
Near Time-optimal Constrained Trajectory Planning on
Outdoor Terrain

Marin B. Kobilarov and Gaurav S. Sukhatme

Robotic Embedded Systems Laboratory
Center for Robotics and Embedded Systems

University of Southern California, Los Angeles, USA
mkobilar|gaurav@robotics.usc.edu

Abstract— We present an outdoor terrain planner that
finds near optimal trajectories under dynamic and kinematic
constraints. The planner can find solutions in close to real
time by relaxing some of the assumptions associated with
costly rigid body simulation and complex terrain surface
interactions. Our system is based on control-driven Proba-
bilistic Roadmaps and can efficiently find and optimize a near
time-minimum trajectory. We present simulated results with
artificial environments, as well as a real robot experiment
using Segway Robotic Mobile Platform.

I. INTRODUCTION

The ability to move optimally on non-flat terrain is
central to outdoor mobile robotics. An autonomous vehi-
cle operating outdoors should be able to quickly plan a
minimum time trajectory to a given location in the envi-
ronment. This paper presents a practical implementation of
an outdoor planner for differentially driven ground vehicles
under dynamic constraints. The planner is demonstrated in
numerous simulated environments as well as in the real
world. A Segway Robotic Mobile Platform (RMP) is used
to demonstrate the planner effectiveness. We choose the
RMP because it works well outdoors and has unconven-
tional dynamics that are interesting to analyze.

Our goal is to implement a fast and efficient time-optimal
outdoor planner. Such a planner requires several compo-
nents: an accurate geometric 3-D environment map that has
high resolution and encodes real-world surface properties;
an accurate physical-dynamic simulator accounting both for
the robot behavior and its interaction with the surface under
different environment conditions; and a trajectory gener-
ation component that computes an optimal and feasible
trajectory satisfying the robot kinematic and dynamic con-
straints. These are the main requirements for a successful
planner. Ideally, even if these required components were
available, the time required for accurate simulation and
planning would be far from close to real time and the sys-
tem would not be suitable for an agile autonomous robot.
Although there have been recent advances in the relevant
fields (Sec II), in reality, systems that completely meet each
of the listed requirements are not available. Generating
accurate 3-D maps of outdoor terrains is hard and still
an open problem. Fast and realistic rigid body simulation
is often available only in a specific environment domain
and complex surface interactions are usually unaccounted

for. Kinodynamic planning in real-time is also difficult and
currently only randomized approaches are shown to find
near time-optimal paths in close to real time.

Clearly, implementing an ideal planner with the above
requirements is not feasible. In order to create a practical
real-world implementation one would have to solve the
problem by making simplifying assumptions that relax
these requirements. This paper presents such a practical
implementation that is able to plan near-optimal trajectories
in close to real time. We use an outdoor map that is an
interpolated surface from a coarse elevation grid. Because
the map is imprecise, we choose to represent the robot
kinematically as a point instead of a full rigid body. Thus,
time consuming collision detection can be avoided since it
is unnecessary in case of a low resolution (and most likely
erroneous) map. The dynamics of the robot are compressed
in a model that depends only on the normal of the traversed
terrain patch and the vehicle velocities and accelerations.
Although the robot is modeled as a point, the computed
trajectories account for its steering non-holonomic and
dynamic constraints. These assumptions enable fast simula-
tion that is critical for efficient kinodynamic planning. The
planner is based on control-driven Probabilistic Roadmaps
(PRM).

Fig. 1. Segway RMP on uneven terrain

The implemented system is applicable to differentially
driven wheeled mobile robots with imposed dynamic
bounds. We demonstrate the system by specifically en-
coding the dynamics and constraints of the two-wheeled

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 1833

differentially driven Segway RMP, shown in Figure 1. The
RMP is the robotic version of the popular Segway Human
Transporter. It can self-balance and move with commanded
linear and angular velocities. The robot pitches forward
(leans) when accelerating and backward when decelerating.
It can pitch up to 40 degrees in either direction depending
on acceleration. Higher platform tilt causes the RMP to
lose balance and fall. The RMP can develop a top speed
of 3.5 m/s, can sustain a maximum acceleration of 2 m/s2,
can carry up to 50 kg, and has approximately 15 km travel
range [1]. It has zero turning radius, but at high forward
speed the turning rate is limited. Based on empirical tests
carried out in our lab, it can climb slopes up to 17 degrees
without payload. It can move on different types of terrain,
and easily traverse small obstacles. Given its good mobility
the Segway RMP can be used for a number of outdoor tasks
e.g. as a robotic mule to transport precious cargo during
time-critical missions, operations in hazardous sites, or as a
personal assistant carrying luggage or executing chores that
require quick autonomous travel between two locations.

Our goal is to find a minimum time path from a start
location to a goal location given an elevation map of the
terrain. For the RMP, this means maximizing acceleration
whenever possible. High accelerations result in higher pitch
and less stability. Motivated by safety considerations (e.g.
the cargo may be sensitive to too much tilt) we impose
an upper bound on the allowed maximum pitch of the
robot. This is a dynamic constraint not encountered with
conventional wheeled robots and its effect on time-optimal
planning is considered in our analysis1. In addition to
the constraint on pitch, the robot is also subjected to
the ’standard’ dynamic constraints: bounded maximum
velocity, acceleration, and roll (lateral tilt).

The planner we built can compute near time-optimal
trajectories which satisfy these dynamic constraints. It is
verified in simulation using numerous environments of
different complexity. The trajectories are computed in close
to real time. The trajectories are not necessary feasible
since the full rigid body kinematics is not considered during
planning. But we emphasize that because high quality 3-
D maps with accurate terrain material modeling are still
extremely difficult to generate, the planned trajectories are
appropriate for real-time global planning in the real world.
Finally, the planner is applied on a real Segway RMP on a
small uneven terrain whose map was generated from laser
scans.

II. RELATED WORKS

A. Terrain Planning

Path planning on terrain is a small part of the broad
motion planning [2] field. While most works consider the
kinematics of the robot only a few address planning under
dynamic constraints that is time optimal. Some authors use
grid-based search to find shortest paths using A* [3], [4],

1Although the planner uses a constraint specific to the Segway RMP,
the work presented is applicable to any other type of two-wheeled or
car-like robot by removing the pitch constraint.

[7]. Such paths are not time-optimal and usually do not
account for dynamic constraints. Some of these works as
well as others use a geometric model of the robot [8], [9],
[5]. [10] focuses on terrain parameter estimation in terms
of cohesion and friction angle, [11] models the terrain
surface as connected particles. Some researchers address
planning based on the traversability of the terrain: in terms
of roll, pitch, and height of the robot placement [3] or
by using fuzzy logic to classify the terrain [12]. [13]
presents an efficient algorithm for finding minimum energy
paths accounting for overturn danger and power limitations.
Such paths are near-optimal in distance and energy but
not in terms of time. In [8] and [16] Cherif uses a two-
level planner by generating a set of subgoals on a discrete
grid in the 2D projected configuration space. The planner
then finds feasible motions between these points on the
terrain surface. This technique finds paths that are safely
executable but since they are precomputed without initially
accounting for dynamics they are not time optimal.

[9] incorporates uncertainty in the planning method by
characterizing the soil/tire interaction and the path follow-
ing error. [4] also proposes a method for dealing with
uncertainty in terrain profile by attaching error intervals on
each grid elevation and by imposing a free channel around
the computed trajectory. [6] adds that planning can be
made more robust by attaching uncertainty to the computed
trajectories based on the visibility of natural landmarks
used for localization. Most works dealing with dynamics
use constraints such as terrain slope and roughness, engine
torque, sliding, surface contact, tip-over, and velocity and
acceleration limits [7], [6], [18]. [18] models the terrain sur-
face and paths using B-spline interpolation. They present
a time-optimal planner under dynamic constraints using
global search (optimized with ”branch and bound”) and
local trajectory optimization for time. Their kinodynamic
planner has many features, but grid based search might not
be scalable to larger environments.

B. Randomized Kinodynamic Planning

In order to reduce the hardness of complete deterministic
planning Kavraki and Svestka ([14], [15]) introduced Prob-
abilistic RoadMaps(PRM). This early version had a pre-
processing construction phase and an on-line multi-query
phase and did not account for vehicle dynamics. Rapidly-
exploring Random Trees(RRT) are due to LaValle et al.
([26], [27], [29], [28]) to create a single query planner
that outputs dynamically executable paths. Hsu et al. [30]
propose a kinodynamic planning method based on a single
query Probabilistic Roadmap. Feron et al. [31] introduce
the idea of real-time motion planning using PRM and an
a priori available obstacle-free guidance system based on
a maneuver model.

[19] and [20] mention the use of rapidly exploring ran-
dom trees (RRTs) for terrain planning. To our knowledge,
only [21] have implemented an RRT-based planner for non-
flat terrain. They work with local sensor range data only
and without a priori known maps and do not focus on
globally optimal solutions.

1834

In contrast to previous works, we apply an entirely
randomized approach to handle the complexity of kino-
dynamic planning on non-flat terrain. With the help of
control-driven randomized methods the planner considers
dynamics while exploring the environment efficiently. Al-
though not optimal, the paths can be computed in near real-
time which is not guaranteed in discrete search methods. In
addition, we consider the novel situation where a dynamic
constraint is closely related to the stability of the robot.

III. PROBLEM STATEMENT

A 3-D rigid body dynamics is conventionally represented
by the ODE ẋ = f(x, u) where x ∈ X is the robot
state, X is 12 or larger dimensional state space (position,
orientation, their first derivatives, and possibly other state
variables), and u is the control input, usually accelerations.
Dynamic bounds are represented in the form F (x) < 0.
The response of a robot can be simulated based on this
formulation with given initial conditions and a sequence
of control inputs in an obstacle-free setting. The problem
with simulation on an uneven terrain is that there is con-
stant collision (external force) which changes the system
dynamics. Although it is possible to use an efficient full
rigid-body simulator that computes the robot motion on
a non-flat surface it will be very time consuming and
impractical for on-line global planning in arbitrary large
terrain. Thus we make two important assumptions about the
motion of the robot and the terrain. This section states the
planning problem, describes the assumptions, and defines
the constraints.

A. Problem formulation

The robot operates on a terrain surface G =
{(x, y, g(x, y))|g(x, y)is height at grid location(x, y)}
which is interpolated from an elevation grid of cell size cg .
Its configuration space is defined as C ⊂ (G×SO(3)) with
reachable space Cfree ⊂ C. Start and goal configurations
s0 ∈ Cfree and sf ∈ Cfree are given. A set of possible
controls U = {u = (v̇, ω̇)||v̇| ∈ [0, v̇max], |ω̇| ∈ [0, ω̇max]}
is provided where v̇ and ω̇ are linear and angular
accelerations. One state transition equation ṡ = f(s, u)
defines the robot control response. The goal is to compute
an admissible trajectory τ : [0, T] → Cfree such that
τ(0) = s0, τ(T) = sf , and a set of controls Uτ to
achieve this trajectory such that the total travel time T is
minimized.

B. Planar Discretization Assumption

The planner assumes that at each instant for a very
short distance δg the robot is moving on a tilted planar
patch extracted from the surface (similar to [22]) (Fig 2).
Thus, the 3D trajectory is composed of δg-long transformed
planar 2D segments. This assumption is valid for a point
robot and determines the trajectory discretization. In case
of elevation grids, δg should be chosen as a fraction of
the grid cell size cg . Assume that the robot is moving on
planar patch Π with normal �N along tangent �T ∈ Π. We
can define a local patch reference frame FΠ = (O, �To, �N×

�To, �N) that corresponds to Π. O ∈ Π is the point where
the robot transitions to Π with tangent �To. We assume that
robot transitions between planes with continuous velocity.

Π

Π

Π

θ

Ο

i−1

i

i+1

i

N

T

z

τπ

si

si+1

Fπ ToN

Fig. 2. The robot’s discretized path.

C. Dynamics Assumption

The dynamic model of the robot can now be simplified
so that the only external force affecting the system dynam-
ics arises from the slope along the tangent of motion of the
planar patch being traversed. It is assumed that the robot
wheels roll without slipping and have constant traction with
the ground. Thus, the dynamic model of a planar vehicle
can be modified to incorporate the slope of the patch.
The control response can then be computed by integrating
the new dynamics equations forward in time. We model
the dynamics of Segway RMP using this assumption. The
RMP has a balancing controller with full state feedback
and decoupled PID controllers for steering and velocity.
The robot is operated with linear and angular velocity
commands. Its closed loop low-level controller guarantees
that commanded velocities are achieved quickly as long as
such velocities and the required accelerations are within
allowable bounds. These bounds are determined by the
maximum torque of the robot motors and depend on the
slope of the terrain and its surface properties. Some authors
(sec. II) derive dynamic equations for a general rigid body
robot moving on terrain and use them to determine dynamic
constraints such as torque limits, sliding, tipping over,
etc... In practice, the effect of outdoor surfaces such sand,
grass, water, is difficult to model. We choose to derive the
dynamic bounds of the Segway experimentally rather then
using formal modeling.

We have built a complete geometric and dynamic
model of the Segway in the 3D kinodynamic simulator
Gazebo [23], but to achieve real-time planning efficiency
we choose to use a point robot and simplify the compu-
tation of dynamics by using lookup functions. Assuming
a linear time-invariant model we recorded the Segway’s
velocity and acceleration bounds at different slopes, as well
as its pitch response at a range of accelerations and slopes.
Such a model does not represent the full system dynamics
but is approximately correct (excluding transient behavior)
and convenient for fast simulation. Formal mechanical

1835

models of two-wheel balancing robots can be found in [33],
[34]. Such models can be modified to include terrain
properties and complex surface interactions but, again, such
methods would be too complex and the simulation too
costly for real-time planning.

D. Robot Simplified Model and Constraints

Based on the planar discretization assumption, robot
displacement can now be viewed as a planar motion starting
at reference FΠ fixed at the point where the robot enters
tilted plane Π. Let the robot state be defined as s =
(FΠ, x, y, ψ, v, ω, θ), where:




ẋ
ẏ

ψ̇
v̇
ω̇


 =




v cosψ
v sinψ
ω
0
0


 +




0 0
0 0
0 0
1 0
0 1


 u

x, y, and ψ are the robot location and orientation defined
in the reference frame FΠ. The frame FΠ does not change
until the robot transitions to a new plane. v and ω are
the linear and angular velocities, and θ is pitch computed
directly as described in the preceding subsection. From this
state formulation a standard 3-D rigid body (e.g. including
roll and its derivative, as well as global reference frame
variables) state can be easily computed. The planner gen-
erates a trajectory and corresponding linear and angular ac-
celeration controls that track it. Since the RMP is controlled
with velocities, these accelerations are integrated at high
frequency to compute velocities v and ω and send them
to the robot closed loop controller. Thus the commanded
velocity profile curve is close to continuous. Since the
robot moves with continuous velocity its trajectory must
have continuous curvature. The curvature derivative must
be constrained to reflect a bound on the maximum velocity
with which the robot can change heading [25].

|κ| < κmax, κ̂max(v) = 1/R̂min(v)

|κ̇| < σmax

where R̂min(v) is the minimum turning radius as a function
of translational velocity and σmax is maximum rate of
change in curvature. These bounds create the following
steering constraints:

ω < vκmax(v) ω̇ ≤ vσmax + v̇κ (1)

Constraints of this type are especially important in time-
optimal planning since the vehicle might operate at high
speeds.

In addition to these bounds, we can define the standard
non-holonomic constraint,

−ẋsin(ψ) + ẏcos(ψ) = 0. (2)

and the following dynamic constraints (either from the
vehicle envelope or further constrained by the user):

Pitch:|θ| < θmax (3)

Roll:|φ| < φmax (4)

Velocity:v < vmax (5)

Acceleration:|v̇| < amax (6)

IV. RANDOMIZED KINODYNAMIC SOLUTION

Kinodynamic planning is known to be NP-hard [17].
Complete and deterministic algorithms require at least
exponential time in the dimension of the state space. In
case of multidimensional state spaces, such as the one
considered in this paper, approximation methods are used
to compute near optimal solutions. While there has been
an extensive body of literature on this problem the most
successful approaches are randomized motion-planning al-
gorithms.

We base our implementation on a control-driven Proba-
bilistic RoadMap. PRM is an appropriate choice for terrain
planning because it can expand efficiently in the high-
dimensional state space while satisfying the problem con-
straints. The method creates a tree of nodes which explores
the environment until the vicinity of the goal is reached.
After one feasible path has been found the algorithm can
continue optimizing the best solution by expanding and/or
pruning the tree further. An appropriately chosen cost
metric determines the “distance” between nodes. Thus, the
algorithm tries to optimize the total cost from start(root) to
goal location. PRM relies on a control system of the type
ṡ = f(s, u) that automatically accounts for constraints.

A. Cost Metric

The cost metric is time. Each node stores the accumu-
lated cost from the tree root node. Thus, each node in the
tree has correct measure of time to all other nodes along
the path to the root node. Correct measure to other nodes
or new random states is not available and computing it
is as hard as solving the original problem. It is possible
though to compute an upper and lower bound on the time
required to move to any other state. Lower bounds are
computed by assuming that the environment between the
two nodes is obstacle-free and it allows maximum acceler-
ation/deceleration permitted by the vehicle dynamics. The
costs are efficiently computed using bang-bang control.
Upper bounds are computed only after a feasible trajectory
has been found from the current node to the goal, until
then this cost is infinity.

The cost of trajectory from si to sj is simply:

L(si, sj) =
j∑

k=i+1

l(sk, uk)

where l(sk, uk) is the cost of moving from state sk−1 to
sk after executing control uk, which is simply the duration
of the control. The accumulated cost at each state s is
L(s0, s). The lower and upper bounds L− and L+ of the
the cost-to-go to state s′ are:

1836

L−(s, s′) = L∗(s, s′), where L∗ is the optimal cost
in an assumed obstacle-free environment where maximum
allowed velocity can be achieved.

L+(s, s′) =




L(s, s′) if a feasible trajectory from

s to s′ has been found;

inf otherwise.

This type of cost representation is not new in kino-
dynamic planning. Fraichard [24], for example, use this
type of lower bounds as heuristic in a deterministic state-
space search. Feron et. al. [31] introduce an “obstacle-free
guidance system” which serves the role of computing cost-
to-go estimates in the obstacle-free case. The authors use
the cost in computing lower bounds. We extend parts of
our PRM implementation from their work.

In addition, we employ the cost bounds to discard nodes
that cannot lead to a better solution. At any point of time
L+(s0, sf) represents the cost of the currently best found
trajectory from start to the goal. If no trajectory has been
found this value is infinity. Thus, once a new sr is selected
and a feasible trajectory from any of the tree nodes has
been found, sr is added to the tree only if the following
holds:

L(s0, sr) + L−(sr, sf) < L+(s0, sf)

In other words we make sure that the lower bound on the
total cost of the resulting path from start to goal through sr

is less than the currently best existing one. If this criterion
is not satisfied the trajectory is discarded as if it were infea-
sible. This pruning step reduces significantly the number
of newly added nodes during trajectory optimization.

B. PRM

Control system based PRM operates in (state x time)
space by sampling ”milestones” from that space and con-
necting them to existing PRM nodes using admissible
trajectories. If a solution exists the probability that the
algorithm finds the solution converges exponentially to
one in the number of random PRM nodes [30]. The
algorithm performance depends on the uniform sampling
of PRM milestones. We base our implementation on the
approach of Feron et. al. [31]. When selecting nearest
neighbor, this method checks all existing nodes (sequenced
by ascending L−(s, sr)) until a feasible trajectory reaching
sr is found. We implement the expansion heuristics and
pruning techniques described by the authors.

C. Steering Method

The system assumes that the robot can be steered from
any existing tree state to a new random state if a feasible
trajectory between the two exists. But how do we select
the controls that will result in the minimum cost local
trajectory? The controls can be selected at random or, for
example, a control theoretic method can be used to guide
the motion locally. The trajectory is then computed by
applying the controls and integrating the state equations

Fig. 3. PRM

forward in time. Given the trajectory planar discretization
assumption we choose the following strategy. When trying
to get to a new state the robot first changes heading as
quickly as possible towards that state and then continues in
a straight line. The turn is made by first applying maximum
possible angular acceleration followed by minimum such
until the angular velocity is zero and robot moves in a
straight line. Such steering should satisfy constraints 1 and
2. The choice of smooth trajectory selection is based on
Scheuer and Fraichard’s method described in [25]. The
authors present a technique for finding a smooth local near-
optimal path in 2D between two configurations of position,
heading, and zero curvature. We modify their algorithm to
include arbitrary starting curvature. The modified version
can be found in [32].

si

s1

s2

s3

Ol

r1
r2

r3

γ1

γ2

srand

*si+1

Fig. 4. Left turn during PRM extension

Using this method, for example, a left turn consists of
up to four pieces (Figure 4):

• Clothoid with curvature varying linearly from initial
curvature κmax(vi). The curve starts at si and ends at
s1.

• Optional arc with constant curvature κ̂max(vi) from
s1 to s2.

1837

• Anticlothoid with curvature varying linearly from
κmax(vi) to 0. The curve stretches from s2 to s3.

• Straight line from s3 toward srand ending at s∗i+1.
The method provides a curvature profile that can be

used to compute maximum angular acceleration within the
constraints that will result in a shortest length turn given
the current velocity. Such turn might not be shortest time
but it is an appropriate choice locally.

Since the generated trajectory is discretized on a series of
connected planes we iteratively apply these 2D methods in
the local robot reference frame on each plane. For example,
a single tree node of total length dmax can consist of
�dmax/δg� connected planar segments each of length δg
or less.

When the robot transition to a new plane, the trajectory is
transformed using the transformation associated the change
in the two planes reference frames. The transformation
method as well as the method for deriving the reference
frame of each new plane is described in [32].

V. EXPERIMENTS

A. Simulations

The planner is simulated on grids ranging form 128x128
to 1048x1048 cells. The cell size is 0.25 meters. The maps
simulate uneven surfaces that represent environments with
hills and valleys, narrow corridors, obstacles, and dead
ends. The PRM in each run is initialized randomly. We
show that the planner can efficiently compute trajectories in
various settings. We focus our experimental analysis on the
trajectory optimality and the computational time required.
The analysis is based on two main criteria: environment
size and environment expansiveness.

Fig. 5. Large terrain and a trajectory generated in 0.8 seconds.

Fig 6 shows the trajectory costs (total execution times,
which the planner minimizes) on the left y-axis time scale
and computation time on the right y-axis time scale as
a function of the environment size in square meters. The
computation time shown is the time it took to reach an
initial solution. It took less than a tenth of a second (on
a modern PC) to compute an initial trajectory for all
ten environments shown. The “Optimized Trajectory Cost”
plot shows the improved cost after exactly ten seconds of

 0

 50

 100

 150

 200

 250

 300

 0 10000 20000 30000 40000 50000 60000 70000
 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

se
co

nd
s

se
co

nd
s

Map size (m^2)

Initial Trajectory Cost
Computation Time

Optimized Trajectory Cost
Converged Trajectory Cost

Fig. 6. Trajectory costs and computation times vs. environment size.

 50

 60

 70

 80

 90

 100

 110

 120

 130

 96.8 97 97.2 97.4 97.6 97.8 98 98.2 98.4 98.6 98.8
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

se
co

nd
s

se
co

nd
s

% Trapped Nodes

Initial Trajectory Cost
Computation Time

Optimized Trajectory Cost
Converged Trajectory Cost

Fig. 7. Trajectory costs and computation times vs. percentage of trapped
nodes during expansion.

execution. This additional plot suggests that the algorithm
has the ability to find a “sensible” initial solution and
quickly optimize it. A converged solution is also plotted
for reference.

The notion of expansiveness cannot be exactly deter-
mined numerically. We use the fraction of “trapped” nodes
of all node extension attempts during PRM expansion as a
metric for expansiveness. Naturally, if the environment has
more inaccessible parts, contains narrow passages, or many
steep elevations, the percentage of trapped nodes is higher.
Fig 7 shows the same metrics evaluated above but now as a
function of the percentage of trapped nodes. The size of the
environments in this experiment is the same but they differ
in expansiveness. The environments are deliberately created
to model rough terrain with steep hills and numerous
obstacles. The graph shows that initial trajectories can be
computed in less than 0.7 seconds even in such adverse
conditions. In this scenario, it is interesting to observe that
the “10-seconds” optimized trajectories have substantially
improved from the initial solutions.

While we do not attempt to formally prove the perfor-
mance of our planner, we use the experimental analysis
based on environment size and expansiveness to show that
the planner can compute initial solutions in close to real

1838

time and optimize them efficiently.

Fig. 8. The terrain verified in Gazebo

B. Real robot experiment

The planner is demonstrated on the real Segway RMP
on a small uneven terrain. The terrain elevation map is
built using a data collection system that consisting of laser,
inertial measurement unit (IMU) and GPS. The map is
roughly 50 by 50 meters and the Segway is asked to
plan a trajectory between two locations separated by a few
small hillocks. The grid cell size is 0.25 meters and the
grid heights are averaged over raw sensor readings. Thus
the map is not absolutely accurate and has missing data
(appearing as holes). Fig 8 shows the resulting map and
robot in Gazebo, where we verified the planner operation
before the real world test.

The RMP is equipped with GPS and IMU and is able to
determine its initial pose and plot the traversed path. The
robot plans a trajectory (Fig 9) and executes the resulting
linear (v(t)) and angular (ω(t)) velocity profile (Fig 10).
We do not attempt to localize the robot or to track the
computed trajectory exactly. In this experiment we only
try to show that the planned path is executable within the
robot dynamic constraints. The commanded controls indeed
guided the robot along a path close to the planned one
and the robot was able to safely reach the vicinity of the
goal by avoiding the steepest hill. A dynamic constraint
that the planner did not satisfy was the pitch constraint.
The slippery surface in the steeper part of the environment
caused the robotic platform (Fig 1) to slip and tilt more
than the planner had anticipated. At that point, towards
the end of the path (Fig 9), the robot diverged from the
planned trajectory. This shows the inability of the simple
dynamical model to capture complex surface interactions.
We leave the solution of this problem to our future work.

VI. CONCLUSION

The two main problems with planning on terrains under
dynamic and kinematic constraints are 1) handling the
kinodynamic interaction between the robot and the terrain

Fig. 9. Computed path(blue) and executed path(red)

Fig. 10. Velocity profile of the trajectory

surface, and 2) quickly exploring the multidimensional
state space in order to find optimal trajectory. The approach
in this paper relaxes 1) by making simplifying assumption
about the robot dynamics and surface interaction. Under
these assumptions, we have presented an efficient solution
to 2). The paths computed by our planner are not necessar-
ily feasible but they are sufficiently “good” for real-world
applications because generating precise terrain maps is still
an open problem.

The simulation tests presented show that the random-
ized PRM approach is appropriate for terrain planning.
Although we have implemented the planner on a real robot
and shown that it can execute a given trajectory, we were
not able to satisfy all dynamic constraints. Using more
realistic dynamical modeling without sacrificing the near
real-time performance would be a topic for our future work.

REFERENCES

[1] Segway Robotic Mobile Platform(RMP), Instructions for DARPA
Users V1.2. Segway LLC.

[2] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,
Norwell, MA, 1991.

1839

[3] T. Kubota, Y. Kuroda, Y. Kunii, T. Yoshimitsu, Path planning for
newly developed microrover, Proceedings 2001 ICRA. IEEE Inter-
national Conference on Robotics and Automation, 2001, vol. 4, pp.
3710–3715.

[4] A. Hait and T. Simeon, Motion planning on rough terrain for an
articulated vehicle in presence of uncertainties, Proceedings of the
1996 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 4-8 Nov. 1996, vol. 3, pp. 1126–1133.

[5] D. Bonnafous, S. Lacroix, and T. Simeon, Motion generation for a
rover on rough terrains, Proceedings. 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001, 29 Oct.-3 Nov.
2001, vol. 2, pp.784–789.

[6] A. Hait, T. Simeon, and M. Taix, Robust motion planning for
rough terrain navigation, Proceedings. 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 17-21 Oct. 1999, vol.
1, pp. 11–16.

[7] Y. Guo, L. E. Parker, D. L. Jung and Z. Dong, Performance-
based rough terrain navigation for nonholonomic mobile robots, The
29th Annual Conference of the IEEE Industrial Electronics Society
(IECON’03), November 2003.

[8] M. Cherif, J. Ibanez-Guzman, C. Laugier, and T. Goh, Motion
planning for an all-terrain autonomous vehicle, Int. Conf. on Field
and Service Robotics, Pittsburgh, PA, USA, August, 1999.

[9] K. Iagnemma,F. Genot, S. Dubowsky, Rapid physics-based rough-
terrain rover planning with sensor and control uncertainty, Pro-
ceedings. 1999 IEEE International Conference on Robotics and
Automation, 10-15 May 1999, vol. 3, pp. 2286–2291.

[10] K. Iagnemma, H. Shibly, S. Dubowsky, On-line terrain parameter
estimation for planetary rovers, Proceedings. 2002 IEEE International
Conference on Robotics and Automation, 11-15 May 2002, vol. 3, pp.
3142–3147

[11] M. Cherif, Motion planning for all-terrain vehicles: a physical
modeling approach for coping with dynamic and contact interaction
constraints, IEEE Transactions on Robotics and Automation, April
1999, vol. 15 , issue 2 , pp. 202–218.

[12] A. Howard, H. Seraji, and B. Werger, Fuzzy terrain-based path plan-
ning for planetary rovers, Proceedings of the 2002 IEEE International
Conference on Fuzzy Systems, 12-17 May 2002, vol. 1, pp. 316–320.

[13] Z. Sun and J. Reif, On energy-minimizing paths on terrains for
a mobile robot, Proceedings. IEEE International Conference on
Robotics and Automation, Sept.14-19, 2003, vol. 3, pp. 3782–3788.

[14] Kavraki, L. E., Kolountzakis, M. N., and Latombe, J.-C. Analysis
of Probabilistic Roadmaps for Path Planning, IEEE Transactions on
Robotics and Automation, 14(1):166-171, 1998.

[15] Mark H Overmars, Petr Svestka A Paradigm for Probabilistic
Path Planning, Technical Report, Department of Computer Science,
Utrecht University, March 1996.

[16] M. Cherif, Kinodynamic motion planning for all-terrain wheeled ve-
hicles, Proceedings. 1999 IEEE International Conference on Robotics
and Automation, 10-15 May 1999, vol. 1,pp. 317–322.

[17] Z. Shiller, Y. R. Gwo, Dynamic motion planning of autonomous
vehicles, IEEE Trans. Robot. Automat., vol. 7, Apr. 1991.

[18] Z. Shiller, Motion Planning for Mars Rover, Proceedings of the First
Workshop on Robot Motion and Control(RoMoCo), 28-29 June 1999,
pp. 257–262.

[19] C. Urmson, Locally Randomized Kinodynamic Motion Planning for
Robots in Extreme Terrain, Thesis Proposal, CMU, 2002.

[20] R. Jarvis, An Articulated Six Wheel Drive Robot for Very Rough
Terrain Navigation, Proceedings. 2002 Australian Conference on
Robotics and Automation, Auckland, 27-29 November 2002

[21] D.J. Spero and R.A Jarvis, Path Planning for a Mobile Robot in
Rough Terrain Environment, Proceedings of the Third International
Workshop on Robot Motion and Control(RoMoCo), 9-11 Nov. 2002,
pp. 417–422.

[22] T. Simeon and B. Dacre-Wright, A practical motion planner for
all-terrain mobile robots, Proceedings of the 1993 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 26-30 July
1993, vol. 2, pp. 1357–1363.

[23] N. Koenig and A. Howard, Design and use paradigms for gazebo,
an open-source multi-robot simulator, Proceedings. 2004 IEEE Inter-
national Conference on Robotics and Automation

[24] Th. Fraichard Dynamic trajectory planning with dynamic con-
straints: a ’state-time space’ approach, Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, Jul.26-
30, 1993. Yokohama, Japan. pp.1393-1400.

[25] A. Scheuer and Th. Fraichard, Continuous-curvature path planning
for car-like vehicles, Intelligent Robots and Systems, 1997. IROS
’97., Proceedings of the 1997 IEEE/RSJ International Conference on
, Volume: 2 , 7-11 Sept. 1997 Pages:997 - 1003 vol.2

[26] S. LaValle and J. Kuffner, Jr, Randomized kinodynamic planning,
Proceedings. 1999 IEEE International Conference on Robotics and
Automation, 10-15 May 1999, vol. 1, pp. 473–479.

[27] P. Cheng and S. LaValle, Reducing metric sensitivity in randomized
trajectory design, Proceedings. 2001 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 29 Oct.-3 Nov. 2001 vol. 1,
pp. 43–48.

[28] S. LaValle, ¿From Dynamic Programming to RRTs: Algorithmic
Design of Feasible Trajectories, In A. Bicchi, H. I. Christensen, and
D. Prattichizzo, editors, Control Problems in Robotics, 2002 Springer-
Verlag, Berlin, pp. 19–37.

[29] P. Cheng, Z. Shen, and S. M. LaValle, RRT-based trajectory design
for autonomous automobiles and spacecraft, Archives of Control
Sciences, 11(3-4):167–194, 2001.

[30] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, Randomized
kinodynamic motion planning with moving obstacles, International
Workshop on Algorithmic Foundations of Robotics, pages 233–255,
2000

[31] E. Feron, E. Frazzoli, M.A. Dahleh, Real-time motion planning for
agile autonomous vehicles, AIAA Conf. on Guidance, Navigation and
Control, Denver, August 2000.

[32] M. Kobilarov, G. Sukhatme, Near time-optimal outdoor terrain path
planning under dynamic constraints for Segway RMP, Technical
Report, University of Southern California, March 2004.

[33] M. Baloh, M. Parent, Modeling and model verification of an intel-
ligent self-balancing two-wheeled vehicle for an autonomous urban
transportation system, The Conference on Computational Intelligence,
Robotics, and Autonomous Systems, Dec. 15 2003, Singapore

[34] F. Grasser, A. D’Arrigo, S. Colombi, A. Rufer, JOE: A mobile,
inverted pendulum, IEEE Transactions on Industrial Electronics, vol.
49, No. 1, Feb. 2002

1840

	MAIN MENU

