtained using the Lie algebra quadratic
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Figure 2.3: Runtime vs. trajectory resolution (normal scale on left and log scale on the
right). The graph shows average results from 3000 Monte Carlo simulations.

interpolation initialization and successive refinement techniques described in Sec.2.9.1.2

and 2.9.2.

Fig. 2.2 shows how well a trajectory approximates (converges to) an optimal one as

the time step (or resolution) is increased. The results are averaged from 3000 Monte

Carlo runs with random boundary conditions. Overall, 3% of the trials fail to converge.

Fig. 2.3 shows the average runtime in milliseconds as a function of the resolution (the

tests were performed on an average desktop PC with 1.8 Pentium IV CPU.)

From both graphs one can conclude that a nearly optimal trajectory can be achieved

on average with at least 100 time steps. It takes on average 1 second of computation time

for a trajectory with such resolution.

2.10.2 Simple Helicopter in a Digital Terrain

Consider the following model of a helicopter depicted in Fig. 2.4. The vehicle is modeled

as a single underactuated rigid body on SE(3) with mass m and principal moments of

rotational inertia J1, J2, J3. The inertia tensors are J = diag(J1, J2, J3) and M = mI3.
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collective

yaw

Figure 2.4: Simplified helicopter model used our tests.

The system configuration and velocity are described in standard notation defined in

Sec. 2.6.3. The system is subject to external force due to gravity

fext((R, x), (ω, v)) = (0, 0, 0, RT (0, 0,−9.81m)).

The vehicle is controlled through a collective uc (lift produced by the main rotor) and a

yaw uψ (force produced by the rear rotor), while the direction of the lift is controlled by

tilting the main blades forward or backward through a pitch φp and a sideways roll φr.

The shape variables are φ = (φp, φr), the controls are u = (uc, uψ). The resulting control

covectors are

f1(φ) = (dt sinφr, dt sinφp cosφr, 0, sinφp, cosφp cosφr),

f2(φ) = (0, 0, dr, 0,−1, 0).

The discrete equations of motion are then obtained by substituting these specific expres-

sions into the general integrator derived in Sec. 2.7 using the SE(3) Lie group operators

defined in Sec. 2.6.3. An optimal trajectory is obtained by solving the general neces-

sary conditions for optimality defined in Prop. (3) using nonlinear root finding. Fig. 2.5
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shows a control-effort minimizing trajectory for the simulated helicopter between two

zero-velocity states in an artificial canyon. The resulting state and control curves are

shown in Fig. 2.8.

Controllability In order to establish the controllability of the system one can use the

good symmetric products [6] of the two vectors I−1 f1 and I−1 f2 where I is the SE(3)

inertial tensor

[I] =

 J 0

0 M

 ,
and show that the system is locally configuration controllable at zero velocity. Since the

actuator inputs have bounds, one has to design an algorithm which allows time to vary in

order to accommodate these limits. In our implementation, the time-step h (and hence

the final time T ) is part of the optimization state vector and is allowed to vary within

some prescribed bounds.

Figure 2.5: Example of an optimized trajectory in a complex environment: a helicopter
path through an outdoor canyon.
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Figure 2.6: Top and side views of the helicopter trajectory shown in Fig. 2.5
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Figure 2.7: The orientation and position as functions of time for the helicopter trajectory
shown in Fig. 2.5.

Obstacles The vehicle is required to stay away from obstacles by enforcing inequality

constraints Hi(R, p) = dist(A(R, p),Oi) − ds > 0, where A ⊂ R3 is the region occupied

by the robot, Oi ⊂ R3 represent the static obstacles, and ds is some safety distance.

The function dist computes the minimum distance between two rigid objects. In our

implementation both the canyon and the helicopter are triangulated surfaces and we use

the Proximity Query Package (PQP) to compute dist.
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Figure 2.8: The control forces and blade angles as functions of time for the helicopter
trajectory shown in Fig. 2.5.

The optimization runs efficiently in the absence of obstacles or with simple (smooth

and convex) obstacles (taking in the order of a few seconds for most tests). On the other

hand, complex rough terrains can slow down the system significantly. Note also that our

simple implementation faces the same robustness issues as many optimization procedures:

a bad choice for the initial trajectory may lead to a local minima. One way to speedup

convergence is to start with a good initial obstacle-free path computed, for example, using

a local obstacle avoidance method (e.g. [17]). Nevertheless, as already pointed out by

several similar works cited in our references, this approach should be used to produce

small-scale local solutions that are combined by more global methods in a hierarchical

fashion (e.g. see [35] regarding incremental and roadmap planners, as well as [22, 16] for

planning using primitives). We explore such ideas in Ch. 4. An obvious application is also

the refinement of trajectories produced by discrete or sampling-based planners. Finally,

in order to assess the exact numerical benefits of this method, a detailed performance

analysis and comparison to related methods is needed and is currently under way.
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2.10.3 Boat subject to External Disturbances

Consider a planar boat model shown in Fig. 2.9. The configuration space of the system

is SE(2) with coordinates q = (θ, x, y) denoting orientation and position with respect to

a fixed global frame. Define the body fixed velocity ξ ∈ se(2) by

ξ = [ω, v, v⊥]T ,

where ω is the angular velocity (yaw), v is the forward velocity (surge), v⊥ is the sideways

velocity (sway).

damping

damping

thrusters

wind

Figure 2.9: Planar boat controlled with two thrusters, and subject to hydrodynamic
damping and wind forces.

The Lagrangian is l(ξ) = 〈Mξ, ξ〉, where M is the combined mass matrix of the boat’s

inertia and added mas of the surrounding fluid. The system is controlled with two fixed

thrusters placed at the rear of the boat at distance ±c from the long axis of the boat
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Figure 2.10: The USC RoboDuck2 boat used for experiments.

producing forces ur and ul, respectively. These two forces result in the propulsion force

fprop ∈ se(2)∗ with respect to the boat-fixed frame through the transformation

fprop = B

 ul

ur

 ,

where B has the nominal form

B =


−c c

1 1

0 0

 .

For a more accurate model, B can be determined experimentally as a function of velocity

to account for unmodeled center of mass shift.

The boat is subject to hydrodynamic damping forces fdiss : SE(2) × se(2) → se(2)∗

in the form

fdiss(g, ξ) = −R(g, ξ)ξ,
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where R : SE(2) × se(2) → L(se(2); se(2)∗) is a positive definite symmetric linear map.

Other external forces such as wind and currents are denoted by fext : SE(2) × se(2) →

se(2)∗. For example, the USC boat has an onboard wind sensor providing wind direction

and effective force. The combined force acting on the boat is

f = fprop + fdiss + fext.

The continuous equations of motion are the Euler-Poincaré equations (2.3) on SE(2)

in the form

M


ω̇

v̇

v̇⊥

 =


0 0 0

v⊥ 0 −ω

−v ω 0



T

M


ω

v

v⊥

+B

 ul

ur

−R


ω

v

v⊥

+ fext.

The discrete equations are (2.7)-(2.9) with the corresponding operations on SE(2)

defined in Sec. 2.6.2.

We illustrate the optimal control of the boat in two scenarios with different wind

forces and final desired states. The boat parameters were chosen as

M = diag(3, 1, 5), R = diag(1, .5, 10)

with R33 begin relatively high corresponding to the high lateral damping.
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Figure 2.11: Two optimal control scenarios with different boundary conditions and wind
forces (shown as arrows along the path). The boat always starts at the origin (θ, x, y) =
(0, 0, 0) with zero velocity and must arrive at the designated positions with zero velocity.

Fig. 2.11 shows the path taken by the boat and the resulting velocity and control

curves. The paths were discretized using N = 32 segments which results in real-time

control performance.
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Chapter 3

Nonholonomic Integrators

Summary

The chapter develops structure-preserving integrators for nonholonomic mechanical sys-

tems through a discrete geometric approach. At the core of the formulation lies a dis-

crete Lagrange-d’Alembert-Pontryagin variational principle. The focus of this work is on

systems with symmetries, controllable shape (internal variables), and nonholonomic con-

straints. Our discrete approach is especially well suited for such systems since it respects

the structure of the state space and provides a framework for constructing more accurate

and numerically stable integrators. The dynamics of the systems we study is derived by

vertical and horizontal splitting of the variational principle with respect to a nonholo-

nomic connection encoding the kinematic constraints and allowed symmetry directions.

We formulate a discrete analog of this principle and derive discrete Euler-Poincaré and

Euler-Lagrange equations resulting from the splitting of the principle with respect to a

discrete approximation of the connection. A family of variational Euler-type integrators

are then derived and applied to two examples–the steered robotic car and the snakeboard.
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3.1 Introduction

The goal of this chapter is to develop integrators for mechanical systems subject to non-

integrable constraints on the velocities, i.e., nonholonomic constraints. We study systems

that evolve on a configuration manifold Q = M × G constructed from a Lie group G

whose action leaves the kinetic energy invariant (and so G is a group of symmetries)

and a vector space M that describes the system internal shape. This general config-

uration space applies to systems from several domains, e.g., locomotion systems found

in nature [31, 39, 18], vehicles used in robotics and aerospace [46, 47, 3, 6], systems in

molecular dynamics [26, 52].

Their dynamics is derived by explicitly factoring out the group invariance through

reduction by symmetry, and consequently splitting the equations of motion into vertical–

corresponding to symmetries aligned with the constraints and defining the evolution of a

momentum, and horizontal–defining the dynamics of the shape space. This has proven

not only computationally beneficial, from reducing the dimension and avoiding numerical

ill-conditioning, but also crucial in studying the stability, controllability, and motion

generation of such systems. In this thesis we focus on their proper discretization and

propose geometric integrators that respect the state-space structure of the symmetries

and constraints, preserve any invariants exhibited by the continuous system, and result

in stable and accurate numerical schemes.

We follow the approach of discrete mechanics [41] and derive discrete equations of

motion of the system through the discretization of the underlying variational principles

governing the dynamics. In particular, we employ a Lagrange-d’Alembert-Pontryagin
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(LDAP) variational principle [53] that differs from a standard variational principle, such

as Lagrange-d’Alembert’s, by the presence of a new additional velocity variable v ∈ TqQ

at each point q ∈ Q which by definition does not correspond to the rate of change of the

configuration but this dependence is indirectly enforced using a kinematic constraint of

the form q̇ − v = 0 and a multiplier p ∈ T ∗qQ corresponding to the momentum. We for-

mulate a discrete version of this principle which, in addition to retaining all the desirable

preservation properties inherent to the discrete variational approach, also simplifies the

construction of integrators. First, the Pontryagin viewpoint obviates the need to use a

discrete Lagrangian Ld : Q×Q→ R (which is the standard way to approximate the action

integral in discrete mechanics, e.g. as formulated by Marsden and West[41]) as well as a

discrete nonholonomic distribution Dd ⊂ Q×Q (introduced by Cortes [13]) since now a

state along the discrete trajectory is not represented by a pair of points (qk, qk+1) ∈ Q×Q

but by (qk, vk) ∈ TQ and both the original continuous Lagrangian and the constraints

can be evaluated directly at such points to achieve the desired approximation. Second,

the additional variables v and p give freedom in designing higher-order integrators by

combining standard quadrature rules with higher order approximation of the kinematic

constraint (as shown by Bou-Rabee and Marsden [5]). Further details about the principle

are given in Sec. 2.3, and Sec. 3.2.3.

The results presented here build upon previous work on the variational discretization

of systems with symmetries, as well as systems with nonholonomic constraints. Bobenko

and Suris [4] and Marsden et al. [42] first studied the discrete Euler-Poincaré equations
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for systems on Lie groups; Bou-Rabee and Marsden [5] extended those ideas in the frame-

work of the Hamilton-Pontryagin principle in order to design more general and higher-

order integrators; Jalnapurkar et al. [27] considered the discretization of the more general

principle bundle case with abelian symmetry and its reduction using Routh’s method.

Nonholonomic constraints from a discrete variational viewpoint were first studied by

Cortes [13] who also considered the invariance of such systems with respect to Lie group

actions and derived a momentum equation with properties consistent with the continuous

case. M. de Leon et al. [14, 38] considered an alternative discretization of nonholonomic

systems in terms of generating functions. Fedorov and Zenkov [19] extended the reduced

discrete approach to systems on a Lie group to include nonholonomic constraints on the

group and derived the so called Euler-Poincaré-Suslov equations. McLachlan and Perl-

mutter [44] studied the general case of systems on vector spaces as well as on a group

with nonholonomic constraints focusing on the time-reversibility and the importance of

the preservation of invariants.

Contributions. Our work extends the recently-introduced geometric Lie group inte-

grators [5] to provide a systematic approach to the design of structure-respecting integra-

tors for nonholonomic mechanical systems. While related to the work of several authors

noted above, our discrete approach to nonholonomic systems with symmetries captures

the geometry of general systems (defined in terms of principle bundle and nonholonomic

connections) with arbitrary group structure, constraints, and shape dynamics, and is not

restricted to a configuration space that is either solely a group or has a Chaplygin-type

symmetry. As a result our formulation contains a discrete momentum equation and a set
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of discrete reduced Euler-Lagrange equations analogous to the continuous case (e.g. as de-

scribed in [2]) that explicitly account for and respect the interaction between symmetries

and constraints in the vehicle dynamics.

Organization. We start by recalling the geometry of nonholonomic systems with sym-

metries. Then we introduce the nonholonomic LDAP principle for systems with symme-

tries and derive the standard nonholonomic equations [2] that result from the splitting

of the variational principle into vertical and horizontal parts with respect to the non-

holonomic connection. The discrete analog of this principle is then formulated and the

corresponding equations of motion derived. The vertical equation is equivalent to the

evolution of a discrete momentum map whose properties are examined. Similar to a

previous study by Cortes [13] we also consider the case of linear connection revealing an

interesting link to the continuous dynamics. We apply the resulting algorithms to two

examples: the steered car with simple dynamics and the snakeboard, and analyze the

integrators accuracy and efficiency. Finally, we use the discrete equations as constraints

in an optimal control problem to generate optimal maneuvers useful for motion planning.

3.2 Nonholonomic Systems with Symmetry

This section considers nonholonomic systems with symmetries in the continuous setting.

We start by recalling standard concepts used to define the state space geometry. Then

we formulate the nonholonomic LDAP principle and obtain the continuous nonholonomic

equations of motion.
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Assume that π : Q → Q/G is a principle bundle on the manifold Q with group G.

The system has Lagrangian L : TQ → R and is subject to nonholonomic constraints

defined by the regular distribution D ⊂ TQ. A group orbit is a submanifold denoted by

Orb(q) := {gq | g ∈ G}. If g is the Lie algebra of G, then Tq Orb(q) = {ξQ(q) | ξ ∈ g},

where ξQ is the infinitesimal generator corresponding to the Lie algebra element ξ defined

by

ξQ(q) =
d

ds

∣∣∣∣
s=0

exp(sξ)q.

Define the subspaces Vq,Sq,Hq according to

Vq = Tq Orb(q), Sq = Dq ∩ Vq, Dq = Sq ⊕Hq.

These definitions have the following physical meaning (see [3] for a more detailed descrip-

tion):

• Vq – space of tangent vectors parallel to symmetry directions, i.e. the vertical space;

• Sq – space of symmetry directions that satisfy the constraints;

• Hq – space of tangent vectors that satisfy the constraints but are not aligned with

any directions of symmetry, i.e. the horizontal space.

We make the following additional assumptions that are standard in the literature (see [3,

10])

• Dimension Assumption: For each q ∈ Q, we have TqQ = Dq + Vq.

• Invariance of L: The Lagrangian L is G-invariant.
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• Invariance of D: The distribution D is G-invariant.

Define the vector space sq ⊂ TqQ/G to be the set of Lie algebra element whose

infinitesimal generators lie in Sq, i.e. the space of symmetry directions that satisfy the

constraints, by

sq = {ξ(q) | ξQ(q) ∈ Sq}.

The bundle with fibers sq at all q ∈ Q is denoted s.

Since our main interest is in a configuration space that is by construction of the form

Q = M × G we will restrict any further derivations to the trivial bundle case. While

the more general case (introduced so far) can be treated in an analogous manner with

slight modification we stick to the trivial case for clarity without loosing the general

applicability of our results. Using (global) trivial bundle coordinates (r, g) ∈ M × G

we have ξQ(r, g) = (0, ξ(r, g)g) ∈ Sq. If we denote the basis for sq by {eb(r, g)}, for

b = 1, ...,dim(S) then since D is G-invariant g can be factored out from this basis, i.e.

eb(r, g) = Adg eb(r), where {eb(r)} is the body-fixed basis. We denote sr the space

spanned by {eb(r)}.

Lastly, the system is subject to control force f : [0, T ]→ T ∗M restricted to the shape

space.
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3.2.1 Nonholonomic Connection

With these definitions we can define a principle connection A : TQ → g with horizontal

distribution that coincides withHq at point q. This connection is called the nonholonomic

connection and satisfies

A(r, g) · (ṙ, ġ) = Adg(g−1ġ +A(r)ṙ), (3.1)

where A(r) is its local form.

The nonholonomic connection is constructed according to A = Akin + Asym, where

Akin is the kinematic connection enforcing the nonholonomic constraints and Asym is the

mechanical connection corresponding to symmetries in the constrained directions (i.e. the

group orbit directions satisfying the constraints). These maps satisfy

g−1ġ +Akin(r)ṙ = 0,

Asym(r)ṙ = Ω,

g−1ġ +A(r)ṙ = Ω.

(3.2)

where Ω ∈ sr is called the locked angular velocity, i.e. the velocity resulting from in-

stantaneously locking the joints described by the variables r. Intuitively, when the joints

stop moving the system continues its motion uniformly around a curve (with tangent

vectors in S) with body-fixed velocity Ω and a corresponding spatial momentum that is

conserved.
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The vector verr q̇ = (0,Ω) ∈ (TM×s)r is the vertical component relative the combined

connectionA and horr q̇ = (ṙ,−A(r)ṙ) ∈ (TM×g)r is the horizontal component. Velocity

vectors on TQ/G ∼ TM × g are split according to

(ṙ, g−1ġ)r = verr q̇ + horr q̇ = (0,Ω) + (ṙ,−A(r)ṙ).

3.2.2 Vertical and Horizontal Variations

We now consider variations of the configuration variables in the vertical and horizontal

directions. Following [9, 3] define the following

Definition 1. Vertical variations Consider variations (δr, δg) such that δr = 0 and

δgg−1 = A(r, g) · (δr, δg) ∈ s(r,g). Then (0, δgg−1) ∈ TrM × s(r,g) is clearly vertical and so

is (0, g−1δg) ∈ TrM ×sr. This can be easily checked considering that for trivial bundles s

can be constructed using a basis {eb : Q→ s} such that eb(r, g) = Adg eb(r), where eb(r)

is a body-fixed basis in a left-trivialization.

Definition 2. Horizontal variations Variations satisfying A(r, g) · (δr, δg) = 0, or equiv-

alently g−1δg+A(r)δr = 0, result in variations (δr, g−1δg) = (δr,−A(r)δr) ∈ (TM × g)r

that are horizontal.

Since vertical and horizontal variations can be taken independently we can consider

variational principles based on vertical and horizontal variations separately. The next sec-

tion presents these principles and the derivation of the resulting nonholonomic equations

of motion.
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3.2.3 Lagrange-D’Alembert-Pontryagin Nonholonomic Principle

Define the reduced Lagrangian ` : TM × g→ R according to

`(r, ṙ, ξ) = L(r, ṙ, e, g−1ġ),

and the constrained reduced Lagrangian lc : TM × s→ R such that

lc(r, ṙ,Ω) = `(r, ṙ,Ω−A(r)ṙ).

While both reduced Lagrangians capture the group invariance of the system, using

the constrained reduced Lagrangian lc has several advantages. One is that, unlike ξ, the

locked angular velocity Ω diagonalizes the kinetic energy which has important implications

in studying the stability of the system [40]. Another is that in the resulting equations

of motion the rate of change of the generalized momentum decouples from that of the

shape variables which is key in exploiting the holonomy of the system for locomotion and

motion planning purposes.

Next, we begin from the general formulation of the LDAP principle (ref) and extend

it to the principle bundle setting introduced earlier. Then we formulate two equivalent

reduced principles, first in terms of the reduced Lagrangian ` and then in terms of the

constrained reduced Lagrangian lc.

Using bundle coordinates (r, g) ∈M×G and denoting tangent vectors (u,w) ∈ TM×

TG and corresponding momenta (p, p̂) ∈ T ∗M × T ∗G we can rewrite the nonholonomic

principle (2.4) as:
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Definition 3. Nonholonomic LDAP Principle (unreduced)

δ

∫ T

0
{L(r, g, u, w) + 〈p, ṙ − u〉+ 〈p̂, ġ − w〉} dt+

∫ T

0
〈f, δr〉dt = 0

subject to:

nonholonomic constraint A(r, g) · (u,w) = Adg Ω,

vertical variations s.t. (δr, g−1δg) = (0, η), where η ∈ sr and,

horizontal variations s.t. (δr, g−1δg) = (δr,−A(r)δr).

(3.3)

After substituting the reduced Lagrangian ` and the constraint (eq. 3.1), and defining

the local momentum µ = TL∗gp̂ ∈ g∗ the principle can be equivalently expressed as

Definition 4. Reduced Nonholonomic LDAP Principle (reduced Lagrangian `). Using

the notation ξ := Ω−A(r) · u, the principle requires that

δ

∫ T

0
{`(r, u, ξ) + 〈p, ṙ − u〉+ 〈µ, g−1ġ − ξ〉} dt+

∫ T

0
〈f, δr〉dt = 0

subject to:

vertical variations s.t. (δr, g−1δg) = (0, η), where η ∈ sr and,

horizontal variations s.t. (δr, g−1δg) = (δr,−A(r)δr).

(3.4)

In the above formulation variations δu, δΩ, δp, δµ are free. The version of the principle

in terms of the constrained Lagrangian is then

71



Definition 5. Reduced Nonholonomic LDAP Principle (constrained reduced Lagrangian

lc)

δ

∫ T

0
{lc(r, u,Ω) + 〈p, ṙ − u〉+ 〈µ, g−1ġ +A(r)u− Ω〉} dt+

∫ T

0
〈f, δr〉dt = 0

subject to:

vertical variations s.t. (δr, g−1δg) = (0, η), where η ∈ sr and,

horizontal variations s.t. (δr, g−1δg) = (δr,−A(r)δr).

(3.5)

The principle (3.5) now contains all information necessary to derive the equations of

motion that explicitly account for the symmetries, nonholonomic constraints, and their

interaction.

Lie algebra basis In practice, the constrained symmetry space S(r,g) often must be

generated from Lie algebra basis that depends on the shape r ∈ M . Therefore, we

assume that the basis {ea(r) | a = 1, ...,dim(G)} spans gr, in such a way that {eb(r) | b =

1, ...,dim(s)} is an orthogonal basis for sr at each r. Then Ω ∈ sr in this basis is Ω =

Ωbeb(r).

Derivation Taking arbitrary variations δr, δg, δu, δΩ, δp, δµ in (3.5) and noting that

δ(g−1ġ) = η̇ +
[
g−1ġ, η

]
, where η = g−1δg,

we obtain respectively
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δr ⇒
〈
∂lc

∂r
, δr

〉
+
〈
p, δ̇r

〉
+ 〈µ,DA(r)(δr, u)〉+ 〈f, δr〉 (3.6)

δg ⇒ +
〈
µ, η̇ +

[
g−1ġ, η

]〉
(3.7)

δu⇒ + 〈∂l
c

∂u
, δu〉+ 〈−p, δu〉+ 〈µ,A(r)δu〉 (3.8)

δΩ⇒ +
〈
∂lc

∂Ω
, δΩ

〉
− 〈µ, δΩ〉 (3.9)

δp⇒ + 〈δp, ṙ − u〉 (3.10)

δµ⇒ +
〈
δµ, g−1ġ +A(r)u− Ω

〉
= 0 (3.11)

Since δu, δΩ, δp, and δµ are free we immediately obtain from (3.8)-(3.11)

〈
∂lc

∂u
− p, δr

〉
+ 〈µ,A(r)δr〉 = 0 (3.12)

∂lc

∂Ω
− µ = 0 (3.13)

ṙ − u = 0 (3.14)

g−1ġ +A(r)u− Ω = 0 (3.15)

Next we consider vertical and horizontal variations of (δr, δg) separately.
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3.2.3.1 Vertical Equations

Vertical variations have the form δr = 0, g−1δg = η, where η ∈ sr, or in the previously

defined basis η = ηbeb(r). Therefore, after substituting the constraint (3.15), (3.7) gives

〈
µ,

d

dt
(ηbeb(r)) +

[
Ω−A(r)u, ηbeb(r)

]〉
= 0. (3.16)

Next, we define the momentum components µb = 〈µ, eb(r)〉 and, after integrating by parts,

and using the boundary conditions δg(0) = δg(T ) = 0 we obtain their time-derivative

according to

µ̇b =
〈
µ,
∂eb(r)
∂r

ṙ + adΩ−A(r)u eb(r)
〉
,

since ηb are arbitrary.

3.2.3.2 Horizontal Equations

Horizontal variations are constrained according to g−1δg = η, where η = −A(r)δr for

variations δr in the base. Differentiating (3.12) with respect to time we get

〈ṗ, δr〉 =
〈
d

dt

∂lc

∂u
, δr

〉
+ 〈µ̇,A(r)δr〉+ 〈µ,DA(r)(ṙ, δr)〉
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Therefore, after integrating by parts (3.6) and (3.7), using the boundary conditions

δr(0) = δr(T ) = 0, and substituting η = −A(r)δr we get

〈
∂lc

∂r
, δr

〉
−
〈
d

dt

∂lc

∂u
, δr

〉
− 〈µ̇,A(r)δr〉 − 〈µ,DA(r)(ṙ, δr)〉

+ 〈µ,DA(r)(δr, u)〉+ 〈f, δr〉

+ 〈µ̇,A(r)δr〉 − 〈[Ω−A(r)u,A(r)δr]〉 = 0

Simplifying, the horizontal (reduced Euler-Lagrange) equations of motion become

〈
∂lc

∂r
− d

dt

∂lc

∂u
+ f, δr

〉
= 〈µ,B(r)(u, δr) + adΩA(r)δr〉 , (3.17)

where

B(r)(u, δr) = DA(r)(u, δr)−DA(r)(δr, u)− [A(r)u,A(r)δr]

is the curvature of the nonholonomic connection A.

Summary

The equations of motion due to the splitting of the variational principle are

g−1ġ = Ω−A(r)u, (3.18)

ṙ = u, (3.19)

µ =
∂lc

∂Ω
, (3.20)

µ̇b =
〈
µ,
∂eb(r)
∂r

u+ adΩ−A(r)u eb(r)
〉
, (3.21)〈

∂lc

∂r
− d

dt

∂lc

∂u
+ f, δr

〉
= 〈µ,B(r)(u, δr) + adΩA(r)δr〉 (3.22)
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for b = 1, ...,dim(s).

These equations are standard in the literature on nonholonomic systems with sym-

metries (e.g. [2, 34, 10, 3]) and we have managed to obtain them here directly from a

reduced variational principle by restricting the variations on the configuration variables

only. This is in contrast to the approach of separately studying the evolution of a mo-

mentum map (e.g. as taken in [2]) or by additionally restricting the allowable variations

on the velocity variables ξ or Ω (explored in [10, 8]). Our main motivation for this al-

ternative intrinsic formulation is that such a self-contained principle can be easily cast

in a discrete framework and we expect that the resulting discrete equations of motion

would most closely preserve the variational, geometric structure of the original system.

We develop the discrete framework in the next section.
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rk−1

rk

rk+1

uk−1

uk

rk−1+α

rk+α

rk+1 − rk = huk
G

gk−1

gk
gk+1

gk−1+αξk−1

gk+αξk

gk−1+α

gk+α

τ−1(g−1
k gk+1) = hξk

Figure 3.1: Discrete approximation (dashed) of continuous trajectories (solid) in the
shape space (left) using linear interpolation, and in the group (right) using local geodesics
defined by the flow of the map τ . The discrete velocity vectors shown approximate the
average velocity along the segment and satisfy the constraint as defined underneath the
figures. These velocity vectors are attached at quadrature points determined by the choice
of α ∈ [0, 1].

3.3 Geometric Discretization of Nonholonomic Systems

In this section we formulate a discrete variational principle and derive a family of simple

nonholonomic integrators that account for the group structure and constraint distri-

bution, respect the work-energy balance, and have discrete momentum equation and a

corresponding momentum map with properties analogous to the continuous case.

3.3.1 Discrete Approximation

As we noted earlier the discrete mechanics approach is based on varying discrete trajecto-

ries in order to find critical values of an action integral approximated through quadrature.

The approximation scheme can be simple, i.e. by joining the discrete points along the

path with simple local interpolation and few quadrature evaluations along the segments;

or they can be higher-order by further discretizing each segment and performing multiple

quadrature computations. Here, for clarity we focus on one simple type of discretiza-

tion termed variational Euler [5] and provide the complete higher-order formulation in

Appendix (ref).
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Discrete Trajectory The discrete LDAP framework is defined in terms of a discrete

trajectory whose states are elements of the tangent spaces in the reduced bundle of

velocities and momenta. The trajectory is formally defined as follows (see also Fig. 3.1)

Definition 6. The discrete reduced path is denoted

(r, u, p, g,Ω, µ)d : {tk}Nk=0 → (TM ⊕ T ∗M)×G× s× g∗

and is subject to the constraints

rk+1 − rk = huk, τ−1(g−1
k gk+1) = hξk,

where ξk = Ωk −A(rk+α)uk, with rk+α := (1− α)rk + αrk+1 for a chosen α ∈ [0, 1] and

the map τ : g → G represents the difference between two configurations in the group by

an element in its algebra (see Sec. 2.3)

The discrete control force is f0:N : {tk}Nk=0 → T ∗M approximating a force controlling

the shape.

Based on this simple approximation, the continuous and discrete state variables are

related through (Fig. 3.1):

(r(tk+α), ṙ(tk+α)) ≈ (rk+α, (rk+1 − rk)/h)

(g(tk+α), ġ(tk+α)) ≈ (
gk+α, gk+ατ

−1(g−1
k gk+1)/h

)
,

(3.23)

where tk+α := t0 + h(k + α), gk+α = gkτ(ατ−1(g−1
k gk+1)) for each k = 0, ..., N − 1 and

α ∈ [0, 1].
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Constraint Consistency It is important to note that the discretization constraints

between configurations and velocities from Dfn. 6 are invariant to left translations of

the discrete trajectory. Left-translating a pair of configurations (gk, gk+1) used to define

velocity ξk is equivalent to applying the lifted left action to ξk itself, i.e.

(gk, gk+1) =⇒ gk+ατ
−1(g−1

k gk−1) = gk+αξk,

(g′gk, g′gk+1) =⇒ g′gk+ατ
−1((g′gk)−1(g′gk−1)) = g′gk+αξk.

Therefore, the approximation (3.23) remains valid in a left trivialization

(
e, g−1(tk+α)ġ(tk+α)

) ≈ (
e, τ−1(g−1

k gk+1)/h
)
,

and the left-invariant discrete body-fixed velocity ξk can be used for discrete reduction

analogous to the continuous case.

Connection Equivariance Similarly to (3.23) the nonholonomic connection is approx-

imated as

A(r(tk+α), g(tk+α)) · (ṙ(tk+α), ġ(tk+α)) ≈ A(rk+α, gk+α) · (uk, gk+αξk)

= Adgk+α(ξk +A(rk+α)uk) = Adgk+α Ωk,
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for all k = 0, ..., N − 1 and α ∈ [0, 1]. Note that the discretization constraint is also

consistent with the required equivariance of the connection:

Adg′ A(rk+α, gk+α) · (uk, gk+αξk) = Adg′ Adgk+α(τ−1(g−1
k g′

−1
g′gk+1) +A(rk+α)uk)

= Adg′gk+α(τ−1((g′gk)−1g′gk+1) +A(rk+α)uk) = A(rk+α, g
′gk+α) · (uk, g′gk+αξk).

3.3.2 Discrete Reduced LDAP Nonholonomic Principle

We formulate the discrete version of the LDAP principle (3.5) by approximating the

action integral along each discrete segment using a single evaluation determined by the

choice of α ∈ [0, 1].

Definition 7. Discrete Reduced LDAP Principle

δ
N−1∑
k=0

h [{lc(rk+α, uk,Ωk) + 〈pk, (rk+1 − rk)/h− uk〉

+〈µk, τ−1(g−1
k gk+1)/h+A(rk+α)uk − Ωk〉}

]
+
N−1∑
k=0

[h〈fk+α, δrk+α〉] = 0

subject to:

vertical variations s.t. (δrk, g−1
k δgk) = (0, ηk), where ηk ∈ srk and,

horizontal variations s.t. (δrk, g−1
k δgk) = (δrk,−A(rk)δrk),

(3.24)

In the above formulation variations δuk, δΩk, δpk, δµk are free. Allowing the Lagrangian

and the connection to be evaluated at rk+α gives design freedom. Standard values of α are

0, 0.5, 1. Setting α = 0.5 provides more accurate approximation of the base dynamics 1

1Note that setting α = 0.5 is not equivalent to unreduced midpoint rule since in left trivialization there
is no notion of midpoint on the group
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while α = 0, 1 results in less accurate, but simpler integrators. As we mentioned, there

are more general ways to define the discrete principle that allows arbitrary high approx-

imation order but here we limit the exposition to lower order integrators for clarity.

The discrete force fk+α = (1 − α)fk + αfk+1 is used to approximate the work done

by f in a manner consistent with the rest of the discretization, i.e. through

∫ (k+1)h

kh
〈f, δr〉dt ≈ h〈fk+α, δrk+α〉.

Taking variations δrk, δgk, δuk, δΩk, δpk, δµk in (3.24) and noting that

δ(τ−1(g−1
k gk+1)) = dτ−1

hξk
(−ηk + Adg−1

k gk+1
ηk+1),

where ηk = g−1
k δgk, ξk = τ−1(g−1

k gk+1)/h, and dτ ξ : g→ g is the right-trivialized tangent

of τ(ξ) defined by D τ(ξ) · δ = TRτ(ξ)(dτ ξ ·δ) and dτ−1
ξ : g → g is its inverse, we obtain

respectively

81



δrk ⇒ h

〈
α
∂lck−1+α

∂r
+ (1− α)

∂lck+α

∂r
, δrk

〉
+ 〈−pk + pk−1, δrk〉

+ h 〈µk−1, αDAk−1+α(δrk, uk−1)〉+ h 〈µk, (1− α)DAk+α(δrk, uk)〉

+ h 〈(1− α)fk−1+α + αfk+α, δrk〉

(3.25)

δgk ⇒ +
〈
−(dτ−1

hξk
)∗µk + (dτ−1

−hξk−1
)∗µk−1, ηk

〉
(3.26)

δuk ⇒ + h

〈
∂lck+α

∂u
, δuk

〉
+ h 〈−p, δuk〉+ h 〈µk,A(rk+α)δuk〉 (3.27)

δΩk ⇒ + h

〈
∂lck+α

∂Ω
, δΩk

〉
− h〈µk, δΩk〉 (3.28)

δpk ⇒ + h 〈δpk, (rk+1 − rk)/h− uk〉 (3.29)

δµk ⇒ + h
〈
δµk, τ

−1(g−1
k gk+1)/h+A(rk+α)uk − Ωk

〉
= 0, (3.30)

where lck+α := lc(rk+α, uk,Ωk).

Since δuk, δΩk, δpk, and δµk are free we immediately obtain from (3.27)-(3.30)

∂lck+α

∂u
− pk +A(rk+α)∗µk = 0 (3.31)

∂lck+α

∂Ω
− µk = 0 (3.32)

(rk+1 − rk)/h− uk = 0 (3.33)

τ−1(g−1
k gk+1)/h+A(rk+α)uk − Ωk = 0 (3.34)

Next we consider vertical and horizontal variations of (δrk, δgk) separately.
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3.3.2.1 Vertical Equations

Vertical variations (Sec. 3.2.2) are of the form δrk = 0, g−1
k δgk = ηk, where ηk ∈ srk ,

or in the previously defined basis ηk = ηbkeb(rk). Therefore, after substituting the con-

straint (3.34), (3.26) gives

〈
−(dτ−1

h(Ωk−A(rk+α)uk))
∗µk + (dτ−1

−h(Ωk−1−A(rk−1+α)uk−1))
∗µk−1, η

b
keb(rk)

〉
= 0

If we define the discrete Euler-Poincaré operator DEPτ according to

DEPτ (k) := (dτ−1
h(Ωk−A(rk+α)uk))

∗µk − (dτ−1
−h(Ωk−1−A(rk−1+α)uk−1))

∗µk−1, (3.35)

then since ηbk are arbitrary, the vertical equations become

〈DEPτ (k), eb(rk)〉 = 0, (3.36)

for b = 1, ...,dim(S), and k = 1, ..., N − 1.

3.3.2.2 The Discrete Momentum Map

Next, we define a discrete momentum map, examine its properties and compare it to its

continuous analog. It is well-known that for the nonholonomic systems that we consider

the momentum, even in the direction of constrained symmetries, is not conserved in

general. Instead, the momentum equation defines how the momentum components evolve

in time. In the discrete setting the vertical equation (or the discrete momentum equation)

is its analog.
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Similar to the continuous setting the discrete vertical equation can be viewed as

defining the evolution of a discrete momentum map that we define next.

Definition 8. Discrete Nonholonomic Momentum Map

Define the local discrete momentum map Jloc : TM × g→ g∗ by

Jloc(rk, uk, ξk) = (dτ−1
hξk

)∗µk, where µk =
∂`

∂ξ
(rk, uk, ξk),

and the spatial discrete momentum map J : TQ→ g∗ through

J(rk, uk, gk, vk) := Ad∗
g−1
k

Jloc(rk, uk, g−1
k vk),

where (rk, uk) ∈ TM and (gk, vk) ∈ TG.

With these definitions we can compute the evolution of the discrete momentum map

along symmetry directions that are allowed by the constraints, i.e. along the elements

of the basis {eb(r, g)} at point (r, g) ∈ Q, for b = 1, ...,dim(S). Note that this basis is

constructed from a body-fixed basis {eb(r)} according to eb(r, g) = Adg eb(r). For all

such eb : Q → s we define the momentum map components Jnh
b (rk, uk, gk, vk) at point k

by

Jnh
b (rk, uk, gk, vk) := 〈J(rk, uk, gk, vk), eb(rk, gk)〉 = 〈Jloc(rk, uk, g−1

k vk), eb(rk)〉〉.

Proposition 6. Discrete Momentum Map Change.
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Grk

grk

e

eb(rk)

Jloc
k

srk

rk−1
rk

M

Grk−1

grk−1

e

eb(rk−1)

Jloc
k−1

srk−1

Ad∗
g−1

k−1gk
Jloc

k−1

change of basis
balance of momentum
projected onto srk

Figure 3.2: Evolution of the discrete momentum map. At point rk−1 the map is computed
by projecting the covector Jloc

k−1 onto srk−1
defined by the basis eb(rk−1); then in the Lie

algebra basis attached at rk the covector Jloc
k−1 transforms by Ad∗

g−1
k gk+1

and the change

in the momentum map is computed by subtracting it from the next momentum Jloc
k and

projecting onto srk (the notation Jloc
k := Jloc(rk, uk, ξk) was used with covectors drawn

pointing towards the vectors that they act on).
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The momentum components Jnh
b evolve along discrete LDAP solution trajectories ac-

cording to

Jnh
b (rk, uk, gk, vk)− Jnh

b (rk−1, uk−1, gk−1, vk−1)

= 〈J(rk−1, uk−1, gk−1, vk−1), eb(rk, gk)− eb(rk−1, gk−1)〉.

Proof. Rewriting the momentum equation (3.36), derived form the discrete LDAP prin-

ciple, in terms of the momentum map we obtain

〈Jloc(rk, uk, ξk)−Ad∗τ(hξk−1) Jloc(rk−1, uk−1, ξk−1), eb(rk)〉 = 0,

which is a momentum map balance equation depicted in Fig. 3.2. In spatial frame it

reads

〈J(rk, uk, gk, gkξk)− J(rk−1, uk−1, gk−1, gk−1ξk−1), eb(rk, gk)〉 = 0

which yields the component difference.

Corollary 2. Properties of the momentum map

1. The map components Jnh
b are not conserved in general.

2. If eb(r) are independent of r, then the discrete momentum equations are the discrete

Euler-Poincaré equations projected onto the constraint symmetry space s.

3. If eb(r) are independent of r and if G is abelian then Jnh
b are constant along the

discrete trajectory. This follows from the equality e(rk, gk) = e(rk−1, gk−1) since in

this special case eb(rk) = eb(rk+1) and Adg = Id.
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3.3.2.3 Horizontal Equations

Horizontal variations (Sec. 3.2.2) are constrained according to g−1
k δgk = ηk, where ηk =

−A(rk)δrk for variations δrk in the base. With this definition of ηk and after substituting

pk from (3.31) into (3.25) we get

〈
h

(
α
∂lck−1+α

∂r
+ (1− α)

∂lck+α

∂r

)
−
(
∂lck+α

∂u
+
∂lck−1+α

∂u

)
+ h (αfk−1+α + (1− α)fk+α) , δrk

〉
= 〈µk,A(rk+α)δrk〉 − 〈µk−1,A(rk−1+α)δrk〉

− h 〈µk−1, αDAk−1+α(δrk, uk−1)〉 − h 〈µk, (1− α)DAk+α(δrk, uk)〉

− 〈DEPτ (k),A(rk)δrk〉

(3.37)

for k = 1, ..., N − 1.

3.3.2.4 The case of linear connection

Next we study the special case when the connection A(r) is linear in the base point r.

This case is useful in comparing the resulting integrator to the continuous case in order

to gain insight into the effect of discretization.

Assume that A(r) is linear. The following expressions then trivially hold

A(rk+α)δrk = A(rk)δrk + h(1− α)DAk+α(uk, δrk),

A(rk−1+α)δrk = A(rk)δrk − hαDAk−1+α(uk−1, δrk),
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and after substituting them into (3.37) and using τ = exp the horizontal equations become

〈
α
∂lck−1+α

∂r
+ (1− α)

∂lck+α

∂r
− 1
h

(
∂lck+α

∂u
− ∂lck−1+α

∂u

)
+ αfk−1+α + (1− α)fk+α, δrk

〉
= α

〈
µk−1, dAk−1+α(uk−1, δrk)−

∞∑
i=1

Bi
i!

adiΩk−1−A(rk−1+α)uk−1
A(rk)δrk

〉

+ (1− α)

〈
µk, dAk+α(uk, δrk)−

∞∑
i=1

Bi
i!

adiΩk−A(rk+α)uk
A(rk)δrk

〉
(3.38)

where the curvature covariant derivative dA is defined by

dA(u, δr) = DA(u, δr)−DA(δr, u),

and Bi are the Bernoulli numbers with the first few given by B1 = −1/2, B2 = 1/6,

B3 = 0, ...

There are several special cases that lead to further simplification of the horizontal

equations. The Lie bracket in (3.38) vanishes, for instance, when G is abelian; when g is

one-dimensional; or whenever Ω and A(r)u lie in the same one-dimensional vector space

for all Ω, r, and u (as in the snakeboard example from Sec. 3.4.2).

Proposition 7. If the connection A(r) is linear and the ad operator in (3.38) maps to

0 along the path, then the non-conservative forces on the right-hand side of the reduced

discrete Euler-Lagrange equations (3.37) match the continuous case exactly.
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Proof. If the ad operator maps to 0 then the curvature equals the covariant derivative,

i.e. B = dA. Then if we denote the continuous gyroscopic force by FA(r, u, µ)β =

〈µ, dA(u, δrβ)〉, the discrete forces on the right-hand side of (3.38) become

αFA(rk−1+α, uk−1, µk−1) + (1− α)FA(rk+α, uk, µk)

exactly representing the continuous force acting on the left and the right (depending on

the value of α) of the fiber at rk.

This claim is analogous to the result obtained by Cortes [13] for Chaplygin-type

symmetries and, as noted by the same author, if the gyroscopic forces vanish then the

horizontal equations become a decoupled variational integrator on their own. Prop. 7

asserts that under similar conditions (linearity of the connection and vanishing of the

bracket) this is also true for systems with nontrivial intersection between the constraints

and symmetries.
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3.3.2.5 Summary

The discrete equations of motion are

g−1
k gk+1 = τ(h(Ωk −A(rk+α)uk)),

rk+1 − rk = huk,

µk =
∂lck+α

∂Ω
,

〈DEPτ (k), eb(rk)〉 = 0,〈
h

(
α
∂lck−1+α

∂r
+ (1− α)

∂lck+α

∂r

)
−
(
∂lck+α

∂u
+
∂lck−1+α

∂u

)
+ h (αfk−1+α + (1− α)fk+α) , δrk

〉
= 〈µk,A(rk+α)δrk〉 − 〈µk−1,A(rk−1+α)δrk〉

− h 〈µk−1, αDAk−1+α(δrk, uk−1)〉 − h 〈µk, (1− α)DAk+α(δrk, uk)〉

− 〈DEPτ (k),A(rk)δrk〉

(3.39)

for b = 1, ...,dim(S) and k = 1, ..., N − 1.

Horizontal Equations (reduced Lagrangian `) It is also useful to express the base

equations in terms of the reduced Lagrangian ` as well since our discrete formulation

in general does not decouple the instantaneous change in the momentum components

from that of the shape variables. While deriving the integrator in terms of lc is more
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appropriate for analysis often working with the reduced Lagrangian ` results in simpler

implementation. In that case the horizontal equations are

(
∂`k+α

∂u
− ∂`k−1+α

∂u

)
− h

(
α
∂`k−1+α

∂r
+ (1− α)

∂`k+α

∂r

)
= A(rk)∗DEPτ (k) + h (αfk−1+α + (1− α)fk+α) .

(3.40)

3.4 Examples

3.4.1 Car with simple dynamics

(x, y)

θ

φ

ψ

torques

Figure 3.3: Car: pose & shape space variables.

We study the kinematic car model defined in [31] with added simple dynamics (Fig. 3.3).

The configuration space is Q = S1×S1×SE(2) with coordinates q = (ψ, σ, θ, x, y), where

(θ, x, y) are the orientation and position of the car, ψ is the rolling angle of the rear wheels,

and σ is defined by σ = tan(φ) where φ is the steering angle. The car has mass m, rear

wheel inertia I, rotational inertia K, and we assume that the steering inertia is negligible.
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The car is controlled by rear wheels torque fψ and steering velocity uσ. The Lagrangian

is then expressed as:

L(q, q̇) =
1
2

(
Iψ̇2 +Kθ̇2 +m(ẋ2 + ẏ2)

)
,

and the constraints (see [31]) are

cos θdx+ sin θdy = ρdψ,

− sin θdx+ cos θdy = 0,

dθ =
ρ

l
σdψ,

where l is the distance between front and rear wheel axles, and ρ is the radius of the

wheels. These constraints simply encode the fact that the car must turn in the direction

in which the front wheels are pointing, that the car cannot slide sideways, and that the

change in orientation is proportional to the steering angle and turning rate of the wheels.

Note now that for any element g = (α, a, b) of SE(2), the action Φg(q) = (φρ, φL, θ+

α, a + cos(α)x − sin(α)y, b + sin(α)x + cos(α)y) leaves the Lagrangian and constraints

invariant. As the shape coordinates are r = (ψ, σ), the reduced Lagrangian thus becomes

`(r, u, ξ) =
1
2

u
T

 I 0

0 0

u+ ξ̌T


K 0 0

0 m 0

0 0 m

 ξ̌
 .
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The matrix representation of the connection A dependent on r becomes:

[A(r)] =


−ρ
l σ 0

−ρ 0

0 0

 (3.41)

This model is an example of the principle kinematic case in which the constraint

distribution complements the space tangent to the group orbits. This is easily seen

noting that

Dq = span
{
∂

∂ψ
,
∂

∂σ

}
, Vq = span

{
∂

∂x
,
∂

∂y
,
∂

∂θ

}

Thus, S = ∅ and there is no momentum equation.

Continuous equations of motion The resulting continuous equations of motion are

ẋ = ρ cos θψ̇,

ẏ = ρ sin θψ̇,

θ̇ =
ρσ

l
ψ̇,(

I +mρ2 +
Kρ2σ2

l2

)
u̇ψ = −Kρ

2σψ̇σ̇

l2
+ fψ,

σ̇ = uσ,

Car Integrator The discrete equations of motion will be derived by substituting the

Lagrangian and the connection of the steered car into (3.39). Define u = (uψ, uσ) and

ξ = −A(r) ·u and pick τ = exp. The expression 〈DEPexp(k),A(rk) ·δrk〉 involves the term
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dexp−1 defined in (2.13). Observing that in the case of the car 〈ad∗A(r)·u µ,A(r) · δ〉 = 0

for any µ ∈ h∗ and u, δ ∈ TM and therefore

〈(dexp−1
ξ )∗µ,A(r) · δ〉 = 〈µ,A(r) · δ〉

and since the operator DEPexp simplifies to

〈DEPexp(k),A(rk) · δ〉 := 〈µk − µk−1,A(rk) · δ〉,

the equations of motion simplify to

gk+1 = gk exp(−hA(rk+α) · uk),

rk+1 = rk + huk,

∂`k+α

∂u
− ∂`k−1+α

∂u
= A(rk)T (µ̌k − µ̌k−1) + h (αfk−1+α + (1− α)fk+α) ,

for k = 1, ..., N − 1. The exponential and Cayley maps for G = SE(2) are given in

Sec. 2.6.2.

The equations of motion can now be derived by substituting

µ =
∂`

∂ξ
= (Kξ1,mξ2, 0),

∂`

∂r
= (0, 0),

∂`

∂u
= (Iuψ, 0),
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The exact equations are

xk+1 − xk =


vk
ωk

(sin(θk + hωk)− sin θk) if ω 6= 0;

cos θkhvk if ω = 0.

yk+1 − yk =


vk
ωk

(− cos(θk + hωk) + cos θk) if ω 6= 0;

sin θkhvk if ω = 0.

θk+1 = θk + hωk,

σk+1 = σk + huσk ,

(I + ρ2m)(uψk − uψk−1) +
ρ2K

l2
σk(σk+αu

ψ
k − σk−1+αu

ψ
k−1) = h

(
αfψk−1+α + (1− α)fψk+α

)
,

where vk = ρuψk , ωk = (ρ/l)σk+αu
ψ
k . Thus, the integrator is easily computed as it is fully

explicit for any choice of quadrature point α.

Figure 3.4: Stability and efficiency of our nonholonomic integrator for car trajectories:
averaged over 50 runs using a large range of initial conditions and steering commands, our
nonholonomic integrator remains as accurate as RK2, at a fraction of the computational
complexity.

Numerical Comparisons Our numerical comparisons for nonholonomic motions are

based on one-minute trajectories of the car with simple dynamics. The vehicle is con-

trolled using sinusoidal inputs of frequency and amplitude designed to produce nontrivial

paths such as parallel parking, sharp turns, and winding maneuvers. Since the trajectory
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is relatively short all RK methods up to fourth order that we test (Fig. 3.4) are stable due

in part to the simpler group structure of SE(2). Yet, our integrator performs almost as

equally well as RK2, at half the computational time—due to its explicit update scheme.

3.4.2 The Snakeboard

(x, y)

θ

ψ

φ

φ

Figure 3.5: Snakeboard: pose & shape space variables.

The snakeboard is a wheeled board closely resembling the popular skateboard with

the main difference that both the front and the rear wheels can be steered independently.

This feature causes an interesting interplay between momentum conservation and the

nonholonomic constraints: the rider is able build up velocity without pushing off the

ground by transferring the momentum generated by a twist of the torso into motion of

the board coupled with steering of the wheels through pivoting of the feet. When the

steering wheels stop turning the systems moves along a circular arc and the momentum

around the center of this rotation is conserved. A robotic version of the snakeboard also

exists, equipped with a momentum-generating rotor and steering servos [45].

The shape space variables of the snakeboard are r = (ψ, φ) ∈ S × S denoting the

rotor angle and the steering wheels angle, while its configuration is defined by (θ, x, y)

denoting orientation and position of the board (see Figure 3.5). This corresponds to
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a configuration space Q = S × S × SE(2) with shape space M = S × S and group

G = SE(2). Additional parameters are its mass m, distance l from its center to the

wheels, and moments of inertia I and J of the board and the steering. The kinematic

constraints of the snakeboard are:

− l cosφdθ − sin(θ + φ)dx+ cos(θ + φ)dy = 0,

l cosφdθ − sin(θ − φ)dx+ cos(θ − φ)dy = 0,

enforcing the fact that the system must move in the direction in which the wheels are

pointing and spinning. The constraint distribution is spanned by three covectors:

Dq = span
{
∂

∂ψ
,
∂

∂φ
, c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

}
,

where a = −2l cos θ cos2 φ, b = −2l sin θ cos2 φ, c = sin 2φ. The group directions defining

the vertical space are:

Vq = span
{
∂

∂θ
,
∂

∂x
,
∂

∂y

}
,

and therefore the constrained symmetry space becomes:

Sq = Vq ∩ Dq = span
{
c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

}
. (3.42)
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Since Dq = Sq⊕Hq, we have Hq = span
{

∂
∂ψ ,

∂
∂φ

}
. Finally, the Lagrangian of the system

is L(q, q̇) = 1
2 q̇
TMq̇ where

M =



I 0 I 0 0

0 2J 0 0 0

I 0 ml2 0 0

0 0 0 m 0

0 0 0 0 m


.

The reduced Lagrangian is, therefore: `(r, u, ξ) = (u, ξ̌)T M (u, ξ̌). There is only one

direction along which snakeboard motions lead to momentum conservation: it is defined

by the basis vector

ě1(r) = 2l cos2 φ


tanφ
l

−1

0

 ,

and, hence, there is only one momentum variable µ1 =
〈
∂`
∂ξ , e1(r)

〉
. Using this variable we

can derive the connection according to [45, 2] as

[A] =


I
ml2

sin2 φ 0

− I
2ml sin 2φ 0

0 0

 , and Ω =
µ1

4ml2 cos2 φ
e1(r).

Continuous Equations of Motion The dynamics of the system can be derived either

in terms of Ω or in terms of µ as unknown variables. Here, we provide the resulting
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equations of motion based on µ since this has been the choice in previous work and will

be easier to compare against. The continuous equations of motion (Sec. 3.2.3.2) can be

derived as


ẋ

ẏ

θ̇

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




1

2ml
(µ1 − sin 2φψ̇)


−1

0

tanφ
l



 , (3.43)

µ̇1 = 2I cos2 φψ̇φ̇− µ1 tanφφ̇, (3.44)(
1− I

ml2
sin2 φ

)
ψ̈ =

I

2ml2
sin 2φψ̇φ̇− 1

2ml2
φ̇p+

1
I
fψ, (3.45)

φ̈ =
1

2J
fφ. (3.46)

A nonholonomic integrator The discrete equations of motion will be derived by sub-

stituting the Lagrangian and the connection of the snakeboard into (3.40). It seems more

convenient from implementation point of view to express the Euler-Lagrange equations of

the base dynamics using the reduced Lagrangian ` rather than the constrained reduced

Lagrangian lc so we use (3.40) instead of (3.39). We also need to choose the map τ and

in the remainder of this section we set τ = exp, i.e. the exponential map.

The expression 〈DEPexp(k), eb(rk)〉 involves the term dexp−1 defined in (2.13). Ob-

serving that in the case of the snakeboard 〈ad∗ξ µ, η〉 = 0 for any µ ∈ h∗ and ξ, η ∈ s and

therefore

〈(dexp−1
ξ )∗µ, e1(r)〉 = 〈µ, e1(r)〉
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and the operator DEPexp simplifies to

〈DEPexp(k), e1(rk)〉 := 〈µk − µk−1, e1(rk)〉

Note that since 〈DEPexp(k), e1(rk)〉 = 0 then 〈DEPexp(k),A(rk)·〉 = 0 since A(rk) ·δ ∈ sr.

The equations of motion become

g−1
k gk+1 = exp(h(Ωk −A(rk+α) · uk)),

rk+1 − rk = huk,

µk =
∂lk+α

∂ξ
,

〈µk − µk−1, e1(rk)〉 = 0,

∂`k+α

∂u
− ∂`k−1+α

∂u
= h (αfk−1+α + (1− α)fk+α)

for k = 1, ..., N − 1.

Defining ξ = Ω−A(r) · u and u = (uψ, uφ) the equations are derived by substituting

µ = (ml2ξ1 + Iuφ,mξ2, 0),
∂`

∂u
= (I(uψ + ξ1), 2Juφ).

Numerical Comparisons Our numerical comparisons for nonholonomic motions are

based on one-minute trajectories of the snakeboard. The vehicle is controlled using si-

nusoidal inputs of frequency and amplitude designed to produce nontrivial paths such as

parallel parking, sharp turns, and winding maneuvers. Since the trajectory is relatively

short all RK methods up to fourth order that we test (Fig. 3.6) are stable due in part
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Figure 3.6: Stability and efficiency of our nonholonomic integrator for snakeboard tra-
jectories: averaged over 50 runs using a large range of initial conditions and steering
commands, our nonholonomic integrator remains as accurate as RK2, at a fraction of the
computational complexity.

to the simpler group structure of SE(2). Yet, our integrator performs better RK2, at a

fraction of the computational time—due to its explicit update scheme.
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Chapter 4

Global Motion Planning

4.1 Introduction

There are two main disadvantages in using optimal control methods in practical appli-

cations directly. First, if numerous complicated nonlinear constraints were imposed then

finding a feasible solution would be extremely difficult and costly. Second, even if a fea-

sible solution is found it is in general only locally optimal and there is no way of knowing

how “good” it is unless there is specific prior knowledge. In this chapter we propose a

way to overcome these limitations by combining DMOC with a family of methods known

as sampling-based roadmaps in order to efficiently compute near globally optimal solution

trajectories even in very complex scenarios.

The main idea is to precompute many simple and versatile optimal motions using

DMOC offline, that can then be combined into longer more complicated trajectories that

can accomplish the given task. Furthermore, these motions can be combined to form not

only a single trajectory but also a tree or a graph whose edges are the motions. This graph

can be expanded towards parts of the space that might lead to more optimal trajectories
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and it would also contain edges reaching the goal state–therefore, such a graph, termed

roadmap, contains many possible trajectories to the goal. Finding the optimal trajectory

then amounts to finding the shortest path in the graph. Thus, a roadmap representation

has two main advantages: it provides a compact way to encode many different paths

from the start state; it lends itself to well-established dynamic programming methods

for finding an optimal solution satisfying the dynamics by construction. In essence,

the roadmap framework can be used to transform a very high-dimensional differential

problem into a lower dimensional algebraic problem (figuring out how to sequence simple

motions) and graph search problem (finding the best path). The solution is as good as

the approximation–the bigger and denser the space the roadmap covers and the richer

the set of primitive motions used, the more optimal the solution would be. Fortunately,

this is a very active research area in robotics and various strategies exist for constructing

roadmaps in order to solve motion planning problems with many degrees of freedom, from

coordinating multiple humanoid robots in urban environments to docking molecules in

protein design.

Challenges When the system dynamics is nonlinear or when the state space has com-

plicated boundary and is non-simply connected, e.g. arising from joint limits, environ-

ment obstacles or velocity bounds, then there would be many locally optimal solution

trajectories. For instance, even in the absence of physical obstacles, the computation

of minimum-acceleration trajectory for a non-spherical rigid-body could lead to multiple

locally optimal solutions based on how the variational method was initialized. This is be-

cause the necessary conditions for optimality are not affine and could have multiple roots.
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When obstacle are present and must be avoided the situation becomes more complicated

since they immediately induce multiple homotopy classes of paths in the configuration

space and an even more complicated topology of the state space (the tangent bundle)

when velocity limits are present.

The importance of exploration The only way to guarantee that a trajectory is op-

timal is to generate trajectories that 1) visit every region in the reachable state space,

and 2) then reach the goal state. This would guarantee that all possible routes to the

state goal have been taken and the best one chosen. Since it is impossible to produce

such infinite number of trajectories a realistic approach would be to produce trajectories

that visit only a subset of the state space that is likely to lead to good solutions. This

gives rise to a trade-off known as exploration vs. exploitation known in robotics and rein-

forcement learning, where exploration refers to controlling trajectories to visit unexplored

but potentially leading to a more optimal solution regions, while exploitation amounts

to then guiding this trajectory to achieving the goal or task. Often, a complicated state

space would require more extensive exploration while a simple motion planning problem

can be solved solely with exploitation (e.g. the simple case of stabilizing a linear system

without obstacles is a convex optimal control problem that does not need exploration).

Related Work Sampling-based motion planning has been a very active research area

during the past decade. Good summary of current methods can be found in the recent

books [35, 11]. Multiple research groups focus on the development of new sampling-based

techniques motivated by wide variety of applications not only in robotics, but also in

areas such as molecular biology and graphics. More prominent research teams include
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the group lead by Latombe at Stanford, Kavraki at Rice, LaValle at the University of

Illinois at Urbana-Champagne, Amato at Texas AM, and others. These researchers have

developed various methods and techniques applicable to a broad spectrum of examples,

from planning for multiple digital actors in virtual worlds to computing optimal docking

maneuvers for complex protein structures. A full review of the planning literature is

beyond the scope of this thesis and in the following sections we would only briefly describe

the methods applicable to the particular problems considered.

4.2 Sampling-based Roadmaps

Rapidly-exploring random tree incremental roadmap

Figure 4.1: A simple example: finding a trajectory from the start (lower-left corner) to
a goal state inside the “bug-trap”. A rapidly-exploring random tree (RRT) is used (left)
to quickly explore the environment and find any path (usually far from optimal). Once
a path is found using RRT, the expansion switches to an incremental roadmap method
(right) that focuses on finding a more optimal solution.

The term roadmap can be associated with several different underlying representation

based on the type of system and motion planning task required. Its most widely used
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representation is an undirected graph which is applicable to kinematic systems without

differential constraints and offers the ability to find a motion between any two configu-

rations in the graph [35]. Methods in this category are called multiple-query probabilistic

roadmaps (PRM). When computing a motion plan for a mechanical systems with differ-

ential constraints a roadmap is constructed as a directed graph or a tree rooted at the

starting state. Different strategies exists for guiding the roadmap expansion. A family of

methods called rapidly-exploring dense trees (RDT) which include the more well known

rapidly-exploring random trees (RRT) are designed to quickly explore the state space to

find any feasible path to the goal (see Fig.. There is no notion of optimality in these

methods since they involve cost metrics aimed at fast expansion rather than considering

the full cost of achieving the motion task. In contrast, incremental PRM methods for

mechanical systems have also been proposed (e.g. [21]) that are similar to RDT but focus

on reaching the goal while minimizing a trajectory cost metric and producing optimal

trajectories. In general, the RDT method finds any feasibly path quickly, while the PRM

approach finds a more optimal path with more computational effort. Since we are inter-

ested in motion planning for mechanical systems under differential constraints, we use

the term “PRM” (possibly conflicting with terminology used by other authors) to indi-

cate incremental planners that also include the RDT types. In fact, similar to [21] our

implementations use a hybrid method between RDT and single-query PRM that initially

focuses solely on exploring the space and then interleaves exploration with narrowing

down a near-optimal solution.
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Problems of Interest There are two types of problems that we are interested in. The

first are typical motion planning problems of moving from a given start state to a goal

state minimizing a given cost function defined as a metric on the state space. The second

are problems of finding a trajectory that minimizes a more general cost function subject

to constraints but does not need to end at a predefined goal state. An example of the

second kind is computing a trajectory that achieves maximum sensor coverage of the

environment subject within a given time. The second type of problems are much harder

since the cost function often depends on the whole trajectory and is not directly related

to a metric on the original state space.

Our approach to achieving global exploration of the state space is based on the RRT

model [35] and the incremental PRM method [21]. The underlying structure is a tree T

with nodes N and edges E . A node is denoted n ∈ N and an edge between two nodes na

and nb is denoted e(a,b) ∈ E .

Random tree construction The RRT exploration algorithm is given in Fig. 4.2. The

RRT expands by sampling a new node from the state space, finding the closest existing

node in the tree, and then extending the tree from that node towards the sampled node.

Either a partial or complete (reaching the node) trajectory can be produced based on

which strategy is used.

Incremental roadmap construction The incremental roadmap planning algorithm

is depicted in Fig. 4.2. The algorithm is given a root node nr and goal node ng containing

the initial and final desired states. A given minimum desired trajectory cost cdes serves as

a termination condition. At every iteration a new node ns is sampled from the state space.
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RRTExplore(nr)
−−−−−−−−−−−−−−−−−−−−
N = {nr}
WHILE (! Terminate(N ))

ns := Sample() (sample new node)
nb := NearestNeighbor(N ,ns) (find nearest neighbor from tree)
e(b,s′) := Extend(nb,ns) (extend it towards sample)

IF
(
e(b,s′)

)
(if successfully extended)

N := N ∪ ns′

E := E ∪ e(b,s′)

Figure 4.2: Rapidly-exploring random tree (RRT) exploration pseudocode

The tree expansion relies on a distance function between the nodes. The ideal distance

function is the same of the objective function to be minimized. Since newly sampled

nodes are not yet connected to the tree, there is no way of knowing what this cost is and

therefore a heuristic distance is used that underestimates the true distance. All existing

nodes are then sorted using this cost in an array Nb. The tree is then extended from the

best node (with lowest cost) in this array nb to the sample. The function Extend relies

on a local planner that usually reaches the sample node ns only approximately resulting

in a new node ns′ . If the new resulting cost at ns′ has a chance of improving the current

best cost cbest then the edge is added. Then, an attempt is made to reach the goal from

the newly added node. If this succeeds and the best cost is improved, then the tree can

be pruned and the algorithm continues.

Local planner Local planning between nodes can be accomplished in several different

ways. In some cases, e.g. when considering unconstrained kinematic systems, a trajec-

tory can be computed simply using interpolation. A more general method applicable to

systems with dynamics or underactuation is to use a controller that stabilizes the system
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PrmPlan(nr,ng, cdes)
−−−−−−−−−−−−−−−−−−−−−
N = {nr}
cbest =∞
WHILE (cbest > cdes)

ns = Sample() (sample new node)
Nb = Sort(N ,ns) (sort by distance to ns)
FOR i = 1 : size(Nb)

nb = Nb(i)
e(b,s′) = Extend(nb,ns) (extend towards sample)

IF
(
e(b,s′) AND ImproveCost(e(b,s′))

)
(if cost can be improved)

N = N ∪ ns′ , E = E ∪ e(b,s′) (add node to roadmap)
e(s′,g′) = Extend(ns′ ,ng) (extend towards goal)

IF
(
e(s′,g′) AND ImproveCost(e(s′,g′))

)
N = N ∪ ng′ , E = E ∪ e(s′,g′)

cbest = cost-to-come at ng′ (update best cost)
Prune(N ) (prune nodes with higher cost)

Figure 4.3: Incremental probabilistic roadmap (PRM) planning pseudocode

to the state of the new node. A drawback in such an approach is that the resulting path

could be far from optimal and that often times it is necessary to stabilize to non-zero

velocity states which raises issues of stability. A third approach is to use optimal control

and nonlinear programming for computing an optimal trajectory. The drawback of that

approach is that its convergence is very sensitive to the choice of initial guess and the

computation is extremely costly. An alternative approach that we rely on in this work

is to use a set of simple precomputed optimal control motions called primitives in order

to construct more complex, suboptimal trajectories that approximately achieve the local

plan very efficiently.
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4.3 Planning using primitives

4.3.1 Primitives

In this section we recall the formulation of primitives for motion planning of dynamical

systems introduced in [22]. Assume that a control system S is defined on a state-space X

and has a set of allowable controls inputs denoted U . Usually for mechanical systems X

is the tangent or cotangent bundle, TQ or T ∗Q respectively, where Q is the configuration

space. Let x ∈ X denote the state, u ∈ U the controls.

A trajectory from time ti to time tf is denoted π : t ∈ [ti, tf ]→ (x(t), u(t)). Planning

using primitives relies on the notion of trajectory invariance. Assume that the Lie group

G acts on X with action on x denoted Φ(g, x), where g ∈ G. An invariant trajectory is

such that the dynamics of the system is G-invariant. More formally, denoting the flow

(or integral curve) of the system by ϕ : X×R→ X then the invariant flow from the start

state x0 ∈ X is ϕ(x0, t) satisfies

Φg(ϕ(x0, t)) = ϕ(Φg(x0), t).

Two trajectories π1 and π2 are equivalent if they differ by a group action and a time

translation, i.e. if there exists a g ∈ G and a time T such that

(x1(t), u1(t)) = (Φg(x2(t− T )), u2(t− T )),∀t ∈ [ti,1, tf,1]

The concatenation of two trajectories requires the definition of compatibility. Two

trajectories π1 and π2 are compatible, denoted π1Cπ2, if there exists g12 ∈ G s.t.
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α1 α2 α3

π1 π2 π3

Figure 4.4: Examples of optimal helicopter primitives (computed using DMOC) invariant
with respect to the action of group G′ = SO(2) × R3. The top three trajectories are
trim primitives of constant forward motions with translational velocity v = 15m/s and
rotational velocity ω = 0◦/s (α1); v = 15m/s and ω = 30◦/s (α2); v = 10m/s and
ω = 15◦/s (α3). The bottom three trajectories are maneuvers that start from rest and
achieve v = 15m/s and ω = 0◦/s (π1); start with v = 15m/s and ω = 0◦/s and stop at rest
(π2); start from rest and achieve v = 15m/s and ω = 30◦/s (π3). Various concatenations
of these primitives are then possible, e.g. π1α1π2 or π3α2.

x1(T1) = Φ(g12, x2(0)) Any invariant trajectory can be regarded as a primitive. The

set of all G-invariant primitives is denoted P(S, G) and is closed [22]. Therefore, new

more complicated primitives can be constructed by concatenating simpler ones as long as

they are compatible. Fig. 4.4 shows examples of helicopter primitives.

There are two main classes of primitives useful for motion planning. They are dis-

cussed next.
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4.3.1.1 Trim Primitives

Trim trajectories correspond to continuously parametrized steady-state motions. For-

mally, α : t ∈ [0, T ]→ (xα(t), ua(t)) is a trim primitive if:

xα(t) = Φ(exp(tξα), xα(0)), uα(t) = uα,∀t ∈ [0, T ]

or if the motion is a finite flow along left invariant vector fields with constant control

inputs. The set of trim primitives is denoted T (S, G).

Once a trim primitive vector field has been identified it can be used to construct a

one-parameter family of trim primitives

α(τ) : t ∈ [0, T ]→ (Φ(exp(tξα), xα(0)), uα),

where τ is called coasting time, and the set of all such primitives defined by Tα =

{α(τ), τ ≥ 0}.

The displacement of a trim primitive α with coasting time τ is simply gα = exp(τξα).

4.3.1.2 Maneuvers

Maneuvers are designed to efficiently switch from one steady-state motion to another.

Therefore they are defined to be compatible form left and right with trim primitives.

The set of maneuvers is denoted M(S, G) ⊆ P(S, G). Formally, a maneuver π satisfies

π ∈M(S, G)⇔ ∃α, β ∈ T (S, G) : απβ ∈ P(S, G).
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The displacement as a result of executing the maneuver is denoted gπ.

4.3.2 Computing motion plans

The motion planning problem can now be solved by finding a sequence of primitives ω con-

sisting of trim primitives α1, ..., αN+1, with coasting times τ = (τ1, ..., τN+1), connected

by maneuvers π1, ..., πN . The pair (primitives, coasting times) is denoted (ω, τ) ∈ P(S, G)

and is defined by

(ω, τ) = α1(τ1)π1α2(τ2)π2...πNαN+1(τN+1)

The task is to find (ω, τ) that takes the system from an initial state xi ∈ X to a final

goal state xf ∈ X or to a set Xf ⊂ X.

Controllability Although by assumption the original control system is controllable,

a system that is forced to move only along primitives might not be controllable to an

arbitrary state xf ∈ X. Intuitively, this limitation arises since the trim trajectories are

of particular form that could constrain the reachable space around xf . Fortunately, the

fact that the trim primitives are continuously parametrized makes it possible to consider

infinitesimal motions by perturbing their coasting times near the origin. The composition

of the resulting infinitesimal flows can generate new directions of motion to increase the

dimension of the reachable set around xf . Similar to the Lie algebra rank condition

(LARC) for nonintegrable systems, if the number of the linearly independent iterated Lie

brackets of the trim vector fields ξαi equals the dimension of the lie algebra g, then the

system is controllable to the configuration of xf [22].
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The total group displacement after executing trajectory p = (ω, τ) would be

gp =

[
N∏
i=1

exp(τiξαi)gπ1

]
exp(τN+1ξαN+1)

Therefore, as the authors of [22] point out, the original differential control system was

transformed into a purely kinematic system, with the transformation being exact without

any approximations.

It is reasonable to assume that the initial and final conditions are given in terms

of steady states (or trim primitives) xα(0) and xβ(0) respectively, i.e. there are group

elements g0, gf such that x0 = Φ(g0, xα(0)) and xf = Φ(gf , xβ(0)). Then computing a

motion from x0 to xf amounts to finding a motion plan p = (ω, τ) such that

gp = g−1
0 gf

Solving this equation is equivalent to the problem of kinematic inversion in robotics.

Furthermore, any cost function to be minimized can also be reexpressed in terms

of cost of executing the individual primitives. The resulting optimal control problem is

solved algebraically without the need of finite-difference approximation of the original

control system derivatives.

4.4 Motion Planning using DMOC and Roadmaps

The main idea is to start by computing many simple short but optimal motions through

DMOC optimization. These motions are guaranteed to be optimal since they are selected
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as the best solution from multiple optimization runs with varying initial conditions. The

trajectories are then used to build a library of primitives. A cost function minimizing

motion plan can then be formulated as a kinematic optimal control problem as described

in Sec. 4.3.2. A feasible solution to this problem might still be difficult to compute

and far from optimal when that state-space is complex. Therefore, a global dynamic-

programming approach such as a sampling-based roadmap would be appropriate and is

explored in this section.

4.4.1 Trajectory Discretization

Time Discretization There are different types of DMOC discretization depending on

the type of systems studied. This results into different ways of defining the state space

for roadmap planning using primitives:

• The case of vehicles on Lie groups (2.4) is defined using a discrete state (gk, ξk, µk) ∈

G× g× g∗ where µk is computed from ξk using the Legendre transform. The state

space is

X := G× g, xk := (gk, ξk).

• The more general case of vehicles with symmetries and nonholonomic constraints

(3.24) is defined using a discrete state ((rk, uk, pk), (gk,Ωk, µk)) ∈ (TM ⊕ T ∗M) ×

G × s × g∗ where pk and µk are computed from uk and ξk using the Legendre

transform and ξk = Ωk −A(rk + αhuk)uk. The minimal state is

X := TM ×G× s, xk := (rk, uk, gk,Ωk).
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Discrete Evolution The evolution of the state in DMOC is defined using the discrete

flow

ϕd : X × N→ X

(xk, i)→ xk+i, i ≥ 0

The discrete flow is computed recursively using an integrator. The integrator can be

either explicit, of the general form:

xk = f(x0:k−1, u0:k−1),

or implicit, taking the form

f(x0:k, u0:k) = 0,

where x0:k denotes the sequence of states x0, ..., xk. Normally, when first order discretiza-

tions are used, f only depends on the last state xk−1 and last control uk−1. Higher order

discretization schemes, though, result in dependency on previous states and hence, for

generality, f is defined to depend on the whole trajectory and control history.

In particular, the following integrators are used for time-stepping update xk → xk+1

based on the type of system:

• systems on Lie groups: (2.7)-(2.9)

• nonholonomic systems with symmetries: (3.39)
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The discrete flow approximates the continuous flow ϕ : X × R → X (see Sec.4.3.1),

i.e.

ϕd(xk, i) ≈ ϕ(x(kh), ih), xk ≈ x(kh)

Using this relationship the notions of invariance, equivalence, and compatibility defined

in Sec. 4.3.1 extend trivially to DMOC trajectories when restricted to their discrete set

of states.

4.4.2 Sequencing Primitives

Naive Sequencing The sampling based planners rely on a function Extend that must

efficiently produce a trajectory connecting two nodes. In the primitives planning frame-

work this amounts to first selecting a sequence of trim primitives and maneuvers. Such a

selection is a combinatorial problem which can be combined with an optimization prob-

lem (usually affine) in order to determine optimal coasting times for trim primitives

(Sec. 4.3.2). Although the resulting numerical problem is much easier than the original

optimal control problem it still requires combinatorial search and iterative optimization.

Instead, we use a simple sequencing strategy by replacing the set Tα of continuously

parametrized trim primitives along some vector field ξα by the discrete set {α(τ imin)}ci=1,

i.e. by trim primitives of exponentially increasing times. The smallest coasting time τmin

is chosen so that ‖gα(τmin)‖ < dmin, where ‖ · ‖ : G → R is distance function determin-

ing how close two configurations are and dmin is a minimum allowable error tolerance

on achieving a motion plan. The maximum exponent c is chosen so that τ cmin does not

exceed the reasonable time in which we believe the while motion can be achieved. Such
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an approximation is chosen since it allows the quick construction of a trim primitive

with coasting time equal to any factor of τmin. In essence, the optimization part of the

problem is one more time replaced by a combinatorial one at the expense of slight loss of

controllability.

Sequencing primitives then proceeds in the most simplistic and greedy manner:

• go through all primitives compatible with the current one

• select the one that takes the vehicle closest to goal

• keep iterating until distance to goal is less than dmin.

This is by no means optimal but it is very efficient, and since our roadmap has the ability

to prune bad subtrees then, in practice, bad sequences are quickly replaced by better

ones. The constantly decreasing upper bound on the current optimal cost guarantees

that only cost improving sequences are considered.

Proper Sequencing Proper sequencing involves selecting a set of primitives and coast-

ing times that would result in a more optimal trajectory that reaches the sampled node

exactly. Such a solution can be computed using nonlinear programming since in general

it has no closed-form. We choose to use the naive strategy explained above in order to

avoid the extra cost of iterative optimization. In addition, the automatic cost bounding

and trajectory pruning at the higher level roadmap construction assures that the resulting

path is nearly optimal even when using a naive local strategy. In addition, for for certain

simpler problems, it is worth exploring exact inverse kinematics solutions.
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4.4.3 Examples

Helicopter We apply the roadmap planning with primitives to the helicopter model

introduced in Sec. 2.10.2. One can view this model as an idealized version of the systems

used in [22] with the main difference that we have chosen an exact form of control in-

put vector fields instead of using a control input transformation determined empirically.

While not as closely realistic as the form used in [22] our formulation preserves the high

underactuation of the system and allows us to show how to compute requirements for

trim primitives in closed form.

The helicopter dynamics is invariant under transformations by the groupG′ = SO(2)×

R3, i.e. rotations around z-axis and translations. The primitives that we use are in the

form of the vector field ξα ∈ se(3)

ξα =



0 −ωz 0 vx

ωz 0 0 vy

0 0 0 vz

0 0 0 0


,
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where the angular velocity (around the body-fixed z-axis) ωz and the linear velocity

v = (vx, vy, vz) ∈ R3 are chosen in a special way to preserve the dynamics invariance.

Based on our model, the conditions for invariance can be computed as:

rotor blade angles: γp = 0, γr = 0

rudder input: uψ = 0

The remaining variables satisfy:

vyωz = −g sin θ

−vxωz = g cos θ sinφ

uc = g cos θ cosφ,

where g = 9.81 from gravity, θ and φ are the pitch and the roll of the helicopter body

computed from its rotation matrix R ∈ SO(3). These conditions ensure a constant

velocity, i.e. ξ̇ = 0 along the whole trajectory.

A general primitive with constant velocity in the form ξα can be then constructed by

setting:

θ = − arcsin
(
vyωz
g

)
, subject to |vyωz| < g,

φ = − arcsin
(
vxωz
g cos θ

)
, subject to |vxωz| < g cos θ

uc = g cos θ cosφ.

In other words once v and ωz are chosen then invariance is maintained by requiring

that the starting configuration of the primitive has pitch θ and roll φ (and hence any

configuration along the primitive since these two variables would remain invariant), that
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the blade angles and the rudder input be set to zero, while the collective uc is held

constant as defined above.

For example, a trim primitive corresponding to sharp right turn with velocities v =

(15, 0, 0) in m/s and ωz = 30◦/s requires that θ = 0, φ = −53.19◦, uc = 5.89 N. A less

aggressive turn with vx = 10 m/s and ωz = 15◦/s requires φ = −15.48◦ and uc = 9.45 N.

See Fig. 4.4 for examples of some of these primitives.

Our analytical derivation of the invariance conditions is consistent with the experi-

mentally determined primitives used in [22] for real helicopter. Similar to this work we

can also include non-zero sideways velocity vy and hence non-zero pitch θ in the primi-

tives construction but that is not required since our simple model does not account for

air resistance and constant forward velocity can be maintained without pitching forward.

The vertical component vz can be chosen freely within the vehicle envelope and does not

affect invariance.

Fig. 4.5 shows the constructed roadmap and gives a closer view of the resulting least

cost trajectory. One of the nice feature of the sampling-based methods is the ability to

quickly explore the state space and find any solution, which initially is far from opti-

mal. The algorithm can then quickly improve that solution as the roadmap covers the

environment more densely.

Car In the car example (with dynamics described in Sec. 3.4), trim primitives consist

of straight forward and backward motions of constant velocity; as well as left and right,

forward and reverse turns with constant steering angle and constant velocity. Maneuvers

are solutions to optimal control problems with boundary conditions compatible with a
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top view side view

close-up view final maneuver

Figure 4.5: An example of planning using DMOC primitives and an incremental roadmap
global search. A helicopter must traverse a cluttered urban environment and arrive inside
the cylinder with minimum fuel. The different views show the resulting roadmap and least
cost trajectory to goal after 1 second of computation.
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Figure 4.6: Incremental PRM for a car-like robot. The goal is to compute a trajectory
that parks the car inside the Π-shaped parking structure.

chosen pair of trim primitives. Fig. 4.6 shows an example of optimal motion of a car into

a parking structure. For simplicity, in this example the distance metric is the standard

euclidean metric on the (x, y)-position subspace.

4.5 Extensions

In this section we consider several important extensions to the general motion planning

framework. For simplicity, the simulation results are based on vehicles with simple uncon-

strained dynamics subject to velocity limits. Since the roadmap method is not specific to

any particular dynamics model the developed algorithms are applicable to vehicles with

realistic dynamics as well.
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4.5.1 Moving Goal State

Assume that the goal state is moving in time and the vehicle has complete knowledge of

its dynamical model. For clarity denote the goal state at the k-th time stage by yk ∈ X.

The task is still the same: to reach the goal state with minimum cost. For computational

purposes, the trajectory of the goal can be precomputed up to the time horizon of K

stages as y0:K .

The roadmap algorithm can be used with slight modification when extending the

roadmap towards the goal. Let the time and state of the roadmap node to be extended

by denoted by (tk, xk). In order to connect this node to the goal trajectory one can

simply sample an integer l, k < l < K, and extend towards the pair (tl, yl). Depending

on the cost function, it might be possible to choose a heuristic for better sampling. For

example, if the cost function is minimum time, then l can be chosen such that (l − k)

time steps is a lower bound on time required to move from xl to yl, and if such extension

fails to continue with increasing l until the minimum l is found. Fig. 4.7 shows results for

reaching the goal in minimum time using a point-mass vehicle with limits on the velocity.

4.5.2 Optimal Coverage

Consider the case of a vehicle with circular sensing area of fixed radius. Obstacles in

the environment restrict the sensor coverage, e.g. the sensor such as an omnidirectional

camera covers only the physically visible area. The task is to compute a vehicle path that

maximizes the union of all area covered within some prescribed time horizon K.

This is a very difficult, computationally intractable problem. It has been shown that

it can be reduced to a high-dimensional traveling salesman problem (TSP) which itself is
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tf = 65 s. tf = 45 s.

tf = 39 s. closer view

Figure 4.7: Finding a time optimal trajectory to reach a time-varying goal state with
known dynamics. The goal state is the lower right at time t = 0 and starts to move
north going around obstacles–its projected trajectory is drawn leaving the environment
at time t = 100 s. Consecutive stages of the roadmap expansion show how the current
best solution improves (the cost function is the time tf of reaching the goal ).
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NP-hard and at best has exponential complexity if solved through dynamic programming.

Our goal is to compute a good (but not optimal) solution through the roadmap framework

(which in essence combines dynamic programming with randomization).

Applying the roadmap approach is straightforward. The only modification is to the

cost function. The heuristic cost used during expansion is based on assuming there are no

obstacles and can be computed quickly. The actual cost is then computed using standard

computational geometry methods for polygon area (in 2-D) and polyhedra volume(in

3-D) and intersections.

In particular the cost used is the total area covered divided by the total trajectory

time, i.e. the coverage rate. Denote the workspace to be covered by W. Depending on

the sensing application W ⊂ R2 or W ⊂ R3. Let the vehicle cover a region A(xk) ⊂ W

while it is at state xk at time tk. The cost function at xk is then

cost(x0:k) =
area(A(x0) ∪ ... ∪ A(xk))

tk − t0

It is evident that the change in the cost from one node to the next depends on the

whole trajectory and not only on the new segment. Therefore, in the standard planning

framework a system state at time tk must be not the state xk but the whole trajectory up

to that time x0:k. Only then the cost function is a distance metric satisfying the triangle

inequality and useful for dynamic programming in a graph structure. Since constructing

and using such states is impractical we only consider a tree structure in which nodes can

still be described by the original states xk given that the cost is recomputed after the
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trajectory is extended. This can be done efficiently by storing the region covered by the

whole trajectory at each node. See Fig. 4.8.

Figure 4.8: A vehicle that can sense everything outside the obstacles up to a fixed radius.
Maximizing the total area searched (shaded) in fixed time horizon of of 100s. Consecu-
tive stages of the roadmap expansion show how the current best solution improves (the
coverage cost is the total shaded area shown).

4.5.3 Uncertain Target Detection with Multiple Vehicles

Imagine that some interesting phenomenon is taking place in the environment. Assume

that we have multiple vehicles equipped with sensors that can make noisy measurements

of this phenomenon. For example, this phenomenon could be a single object of interest
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that is moving in a cluttered environment with some uncertainty, e.g. we might know

that it is heading north with speed around 5 m/s and that it might slow down, avoid

obstacles, speed up, etc... In this example we consider the problem of vehicle deployment

in order to maximize the information gained about the target.

In this section we only briefly describe some experimental results without describing

the probabilistic framework in detail. For instance, Fig. 4.9 gives a few consecutive

snapshots of the vehicle and target states during deployment.

Figure 4.9: An example scenario: a target with uncertain dynamics is moving north
avoiding obstacles. Its possible motion is represented by a finite set of particle trajectories.
These trajectories are used to simulate future measurements taken by the vehicles. Two
vehicles with circular sensing field-of-view (with initial position in the lower left corner)
are deployed in order to maximize the probability of detecting the target.

In order to solve the problem we use the RRT exploration algorithm (Fig. 4.2). A node

contains the states of all vehicles and a probabilistic estimate of the target state computed

from sensor measurements. Since there is no preexisting target motion the measurements

must be simulated. Since the target is moving whole trajectories of measurements must

be simulated. Furthermore, we represent the uncertainty in target motion by generating
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multiple target trajectories (and hence use multiple target trajectories measurements)

in a Monte-Carlo fashion. Consequently, any measure of uncertainty or information is

computed by taking its expected value over these possible target motions. Therefore, each

node stores a set of N probabilistic filters (where N is the number of Monte-Carlo target

trajectories) each filter updated by assuming that the true target motion is a particular

trajectory from that set. In our implementation we use Kalman filters of constant velocity

and white noise acceleration based on relative position measurements assuming Gaussian

error sensor model.

A proper implementation would also involve importance resampling of the Kalman

filter states in order to avoid estimates with very low probability. We leave that for future

work.

The distance metric used for planning is a combination of time and the inverse of the

expected variance (i.e. the norm of the filter covariance) of the target state estimate. The

tree expansion is designed to achieve global exploration while also attempting to connect

with areas with high expected target probability mass. This is achieved by drawing a

small fraction of the tree samples from the actual simulated measurement particle set

treated as a probability distribution. A near-optimal solution is depicted on Fig. 4.10.

4.6 Conclusion

This section presented a way to combine optimal control and global state space search

in order to solve the problem of deploying one or multiple vehicles to achieve a certain
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initial conditions least cost vehicles trajectories

Figure 4.10: A single target with time-varying uncertain dynamics (with distribution in
time represented by particle trajectories) must be detection with maximum probability
and in minimum time. Two vehicles with circular sensing field-of-view and limited velocity
are deployed based on sampling-based roadmap computation.

goal such as reaching a goal state or minimizing a task specific cost function. Our ap-

proach is based on combining DMOC with motion planning methods developed in the

robotics community and extending the framework to interesting problems involving real

dynamics, uncertainty, and complex cost metrics. Some of the resulting algorithms (such

as maximizing coverage from Sec. 4.5.2) are not guaranteed to be near optimal because

of the exploding dimension of the search space inherent to the specific problem. Yet,

even in such difficult problems employing a roadmap representation build from optimal

primitives proves useful since it encodes many possible motions in a compact and efficient

manner.

Proper treatment of uncertainty in our framework is still an open problem. An exam-

ple of deployment with uncertain target dynamics and simple noisy sensing was given in

Sec. 4.5.3. Some initial progress has been made in incorporating uncertainty in more real-

istic dynamical models in order to achieve the task at hand while minimizing the chance
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Figure 4.11: Uncertainty in the helicopter position. Different motions resulting from
uncertain external disturbance forces, e.g. arising from wind. The trajectories and the
resulting position uncertainty ellipsoid are generated by sampling from a Gaussian exter-
nal force error model.

shortest path safest path

Figure 4.12: A helicopter with uncertain dynamics (as shown in Fig. 4.11) must fly to
a goal location across a digital terrain. Its position estimate uncertainty norm is drawn
as a tube along the path. It has no GPS and can only measure its own position by
observing static beacons in the environment. The path on the left shows the shortest
path to the goal but clearly demonstrates that the resulting uncertainty would increase
the chance of collision with the terrain. The path on the right is aimed at minimizing the
chance of collision by minimizing the position uncertainty along the path in the vicinity
of obstacles.
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of violating certain constraints such as colliding with obstacles. An example of ongoing

work with a helicopter model (described in Sec. 2.10.2) with uncertainty in control inputs

and external disturbances is depicted in Fig. 4.11. A computed scenario inspired by the

related work [49] is described in Fig. 4.12.

The main challenges in incorporating uncertainty lie in choosing a numerical repre-

sentation that would result in a balance between accurate noise propagation and efficient

computation suitable for the kinds of deployment problems discussed in this section. Ulti-

mately, one needs to examine and deal with sources of uncertainty not only in the vehicle

sensing and actuation but also in connectivity and communication that are extremely

important in multi-vehicle and distribution applications.
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Chapter 5

Homotopy Continuation of Motion Planning Constraints

5.1 Introduction

The goal of this chapter is to apply homotopy continuation methods to motion planning of

mechanical systems such as autonomous robots that are subject to complex constraints.

Such constraints can arise either from the environment, such as obstacles; from the dy-

namics of the system, such as nonholonomic constraints or underactuation; or from the

given task, such as maintaining visibility to a target of interest during motion. The main

idea behind the homotopy methods that we propose is to initially solve an easier (usu-

ally trivial) problem and then continuously deform it into the original problem arriving

at the true solution. This deformation could have physical meaning such as shrinking

or smoothing of obstacles, or gradually adding/removing degrees of freedom of motion,

or could be a based on nonphysical numerical homotopy such as convexification of the

equality relation describing the constraint. The advantage of the homotopy approach

is that one can start with an initial solution that is easy to compute and repeatedly

solve a slightly more complex problem using the solution of the previous one as an initial
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guess until the original problem is solved. If slight variations of the problem result in

slight variations of the solutions, then the method offers a stable and efficient way to

solve otherwise complicated problems. The theory of homotopy continuation establishes

conditions under which such deformation is possible and provides numerical methods for

tracing a solution.

The problems that we study involve constraints that are described by algebraic equal-

ities or inequalities. Such relations are derived, for example, from the discretization of the

systems dynamics or from the approximation of obstacle boundaries using algebraic sets.

The homotopy methods described here apply to motion planning methods that are based

on such constraint representation. Optimal control problems such as minimizing the con-

trol effort while satisfying boundary conditions are our main application. Nevertheless,

the homotopy approach applies to other control problems such as point stabilization or

trajectory tracking as well.

Next we present the general concept behind homotopy and describe two standard nu-

merical continuation methods that apply to systems evolving on continuous configuration

spaces. Then we give several applications: relaxation of environment obstacles through

physical and non-physical deformations; smoothing of rough terrain to relax path plan-

ning constraints for legged robots; relaxing the underactuation of simple control systems.
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5.2 Homotopy Continuation

We recall the basic formulation of the homotopy method, following [1], applied to the

problem of finding a solution to the N nonlinear equations in N unknowns

F (x) = 0,

where F : RN → RN is a smooth map. Without prior knowledge of the problem a

standard root-finding technique might fail because of poorly chosen initial guess. This

can be avoided by using a homotopy (or deformation) H : RN+1 → RN defined by

H(x, 1) = G(x), H(x, 0) = F (x),

where the smooth map G : RN → RN has known or easy to compute solution. For

example, a commonly used homotopy is

H(x, λ) = λG(x) + (1− λ)F (x).

The goal is to trace the implicitly defined curve c(s) ∈ H−1(0) from the initial solution

(x1, 1) to the actual solution (x̄, 0).

If zero is a regular value of H then such curve exists and is diffeomorphic to the real

line or the circle. This is equivalent to having the Jacobian DH have full rank for all

values of x and λ. The curve c(s) is then a submanifold of dimension 1, where s is usually

arc-length parameter.
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Bifurcation points can occur whenever the Jacobian loses rank. The set H−1(0) could

then have isolated points and branches that need to be handled in special way in order

to reach (x̄, 0). Such abnormal conditions can be detected whenever the determinant of

the augmented Jacobian

det

 DH(c(s))

ċ(s)T


becomes zero or changes sign.

The goal solution (x̄, 0) can be reached from the initial solution (x1, 1) using various

methods. The simplest way is to gradually change the value of λ from 1 to 0 using small

decrements and solve the resulting problems. This is called embedding. Often λ is not the

most appropriate parameter for tracing the solution because it might require very small

increments to guarantee convergence or the solution curve might have turning points past

which embedding cannot continue. In such cases it is more natural to use the arclength

parametrization of the combined curve (x, λ). The family of continuous methods based

on such parametrization are called Predictor-Corrector (PC) methods.

5.2.1 Embedding Method

The embedding method follows the general scheme
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Embedding Algorithm

Select


x1 ∈ RN such that H(x1, 1) = 0,

integer m

x = x1, ∆λ = 1/m

for λ = 1, 1−∆λ, ...,∆λ, 0

solve H(x, λ) = 0

end

(5.1)

5.2.2 Predictor-Corrector Method

The PC method is formulated as an initial value problem of integration along the curve

c(s) from λ = 1 to λ = 0. The problem is obtained, following [1], by differentiating

H(c(s)) = 0 with respect to s, so that the following conditions are satisfied

DH(c)ċ = 0, ‖ċ‖ = 1, c(0) = (x1, 1).

These sets of equations can be transformed into the ODE

c(0) = (x1, 1), ċ = t(c),
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that can be integrated until λ = 0 is reached. If DH is nonsingular then the tangent

vector t : RN+1 → RN+1 can be easily obtained by QR decomposition of DH since if

DHT = Q

 R

0T

 ,

then since DHt = 0, we have

[
DHT , t

]
= Q

 R 0

0T 1

 ,

and t can be taken as the last row of the orthonormal matrix Q.

The PC method then follows the general scheme:

PC Algorithm

Select x1 ∈ RN such that H(x1, 1) = 0,

u = (x1, 1)

while λ 6= 0

determine stepsize h

u = u+ ht(u) (prediction)

solve H(u) = 0 (correction)

end

(5.2)
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Several issues determine the success of the PC method: selecting the right stepsize

h; making sure that t does not change direction accomplished by monitoring the de-

terminant of the augmented Jacobian; handling singularities and resulting bifurcations;

implementing an efficient corrector solver. Here we have given only the very basic notion

behind the method without any of the intricate details. We refer the reader to [1] for

further information.

5.3 Applications

We apply the homotopy techniques to several optimal control problems. The solution of

these problems can be obtained either by direct methods based on sequential quadratic

programming (SQP) or indirect methods based on root-finding. In either case we apply

the embedding algorithm (5.1) to the resulting system of equations to be solved. We have

some preliminary results with PC methods (5.2) as well but we postpone them for future

publications.

The problems involving the constraints described below are difficult to solve without

a good initial guess. Finding a good initial guess is almost as hard as the original problem

which motivates the use of homotopy continuation.

5.3.1 Obstacle Constraints

Assume that we are given a mechanical system on a configuration space with complex

inaccessible regions induced, for example, by physical obstacles in the environment that

must be avoided. If the environment is cluttered with obstacles with complex boundaries
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it is often easier to find a solution by relaxing the obstacle avoidance requirement. This

can be achieved in several ways that we discuss next.

In the following subsections assume that the configuration space of the system is Q,

and a configuration is denoted q ∈ Q.

5.3.1.1 Distance Function

Obstacle avoidance is measured by the distance between the two closest points from the

set of points occupied by the mechanical system and the set of points defining the obstacle.

Assume that the mechanical system occupies a region A(q) ⊂ Q that is a function of its

configuration q. The obstacles in the environment are denoted Oi ⊂ Q and the set of all

obstacles is O = {Oi}. Assume that we are given a distance function ρ : Q×O → R that

computes the distance

ρ(q,Oi)

between the vehicle at configuration q and obstacle Oi. By convention, the distance is

positive when the vehicle and the obstacle are not colliding and negative otherwise.

The algebraic constraint enforcing obstacle avoidance is then

ρ(q,Oi) > 0

If the obstacle or the vehicle have complex nonsmooth boundary then the distance func-

tion would also be nonsmooth and would affect the convergence of nearby trajectories

especially if gradient-based methods such as optimal control or potential field navigation
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are used to compute a motion plan. This can be remedied by introducing the following

homotopy

ρλ(q,Oi) = λ‖q − q1‖+ (1− λ)ρ(q,Oi),

where q1 ∈ Q is an appropriately chosen configuration. For example, one physically

meaningful choice for q1 is the centroid of the obstacle. In this case, ρλ convexifies ρ

by enclosing the obstacle in a ball that smooths its boundary while gradually growing it

back to its original form as λ goes from 1 to 0.

Example: Helicopter in a digital elevation map Fig. 2.5 shows the trajectory of

a simple helicopter that must fly optimally in a digital terrain map. The trajectory was

computed using the distance function homotopy with q1 chosen to lie approximately at

the center of the tall mountain in the middle.

5.3.1.2 Algebraic Obstacles

It is common to represent objects as the intersection of half-spaces defined by smooth

algebraic hypersurfaces in Q. For example, registration or parametric shape fitting of

sensor data “point clouds” in 3-D are standard methods for producing such object repre-

sentation. When the surfaces are planes the obstacle regions are polytopes, i.e. polygons

in 2-D, polyhedra in 3-D, etc...
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Example: Disk Obstacle A simple example is when both the vehicle and the obstacle

are disks in R2. Let the vehicle radius be r and denote the obstacle by Od := {qd, rd},

where qd ∈ R2 is its center and rd its radius. The obstacle function is

ρd(q,Od) = ‖q − qd‖ − rd − r,

so that ρd(q,Od) > 0 and a homotopy that shrinks the disk can be defined by

ρλd(q,Od) = ‖q − qc‖ − (1− λ)rd − r

Example: Polygonal Obstacle Polygonal obstacles can be treated in a similar man-

ner. Let Op := {qi}ki=0 denote a polygonal obstacle with k + 1 vertices q0, ..., qk ∈ R2.

Let ρp(q,Op) be the distance function between the vehicle at configuration q and polygon

Op. If the center of mass of the polygon is qp then a homotopy can be constructed by

shrinking the polygon towards its center of mass through

ρλp(q,Op) = ρp(q,Oλp ), Oλp := {qp + (1− λ)(qi − qp)}ki=0

The disk and polygonal homotopies are illustrated in motion planning for a car with

simple dynamics. Fig. 5.1 shows different stages of the obstacle growth and its affect on

the current car trajectory. In the absence of obstacles it is relatively easy to compute an

initial path, which can then by quickly deformed to account for the growing obstacles.
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Figure 5.1: A car traveling in a tunnel. The initial trajectory is quickly computed by
shrinking the obstacles to points. The obstacles are then grown and the trajectory re-
peatedly modified.

5.3.1.3 Rough Terrain

Assume that we have a robotic dog (Fig. 5.2) that must optimally traverse a very rough

terrain. One approach is to represent the dog trajectory as a sequence of discrete poses

each of which is statically stable in the sense that the center of mass of the dog projects

vertically inside the support triangle formed by the set of three feet touching the ground

while the fourth one is lifted to move forward. At each pose the dog kinematics must

conform to a statically stable touchdown with one leg and statically stable take-off with

another leg, in addition to keeping contact with the ground with the remaining legs.

For example, Fig. 5.3 shows a few poses along a computed path the traverses a sample

terrain. Additionally, the trajectory of the dog must end close to a particular point on

the other side of the terrain. The problem is setup as a constrained optimization where
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Figure 5.2: LittleDog manufactured by Boston Dynamics Inc.. The robot is used in the
DARPA “Learning Locomotion” program with the goal to enable an unmanned vehicle
to successfully traverse challenging terrains. One such terrain digitized from a real terrain
patch is shown on Fig. 5.3. We use it as one of our test environments.

the constraints describe the motion and the objective function is the distance to that goal

point.

The homotopy presented next is designed to increase the chances of successful traversal

of rough terrains. It is motivated by the lack of a robust way to find an initial trajectory

that satisfies the stability constraints and makes progress towards the goal. The idea is

to smooth the terrain to a surface that is easy to cross and then to gradually deform

that surface into the original terrain with the hope that the trajectory can be corrected

to account for the increased difficulty of motion. Based on our experiments this can be

successfully accomplished, or whenever failure occurs, another easy to compute starting

guess can be tried until the task is achieved successfully.
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Figure 5.3: LittleDog on a digital terrain corresponding to a real laboratory terrain patch.
The graphs show a few poses along an optimal path that successfully traverses the terrain.

Assume that the terrain height is described by the map z : R2 → R, i.e. the coordi-

nates of each point on the terrain are (x, y, z(x, y)) for (x, y) ∈ R2. One way to smooth

this surface is to use Gaussian filtering. Define the following homotopy

zλ(x, y) =
1
η

m∑
i=−m

m∑
j=−m

G(λσ, i∆, j∆)z(x+ i∆, y + j∆), (5.3)

where the scalar ∆ is the terrain map resolution, σ is the Gaussian filter standard devi-

ation, m = round(2λσ/∆), and

G(σ, v, w) =


1√
2πσ

e−
v2+w2

2σ2 , for σ 6= 0;

1, for σ = 0;
, η =

m∑
i=−m

m∑
j=−m

G(λσ, i∆, j∆).
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Figure 5.4: LittleDog’s discrete trajectory on the terrain from Fig. 5.3. The terrain surface
is initially smoothed and gradually deformed to its original. As the terrain changes the
computed trajectory is adjusted accordingly to satisfy all stability and contact constraints.
This type of “embedded” constrained optimization successfully yields an optimal solution,
while optimization performed on the original terrain does not converge because of the high
irregularity of the terrain.

Fig. 5.4 shows several stages of the terrain deformation and the resulting trajectory

deformation to account for the changing stability and contact constraints. The final

trajectory satisfies the contact and stability constraints and could potentially be used as

a reference trajectory for successful terrain crossing.

Note The map resolution ∆ can also be made part of the homotopy since the discrete

convolution (5.3) should be performed at low resolution when the Gaussian standard

deviation is high. As the standard deviation goes to 0, i.e. when the terrain returns to
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its original form, the resolution should be increased to its highest value. This can be

achieved by replacing ∆ in (5.3) with ∆λ defined by

∆λ = (1− λ)∆high + λ∆low,

where ∆high is the original resolution of the terrain map, and ∆low is the lowest resolution

that would approximate the terrain.

5.3.2 Nonholonomic constraints

Assume that we are given a control system on n-dimensional manifold Q with regular

distribution Dq = span{fi(q), i = 1, ..., c} at q ∈ Q, where fi : Q → TQ are linearly

independent smooth vector fields. Velocity vectors can then be described locally by

coordinates vq ∈ Dq ∼ Rc so that the system has the form

q̇ =
c∑
i=1

vifi(q)

v̇ = u,

where u ∈ Rc is the control input.

Assume that the task is to drive the system from its current state (q(0), v(0)) to a

goal state (q(T ), v(T )) after some finite time T , and that the system is controllable given

this setup. Let fj : Q → TQ, j = c + 1, ..., n be n − c linearly independent vector fields

orthogonal to D, i.e. such that � fi, fj �= 0, for all i = 1, ..., c and j = c + 1, ..., n.

Then TqQ = span{fi(q), i = 1, ..., n} for all q ∈ Q.
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Let us imagine for a moment that the system was not restricted to move along di-

rections in D only, so that it is fully holonomic. Assume that in this case we can easily

find a solution to the motion planning problem and denote this solution trajectory by

(q̄(t), v̄(t)), t ∈ [0, T ]. Then, one way to compute a solution to the real nonholonomic

problem is to continuously deform (q̄(t), v̄(t)) by gradually removing the degrees of free-

dom corresponding to fj , j = c+ 1, ..., n but keeping the boundary conditions fixed. This

can be accomplished using the homotopy

q̇λ = (1− λ)
c∑
i=1

vifi(q) + λ

n∑
i=1

v̄ifi(q)

v̇ = u,

Clearly, q1(t) = q̄(t) and q0(t) = q(t). The modified system can be used to find a

trajectory satisfying the boundary conditions through a path-lifting method or it could

serve as a constraint in an optimal control problem, i.e. minimizing the control effort∫ T
0 ‖u‖2dt.

Initial experiments with such homotopy are preformed on a simple nonholonomic

unicycle model. Fig. 5.5 shows several stages of the homotopic computation of a control-

effort minimizing trajectory.

Currently, this type of control system deformation is only an idea and need to be

explored in much more depth.
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Figure 5.5: Homotopy stages of computing an optimal trajectory for a nonholonomic
robot. Initially the robot is fully holonomic and a path can be computed very quickly.
That path is then gradually deformed to account for the nonholonomic constraint as well
as the optimality conditions.

5.4 Conclusion

The simple idea behind the methods described in this section was to solve motion plan-

ning problems more robustly by relaxing difficult constraints. The developed algorithms

apply to iterative numerical schemes arising from root-finding or nonlinear programming

motion planning formulation. The approach facilitates the computation of the roots of

nonlinear equations or of the minimum of a cost function subject to complex constraints

by initially removing, smoothing, or convexifying the constraints and then smoothly trans-

forming them back to their original form and adjusting the solution accordingly. Applying

the approach to environmental obstacles and to kinematic constraints proved promising in

terms of increased efficiency (as in the car and helicopter examples) and solution conver-

gence when the standard approach fails (as in the rough terrain and dog robot example).
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Yet, it is a difficult task to provide theoretical performance guarantees for general con-

straints. This is an important research direction requiring both local and global analysis

of the space of solution trajectories, subject to varying, possibly non-smooth constraints,

and optimality conditions.
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[29] O. Junge, J.E. Marsden, and S. Ober-Blöbaum. Optimal reconfiguration of formation
flying spacecraft - a decentralized approach. In 45th IEEE Conference on Decision
and Control, pages 5210–5215, 2006.

[30] Eva Kanso and Jerrold Marsden. Optimal motion of an articulated body in a perfect
fluid. In IEEE Conference on Decision and Control, pages 2511–2516, 2005.

[31] Scott Kelly and Richard Murray. Geometric phases and robotic locomotion. Journal
of Robotic Systems, 12(6):417–431, 1995.

[32] L. Kharevych, Weiwei, Y. Tong, E. Kanso, J.E. Marsden, P. Schroder, and M. Des-
brun. Geometric, variational integrators for computer animation. In Eurograph-
ics/ACM SIGGRAPH Symposium on Computer Animation, pages 1–9, 2006.

[33] Marin Kobilarov and Gaurav Sukhatme. Reference redacted for author anonymity.
2006.

[34] Wang-Sang Koon and Jerrold E. Marsden. Optimal control for holonomic and non-
holonomic mechanical systems with symmetry and lagrangian reduction. SIAM
Journal on Control and Optimization, 35(3):901–929, 1997.

[35] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
2006.

[36] T. Lee, N.H. McClamroch, and M. Leok. Optimal control of a rigid body using
geometrically exact computations on SE(3). In Proc. IEEE Conf. on Decision and
Control, 2006.

[37] F. Silva Leite, M. Camarinha, and P. Crouch. Elastic curves as solutions of rieman-
nian and sub-riemannian control problems. Math. Control Signals Systems, (13):140–
155, 2000.

[38] A. Santamaria Merino M. de Leon, D. Martin de Diego. Geometric numerical inte-
gration of nonholonomic systems and optimal control problems. European Journal
of Control, 10:520–526, 2004.

[39] J. E. Marsden and J. Ostrowski. Symmetries in motion: Geometric foundations of
motion control. Nonlinear Sci. Today, 1998.

[40] J. E. Marsden and J. Scheurle. The reduced euler-lagrange equations. Fields Inst.
Commun., (1):139–164, 1993.

153



[41] J.E. Marsden and M. West. Discrete mechanics and variational integrators. Acta
Numerica, 10:357–514, 2001.

[42] Jerrold E. Marsden, Sergey Pekarsky, and Steve Shkoller. Discrete euler-poincare
and lie-poisson equations. Nonlinearity, 12:1647–1662, 1999.

[43] Jerrold E. Marsden and Tudor S. Ratiu. Introduction to Mechanics and Symmetry.
Springer, 1999.

[44] R. McLachlan and M. Perlmutter. Integrators for nonholonomic mechanical systems.
Journal of NonLinear Science, 16:283–328, aug 2006.

[45] James Ostrowski. The Mechanics and Control of Undulatory Robotic Locomotion.
PhD thesis, California Institute of Technology, 1996.

[46] James Ostrowski. Computing reduced equations for robotic systems with constraints
and symmetries. IEEE Transactions on Robotics and Automation, pages 111–123,
1999.

[47] James P. Ostrowski, Jaydev P. Desai, and Vijay Kumar. Optimal gait selection for
nonholonomic locomotion systems. The International Journal of Robotics Research,
19(3):225–237, 2000.

[48] Crouch P. and Leite F. S. The dynamic interpolation problem: on riemannian
manifolds, lie groups, and symmetric spaces. Journal of Dynamical and Control
Systems, 1(2):177–202, 1995.

[49] Sam Prentice and Nicholas Roy. The belief roadmap: Efficient planning in linear
pomdps by factoring the covariance. In Proceedings of the 13th International Sym-
posium of Robotics Research (ISRR), Hiroshima, Japan, November 2007.

[50] Shane Ross. Optimal flapping strokes for self-propulsion in a perfect fluid. In Amer-
ican Control Conference, 2006.

[51] Elie A. Shammas, Howie Choset, and Alfred A. Rizzi. Motion planning for dynamic
variable inertia mechanical systems with non-holonomic constraints. In International
Workshop on the Algorithmic Foundations of Robotics, 2006.

[52] T. Yanao, W. S. Koon, J. E. Marsden, and I. G. Kevrekidis. Gyration-radius dy-
namics in structural transitions of atomic clusters. J. Chem. Physics., (126):1–17,
2007.

[53] H. Yoshimura and J.E. Marsden. Dirac structures in lagrangian mechanics part ii:
Variational structures. Journal of Geometry and Physics, 57:209–250, dec 2006.

154


