
Trajectory Planning for Cubesat Short Time-Scale

Proximity Operations

Marin KobilarovNote1

Johns Hopkins University, Baltimore, MD 21218

Sergio PellegrinoNote2

California Institute of Technology, Pasadena, CA 91125

This paper considers motion planning for small satellites such as cubesats perform-

ing proximity operations in a several meters range of a target object. The main goal

is to develop a principled methodology for handling the coupled effects of orbital dy-

namics, rotational and translational rigid body dynamics, underactuation and control

bounds, and obstacle avoidance constraints. The proposed approach is based on con-

structing a reduced-order parametrization of the dynamics through dynamics inversion

and differential flatness, and on efficient global optimization over a finite dimensional

reduced representation. Two simulated scenarios, a satellite reconfiguration maneuver

and asteroid surface sampling, are developed to illustrate the approach. In addition,

a simple 2-D experimental testbed consisting of an air-bearing table and two cubesat

engineering models is developed for partial testing and integration of the proposed

methods.

Note1Assistant Professor of Mechanical Engineering, Laboratory for Computational Sensing and Robotics, 117 Hack-

erman Hall, 3400 N. Charles Street. e-mail: marin@jhu.edu
Note2Joyce and Kent Kresa Professor of Aeronautics and Professor of Civil Engineering, Graduate Aerospace Labo-

ratories, 1200 E. California Blvd. MC 301-46. AIAA Fellow. e-mail: sergiop@caltech.edu

1

NOMENCLATURE

a = T10 thruster system lateral offsets

A ⊂ R3 = region occupied by robot

b ∈ R3, β = axis and angle of rotation during trajectory generation

b, b4 : [0,∆]→ R3 = spline basis functions

B = control transformation matrix

c ∈ R3 = field-of-view cone axis

c2, c3 ∈ R3 = rotational spline coefficients

C : S × U → R = cost function

Ci = splines coefficient matrices

dx, dy, dz = spacecraft dimensions

ec ∈ R3 = sensor axis

exp : R3 → SO(3) = exponential map

ei ∈ R3 = thruster axis

ex, ey, ez ∈ R3 = standard basis unit vectors

f : S × U → R3, fext : S → R3 = control and external forces

Fi : S × U → R = constraint functions

h = T10 thruster system axial offsets

J = (Jx, Jy, Jz) = moments of inertia

K = number of mixture components

log : SO(3)→ R3 = exponential map

m = mass, number of waypoints

nz = dimensionality of Z
Oi ⊂ R3 = environment obstacles

p(Z;v) = parametric density over Z
prox : R3 × R3 → R = closest distance function

qi = (xi, Ri) = waypoint in configuration space

r : [0,∆]→ R3 = interpolating curve in exponential coordinates

R ∈ SO(3) = rotation matrix in RSW frame

rx, ry, rz > 0 = VACCO thrusters offsets

s ∈ S = SE(3)× R6 = complete state

Sg ⊂ S = goal set

T > 0 = planning horizon

u ∈ U = control inputs

vmax > 0 = velocity bound

v ∈ V = density parameter

wk = mixture weight of each component of p

x = (x, y, z) ∈ R3 = position in RSW frame

z ∈ Z = trajectory parameter

Z = random variable over Z
Zcon = constrained trajectory parameter space

2

α = VACCO thrusters angles

α ∈ R3 = desired thrust direction

β = field-of-view cone angle

∆ = T/(m+ 1) = time duration of each segment between waypoints

λ = cost function weighing factor

µk = mean of each component of p

ρ ∈ R3 = exponential coordinates for aligning R and Rd
Σk = variances of components of p

τ : S × U → R3, τext : S → R3 = control and external torques

ω = (ωx, ωy, ωz) ∈ R3 = angular velocity in body frame

ωc > 0 = orbit angular rate

I. Introduction

Autonomous navigation and operation in the proximity of multiple objects in space is becoming

increasingly important as it enables critical capabilities such as autonomous on-orbit assembly and

inspection, servicing of disabled spacecraft, or debris deorbiting. This work focuses on autonomous

navigation of small and low-cost spacecraft such as cubesats operating within a range of several

meters around the target object, e.g. a satellite being serviced, an instrument being assembled,

or debris being captured. The cubesat platform is a natural choice for such capability because

of its low development and launch costs and unified standard that have accelerated a wide-spread

development effort. Even though various small satellite technology are quickly maturing, there are

various practical limitations that currently preclude a fully autonomous operation. In particular,

robotic operation in space depends on real-time perception, spatial mapping, path planning and

trajectory control. The main challenges lie in dealing with limited propulsion due to underactua-

tion, bounded thrust, and finite fuel, and attitude control system (ACS) with bounded torque. In

addition, safety constraints such as avoiding collisions with obstacles and perception constraints,

such as maintaining sensor field-of-view of target object while avoiding the incident sun angle, must

be satisfied. Control methods should also be able to handle high uncertainty in the output response

of current cubesat propulsion systems while this technology is maturing.

As an example scenario, consider the Autonomous Assembly of a Reconfigurable Space Telescope

(AAReST) mission concept [1] illustrated in Figure 1. This mission is intended for a near-circular

3

optics

docking
cubesats

segmented
mirror

1
m
.

a) b)

Fig. 1 AAReST concept: a) simulated rendezvous and docking of multiple cubesats to form

a segmented mirror; each spacecraft perceives the environment using machine vision and

autonomously navigates to and docks in a designated configuration. b) a cubesat autonomous

reconfiguration testbed using an air table.

orbit at 650 km altitude and Table 1 lists the orbit details. The mission relies on the ability of indi-

vidual cubesats to autonomously undock, orbit around a spacecraft cluster, and redock to a different

position. Note that under ideal conditions such reconfigurations are accomplished by exploiting rel-

ative orbital dynamics forces and last around one orbital period. Yet, a simple calculation yields

that if the spacecraft are required to operate within close proximity (e.g. less than two meters)

then the maximum relative perturbation force does not exceed 1.9712 × 10−4 N (Table 1). This

corresponds to motions no faster than 2 mm/s that can only be achieved with very precise boundary

conditions. Such precision is presently difficult to achieve with small spacecraft that perform dock-

ing/undocking or manipulating another object in space. For instance, the electromagnetic docking

system in development for AAReST is expected to generate initial velocities upon undocking of up

to 2 cm/s. More generally, it is realistic to assume that relative velocities between interacting bodies

are on the order of at least several cm/s. The optimal control strategy in such cases will differ from

standard formation flying techniques. For instance, a reconfiguration in the context of AAReST

will last several minutes rather than more than one hour and will only partially exploit the orbital

dynamics perturbations. Furthermore, low-cost spacecraft such as cubesats are currently capable of

carrying a limited number of thrusters which imposes further restrictions on trajectory planning.

Motivated by the need for algorithms applicable to shorter time scales and constrained under-

4

Parameter Value Units Notes

(dx, dy, dz) (0.1, 0.1, 0.3) m

J (0.03, 0.03, 0.015) kg ·m2

m 3 kg

Altitude 650 km

Inclination 97.985823 deg.

Orbit period 97.728221 min

ωc .00107154 rad/s

Velocity 7530.93 m/s

Relative Perturbations ≤ 1.9712× 10−4 N relative ‖v‖ ≤ 2cm/s, range ≤ 2 m.

Gravity Gradient ≤ 2.5830× 10−8 Nm max at 45◦

Solar Torque ≤ 2.7360× 10−9 Nm center-of-mass ±[0.02, 0.02, 0.02] m

Solar Force ≤ 1.3680× 10−7 N at max cross area

Drag Torque ≤ 3.3166× 10−13 Nm center-of-mass ±[0.02, 0.02, 0.02] m

Drag Force ≤ 1.6583× 10−11 N at max cross area

Table 1 AAReST details.

actuated propulsion we develop techniques for designing approximately optimal trajectories that

account for rigid body dynamics, orbital dynamics, underactuation, and environment constraints.

The optimal reconfiguration problem can be regarded as a constrained nonlinear optimal control

problem. The general formulation does not have a closed-form or easily computable solution. The

two key points of the proposed approach are then: 1) to exploit key properties of the spacecraft

dynamics to obtain a reduced order trajectory representation and 2) to employ any-time stochastic

global optimization over this reduced space. The case of fully-actuated and under-actuated systems

is handled in a unified way through either standard dynamics inversion or by exploiting differential

flatness, respectively. Thus the proposed method can be used to compute motions to any desired

state for cubesats with minimal actuation, i.e. an ACS and a single thruster (that is realizable

with current technology) or with a more advanced conceptual 10-thruster fully actuated propulsion

system which could be realizable in the next few years.

The reconfiguration problem has been studied from various viewpoints. Traditionally, it is

assumed that the spacecraft is a point mass the can be propelled in any given direction subject to

distance constraints to other spacecraft or obstacles [2, 3]. In this context, convex programming [4,

5] or mixed-integer linear programming [6] have been successfully used for designing algorithms

5

with provable convergence and run-time properties. Robotic motion planning is used to address

the case with full rigid body dynamics and more complex avoidance constraints. The increased

dimensionality and related computational burden has been addressed through e.g. randomized

methods [7, 8]. The final stage of rendezvous has also been studied through a simple linear model [9].

The problem has also been extensively studied in the context of planned future missions such as

Terrestrial Planet Finder (TPF) [10] and low cost spacecraft testbeds such as the Spheres [11–13].

The Spheres testbed has also served as a basis for a conceptual mission [14] sharing common aspects

with AAReST.

A cubesat with a single thruster and ACS can navigate to a given position by simply orienting

and accelerating and decelerating in a straight line. This strategy becomes very inefficient for more

complicated trajectory, e.g. one that avoids obstacles and satisfies other constraints. Instead, the

differential flatness [15–17] property of the spacecraft should be exploited for following any desired

trajectory by smoothly varying the attitude and controlling the thruster along the whole motion.

Flatness is an intrinsic dynamical system property which can be used to transform an underactuated

system into a system evolving in a fully-controllable flat output space. Flatness has been used for

spacecraft control purposes but limited primarily to attitude control problems (see e.g. [18]). An

unrelated but interesting application of flatness for handling avoidance constraints appears in [19].

Other methods for handling complex dynamics and underactuation include reducing the dynamics

to a driftless system through decoupling vector fields [20] or exploiting symmetries to encode the

dynamics through a maneuver automaton [21]. Decoupling vector fields are more closely related to

the straight line motion strategy and require the system to stop at various points along the motion

which leads to suboptimal performance. Employing a maneuver automaton relies on the invariance

of trajectories, e.g. with respect to a constant gravity vector, and does not directly apply to the

case with coupled orbital and underactuated rigid body dynamics during proximity operations.

This papers does not assume a particular propulsion model and considers even the case when

the spacecraft has only a single thruster aligned with the center of mass. Its main goal is to de-

velop a principled approach for dealing with various actuation capabilities given the current state of

nanosatellite propulsion methods (see [22] for a survey). Existing technologies such as cold gas and

6

a) b) c) d)

Fig. 2 Cold-gas propulsion systems and attitude control system: a) VACCO 5-valve MEMS

system; b) SSTL heritage Resistojet; c) Aerojet’s CubeSat Hydrazine Adaptable Monopro-

pellant Propulsion System (CHAMPS); d) Pumpkin Cubesat MAI-200 ADACS

pulsed plasma thrusters are directly applicable to cubesats today as long as they can be miniaturized

and properly packaged. An example in this context is the MEPSI (Micro-Electromechanical-based

Picosat Satellite Inspection Experiment)-type spacecraft developed at the Aerospace Corporation

in their innovative use of rapid prototyping for compact component integration [23] and of smart

materials such as photostructurable glass/ceramic [24]. While there are a number of recent de-

velopments in this direction cold-gas systems such as VACCO’s five thrusters MEMS system [25],

Aerojet’s CubeSat Hydrazine Adaptable Monopropellant Propulsion System (CHAMPS)[26], and

SSC Nanospace MEMS Propulsion module [27] should be mentioned as examples of promising tech-

nology for the near future. In addition, new technologies such as ion thrusters (see e.g. [28]) and

electrospray systems (e.g. [29]) result in higher efficiency and ∆V . Only few of these propulsion

systems are in near-flight ready state currently. In general, further development is necessary to

produce a versatile thruster system that can fully actuate all six degrees of freedom of a cubesat

with levels of thrusts/torques enabling agile autonomous navigation.

The specific novel contributions of this work are:

a. motion planning for a class of underactuated spacecraft among obstacles,

b. combining differential flatness techniques [17] and stochastic optimization [34] to achieve close

to real-time performance

c. experimental demonstration of a cubesat mock-up planning scenario on an air table.

The developed system is based on estimating the vehicle state, performing real-time trajectory op-

timization, and executing the resulting controls directly without the need for closed-loop trajectory

7

tracking. While this strategy has proven successful in a simplified laboratory setting, the paper does

not formally consider the important issue of robustness to sensing and model uncertainty which are

critical for realistic applications.

The paper is laid out as follows. Section II formulates the trajectory planning problem in

terms of the system dynamics, constraints, and objective function. The process of generating fea-

sible trajectories is outlined in §III, while §IV describes how to parametrize them in numerically

convenient form. Section V then describes the stochastic optimization approach for computing an

approximately globally optimal solution. The proposed algorithm is illustrated using computed

examples in §VI. Finally, an experimental study using two cubesats performing relative navigation

and docking in a laboratory setting is described in §VII.

II. Problem Formulation

The spacecraft is modeled as a single underactuated rigid body with position x = (x, y, z) ∈ R3

and orientation matrix R ∈ SO(3). The configuration (x, R) is defined with respect to a moving

frame attached to the central body (target), such as an RSW frame [30] where the convention is

that the x-axis is on-track and the z-axis points away from Earth. The body-fixed angular velocity is

denoted by ω ∈ R3. The vehicle has mass m and principal moments of rotational inertia Jx, Jy, Jz

forming the inertia tensor J = diag(Jx, Jy, Jz). The state space of the vehicle is S = SE(3) × R6

with s = ((R,x), (w, ẋ)) ∈ S denoting the whole state of the system.

The spacecraft is actuated with control inputs u ∈ U where U ⊂ Rc is a bounded set. The

function τ : S × U → R3 and f : S × U → R3 maps from these control inputs to the resulting

torques and forces acting on the body, respectively. The external forces and torques are denoted by

the functions τext : S → R3 and fext : S → R3, respectively. Significant external forces and torques

in LEO are due to relative dynamics and gravity gradients (see Table 1). For near-circular orbit the

forces are simplified using the Hill-Clohessy-Wiltshire (HCW) linearized model, i.e.

fext(s) = m


2ωcż

−ω2
cy

−2ωcẋ+ 3ω2
cz

 ,

8

a) b) c) d)

x
x

x

y

y

y

z

z

z

a h

Fig. 3 Four thruster configuration studied (cones represent thruster plumes proportional to

the total thrust integrated over a short sampling period): a) single thruster along z-axis

(ACS+Z); b) two opposite thrusters along x-axis (ACS±X) with only one thruster firing; c)

five-thruster system (VACCO) also shown in Figure 2a; d) conceptual 10-thruster system

(T10).

with constant ωc > 0 denoting the circular orbit angular rate (see Table 1). The external torques

due to gravity gradients are defined according to

τext(s) = 3ω2
cRez × JRez,

where ez = (0, 0, 1). Note that in the context of very close proximity operations such as in AAReST

(Figure 1) assuming that x, y, z < 2 m and vx, vy, vz < 2 cm/s the forces and torques do not exceed

1.9712× 10−4 N and 2.5830× 10−8 Nm, respectively.

The equations of motion are

Ṙ = Rω̂, (1)

Jω̇ = Jω × ω + τext(s) + τ (s,u), (2)

mẍ = fext(s) + f(s,u), (3)

where the map ·̂ : R3 → so(3) is defined by

ω̂ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (4)

Four basic thruster models covering a range of configurations of practical interest are detailed

next. The first configuration is currently being considered for several mission implementations; the

9

second represents a minor increase in complexity; the third is an example of a fully-integrated, multi-

thruster system that has some flight heritage; and the fourth is the ideal configuration, although

currently unavailable.

1. Full attitude control and one thruster along body-fixed z-axis (ACS+Z). Consider a cubesat

with a 3-axis ACS and a single thruster pointing in the negative z-axis and aligned with the center of

mass. Figure 3a shows a model of this configuration while actual hardware that could be employed

to realize this system is shown in Figure 2. The control space is U ⊂ R4 where (u1, u2, u3) are

the torque inputs while u4 is the thruster input. The set defined by U = {u ∈ R4 | |ui| <

umaxtorque, for i = 1, 2, 3, uminthrust ≤ u4 ≤ umaxthrust} and the forces become

τ (s,u) = (u1, u2, u3), f(s,u) = u4Rez, (5)

where ez = (0, 0, 1) ∈ R3. In practice, rather than directly controlling the attitude with given

torques, the ACS often operates as closed-loop system for a given desired orientation and slew

rate, i.e. the control inputs themselves can be regarded as function of current and desired state

u(s, sd). For trajectory optimization purposes our model assumes that attitude is controlled through

bounded torque inputs with additional angular velocity constraints corresponding to maximum

angular velocity achievable by the ACS.

2. Full attitude control and two opposite thrusters along body-fixed x-axis (ACS±X) Consider

a cubesat with an ADC and two opposing thrusters along the x-axis aligned with the center of mass

(see Figure 3b). The two thrusters can be modeled as a single input since they are never operated

simultaneously. The thruster bound is then simply written as uminthrust ≤ ‖u4‖ ≤ umaxthrust and

the control forces become

τ (s,u) = (u1, u2, u3), f(s,u) = u4Rex, (6)

where ex = (1, 0, 0) ∈ R3.

3. VACCO system without ACS. Consider the micro-thruster system [25] shown in Figure 2a

and the model shown in Figure 3c. Since no ACS is present in this system the control forces can be

10

expressed as  τ (s,u)

f(s,u)

 =

 1 0

0 R

Bu, (7)

where 1 denotes the identity matrix and the thruster allocation matrix takes the form

B =



−rysα −rysα rysα rysα 0

rzcα+ rxsα −rzcα− rxsα −rzcα− rxsα rzcα+ rxsα 0

rycα −rycα rycα −rycα 0

−cα cα cα −cα 0

0 0 0 0 0

−sα −sα −sα −sα 1



,

using the notation cα ≡ cosα, sα ≡ sinα and where rx, ry, rz > 0 define the offsets of the VACCO

thruster valves from the center of mass in the x, y, and z axes respectively, while α = 15o denotes

the angle with which the four lateral thrusters are pointing along the +z-axis.

Note that although there are 5 inputs we have rank(B) = 4 signifying that only four degrees

of freedom can be controlled simultaneously. This is evident considering that the second and forth

rows of the matrix are linearly dependent which physically corresponds to the fact that the VACCO

system cannot simultaneously control rotation around the y-axis and translation in x-axis.

4. Fully actuated ten thruster system (T10). Ideally, all degrees of freedom should be con-

trollable. This can be accomplished by a variety of thruster configurations. One such conceptual

configuration appropriate for cubesats is shown in Figure 3d and can be defined similarly to (7) but

with

B =



0 −h 0 h h 0 −h 0 0 0

h 0 −h 0 0 h 0 −h 0 0

a a a a −a −a −a −a 0 0

−1 0 1 0 0 1 0 −1 0 0

0 −1 0 1 −1 0 1 0 0 0

0 0 0 0 0 0 0 0 1 −1



, (8)

where a > 0 and h > 0 are the lateral and vertical offsets of each of the side thrusters.

11

The spacecraft is subject to constraints arising from velocity limits, obstacles in the environment,

and avoidance of instrument-sensitive orientations. These constraints are expressed through the m

inequalities

Fi(s(t),u(t)) ≥ 0 (9)

for i = 1, ...,m. The simplest velocity constraint is to maintain a translational velocity below a given

magnitude vmax > 0 expressed as

F1(s,u) = vmax − ‖ẋ‖. (10)

Obstacle constraints require that the vehicle must not collide with obstacles denoted by O1, ...,Ono
.

Assume that the vehicle is occupying a region A(R,x) ⊂ R3, and let prox(A1,A2) be the Euclidean

distance between two sets A1,2 that is negative in the case of intersection. Obstacle avoidance

constraints in (9) can be written as

F2(s,u) = min
i
prox(A(R,x),Oi), for all t ∈ [0, T]. (11)

We use a standard collision checking algorithm implemented by Proximity Query Package (PQP) [31]

to compute prox. Field-of-View (FOV) constraints require the spacecraft to point within a given

sensing cone and are expressed as

F3(s,u) = cTRec − cosβ, (12)

where c ∈ R3 is a unit vector parallel to the cone axis, β ∈ [0, π] is the cone angle, and ec is a unit

vector defined with respect to the spacecraft body frame. Typically, ec is aligned with the axis of

a sensor such as a camera with field of view β.

Objective. The goal is to compute the optimal controls u∗ and final time T ∗ driving the system

from its initial state s(0) to a given goal region Sg ⊂ S, i.e.

(u∗, T ∗) = arg min
u,T

∫ T

0

C(s(t),u(t))dt,

s.t. s(T ∗) ∈ Sg while satisfying dynamics (1)− (3) and constraints (9),

(13)

where C : S × U → R is a given cost function encoding e.g. fuel consumption or total time taken.

For instance, a typical cost function includes the total time taken and fuel expended encoded by

the L1 control norm, i.e. C(s,u) = 1 + λ|u|1 for some constant λ ≥ 0.

12

Finally, note that the employed continuous thrust model can also be applied to impulsive

thrusters through Pulse-Width-Modulation (PWM) at the resolution of their minimum impulse

bit and pulse duration.

The nonlinear optimization problem (13) has no closed form or easily computable solution in

general. Nonlinear programming methods can be used to perform the optimization. Yet, such

local variational methods are very sensitive to underactuated dynamics and obstacle constraints

and require hand-tuned initialization and long run-times. This precludes real-time performance

and direct implementation on-board the spacecraft. Our approach is to simplify the problem by

decomposing it into :

1. local trajectory generation between intermediate states called waypoints through differential

flatness,

2. global constrained optimization of sequences of waypoints in order to compute an obstacle-free

trajectory for any given desired goal set.

III. Open-loop Trajectory Generation

The task of trajectory generation is to compute a control signal to generate a given feasible

trajectory. Any given trajectory of a fully actuated system (e.g. T10 introduced in §II) can be

inverted to compute the required control inputs and is feasible as long as the inputs are not saturated.

Similarly, underactuated systems (e.g. ACS+Z and ACS±X systems introduced in §II) can be

handled by exploiting the differential flatness property of the control system.

A. Underactuated Systems

Underactuated systems cannot track any arbitrary trajectory in their full configuration space.

Instead, they can track only as many degrees of freedom simultaneously as the number of their

independent control inputs. Differential flatness is an inherent geometric property of the system

determining whether and how the remaining (unactuated) degrees of freedom can be controlled.

Intuitively, flatness means that the system admits a reduced order representation which uniquely

13

determines the original higher-dimensional system. Thus motion planning and control can be per-

formed in the reduced representation and the resulting solutions mapped backed to the original

system. Skipping much of the flatness formalism (see e.g. [17] for an in-depth treatment) this work

only considers a particular model – a spacecraft modeled as a rigid body with full attitude control

and at least one thruster generating force along a line passing through the center of mass.

The systems ACS+Z and ACS±X introduced in §II are differentially flat in the sense that a

given trajectory in position x(t) and a one-degree of freedom of a given orientation R(t) uniquely

determine the whole state of the system s and inputs u. Intuitively, the spacecraft can execute

a given trajectory in position space only by properly orienting itself and firing its single thruster

appropriately.

Typically a rotational flat output corresponds to the angle of rotation around the thrust axis.

For instance, if the thruster is along the Z-axis then (x, y, z, ψ), where ψ is the yaw of the body,

are the flat outputs. Working with Euler angles though introduces singularities. Thus, instead of

adopting local coordinates as in the standard approach to flatness the proposed method determines

its attitude R to be as close as possible to an attitude given by a rotation matrix Rd. This is also

the approach taken in [32] in the context of backstepping control of helicopters.

The developed control strategy employs the following functions. Recall that the exponential

mapping exp : R3 → SO(3) is defined by

exp(ω) =


I3, if ω = 0

I3 + sin ‖ω‖
‖ω‖ ω̂ + 1−cos ‖ω‖

‖ω‖2 ω̂2, if ω 6= 0

. (14)

The right-trivialized tangent [33] map dexp:R3→L(R3,R3) is such that

∂ exp(ω) · δ · exp(ω) = ̂dexp(ω)δ (15)

and is defined by

dexp(ω) =


I3, if ω = 0

I3 +
(

1−cos ‖ω‖
‖ω‖

)
ω̂
‖ω‖ +

(
1− sin ‖ω‖

‖ω‖

)
ω̂2

‖ω‖2 , if ω 6= 0

(16)

With these definitions the procedure for generating trajectories for spacecraft with one thruster and

full attitude control is stated as follows.

14

Proposition 1. A spacecraft with control torques τ (s,u) = u1:3 and forces f(s,u) = u4Rei for

some unit vector ei ∈ R3 can exactly follow a desired trajectory xd : [0, T]→ R3 and follow as close

as possible a desired attitude Rd : [0, T]→ SO(3) if the controls u : [0, T]→ R4 satisfy:

u1:3 = ω × Jω + Jω̇ − τext, (17)

u4 = αTRei, (18)

ω = dexp(−ρ)ρ̇+ exp(−ρ)ωd, (19)

α = mẍd − fext, b = (Rdei)×α/‖α‖, β = cos
(
(Rdei)

Tα/‖α‖
)

(20)

ρ =


arg min{β b

‖b‖ ,(β−π) b
‖b‖} ‖u1:3‖ if ‖b‖ > 0,

0, if ‖b‖ = 0,

(21)

R = Rd exp (ρ) , (22)

where R : [0, T]→ SO(3) denotes the resulting attitude while ω̂ = RT Ṙ and ω̂d = RTd Ṙd.

Note: the notation ρ = arg min{ρ1,ρ2} ‖u1:3‖ means that ρ should be set to the one of the two

arguments which results in minimum norm of the torque inputs.

Proof. The goal is to align and fire the thruster so that the total force acting on the body is mẍd for

all t ∈ [0, T]. This is accomplished by setting the attitude R so that Rei is parallel to α = mẍd−fext.

This restricts two degrees of freedom of the matrix R. The remaining one degree of freedom allows

R to be chosen as close as possible to the desired Rd. This is accomplished by computing the

smallest rotation that aligns Rdei with α. This rotation is defined by the vector ρ representing the

exponential coordinates of the required transformation. Thus it is straightforward to check that

Rd exp(ρ)ei = ±α,

where the ± sign depends on whether the thrust direction is flipped in order to reduce the required

aligning torque (eq. (21)). Noting that

u4Rei = (αTRei)Rei =

(
αT
±α
‖α‖

)
±α
‖α‖

= α

the total force becomes

mẍ = u4Rei + fext = α+ fext = mẍd.

15

The required torque is then computed by noting that

ω̂ = RT Ṙ = RT
d

dt
(Rd exp(ρ)) = RT Ṙd exp(ρ) + exp(−ρ) ̂dexp(ρ)ρ̇ exp(ρ),

using the definition (15). Using the relationships Rω̂RT = R̂ω and exp(−ρ) ̂dexp(ρ)δ exp(ρ) =

̂dexp(−ρ)δ (see e.g. [39]) this is reduced to

ω = exp(−ρ)ωd + dexp(−ρ)ρ̇.

Finally, assuming full attitude control the required attitude R(t) is achieved by setting u1:3 = ω ×

Jω+J ddtω−τext. In practice, the term d
dtω can be implemented using finite difference approximation,

i.e. as (ω−ω′)/h by keeping track of the previously computed ω′ in (19) assuming the control law

operates at time-step h.

Note that the resulting control law might violate imposed bounds on the inputs. In particular,

bounds on the thruster input depend on the accelerations ẍ while bounds on the angular velocity

and torques additionally depend on the higher derivatives ...
x ,

x (see eq. (17) and (19)). The

strategy employed in this work is to rescale the time along a given xd(t) in order to satisfy the

control bounds.

B. Fully Actuated System

Assume that the control inputs have the form τ (s,u)

f(s,u)

 =

 1 0

0 R

Bu,
where rank(B) = 6 and {Bu | u ∈ U} ⊂ R6 is an open set containing the origin.

In the fully-actuated case the system can follow any trajectory specified by both position and

attitude, i.e. (xd, Rd) : [0, T]→ R3×SO(3) as long as the required control inputs are not saturated.

It is easy to show that this can be accomplished by setting the controls to

u = (BTB)−1BT

 ω × Jω + Jω̇ − τext

RT (ẍ− fext)

 . (23)

If the resulting controls exceed their bounds, the trajectory can be rescaled in time, i.e. T can be

increased until u ∈ U is satisfied.

16

IV. Numerical Parametrization of Trajectories

The finite-dimensional trajectory parametrization employed for numerical global optimization

is described next. Trajectories between two given boundary states s0 and sg will be uniquely

generated by selecting m intermediate “waypoints” through which the trajectory will smoothly pass.

A waypoint is simply a configuration qi = (xi, Ri) defined by its position xi and orientation Ri.

The parametrized trajectory z ∈ Z is defined by

z = (q1, ..., qm), (24)

where Z = (R3×SO(3))m is the parametrized trajectory space. Thus the infinite dimensional space

of continuous trajectories has been encoded through a low-order finite dimensional space Z. Our

approach is to connect waypoints with the simplest possible representation ensuring feasible execu-

tion. Feasibility imposes smoothness conditions that are accomplished through polynomials of an

appropriate order. Interpolation in position and orientation space will be described separately since

the latter is a nonlinear space that requires local chart switching. In addition, position interpola-

tion in the fully-actuated and underactuated case are treated differently since the use of differential

flatness §IIIA imposes higher-order smoothness conditions.

A. Fully Actuated Polynomial Curves in Position

Consider the interpolation of a trajectory between two boundary conditions (x0, ẋ0) and (xg, ẋg)

that must pass through intermediate waypoints (x1, ...,xm). The boundary conditions, the way-

points, and enforcing second order smoothness at the waypoints (i.e. continuity of x, ẋ, ẍ) impose

a total of (4 + 4m) conditions (for each of the 3 coordinates in x) over m + 1 segments. Thus the

minimal representation is a cubic polynomial over each segment. Denoting ∆ = T/(m + 1) and

ti = i∆ the curve is defined by

x(t) = Cib(t− i∆), when t ∈ [ti, ti+1] (25)

where Ci is a matrix of constant coefficients and b : [0,∆] → R4 is defined by b(h) = (h3, h2, h, 1)

for h ∈ [0,∆].

Let A = [b(0) ḃ(0) b̈(0) b(∆)]−1 and E = [b(∆) ḃ(∆) b̈(∆)]. The coefficients Ci can be found

17

using the following recursion

C0 = [x0 ẋ0 ẍ0 x1]A, (26)

Ci = [Ci−1E xi+1]A, for i = 1, ...,m, (27)

assuming the equivalence xm+1 ≡ xg. The initial acceleration ẍ0 is unknown and is found by solving

the linear equation

Cm+1ḃ(∆) = ẋg (28)

for ẍ0 after which it is then substituted back into each matrix Ci. The unknown coefficients are

linear functions of the data and can be easily precomputed for any given m. This enables instant

trajectory generation for any given boundary conditions and waypoints.

B. Underactuated Polynomial Curves in Position

Similarly to the fully-actuated case boundary conditions are given in terms of x0, ẋ0 and xg, ẋg

and the trajectory must pass through the intermediate spinets (x1, ...,xm). Note that it is necessary

to enforce third-order smoothness in position (i.e. continuous x, ẋ, ẍ, ...x) since by Proposition 1 the

resulting angular velocity ω is a smooth function of ...x . There are a total of 4 + 5m conditions (for

each of the three coordinates in x) over the m + 1 segments. Thus the minimal representation is

a cubic polynomial over one of the segments (e.g. the first) and a fourth-order polynomial over all

remaining m segments. The position trajectory is expressed as

x(t) =


C0b(t), when t ∈ [0,∆],

Cib4(t− i∆), when t ∈ [ti, ti+1], for i = 1, ...,m,

(29)

where b4(h) = (h4, h3, h2, h, 1).

Similarly to §IVA let A4 = [b(0) ḃ(0) b̈(0)
...
b (0) b(∆)]−1 and E4 = [b(∆) ḃ(∆) b̈(∆)

...
b (∆)].

The coefficients Ci are found using the following recursion

C0 = [x0, ẋ0, ẍ0,x1]A3, (30)

C1 = [C0E3 x2]A4, (31)

Ci = [Ci−1E4 xi+1]A4, for i = 2, ...,m, (32)

18

The unknown initial acceleration ẍ0 is found by solving the linear equation

Cm+1ḃ4(∆) = ẋg (33)

after which it is then substituted back into the polynomial coefficient matrices Ci.

C. Polynomial Curves in Rotation

Consider the interpolation of a trajectory between two boundary conditions (R0,ω0) and

(Rg,ωg) that must pass through intermediate waypoints (R1, ..., Rm). In order to perform in-

terpolation the curve along each segment is represented locally using exponential coordinates

r : [0,∆]→ R3. Using the definitions (14)–(15) this is accomplished by setting

(R(ti + h),ω(ti + h)) = (Ri exp(r(h)), dexp(−r(h))ṙ(h)) , (34)

whenever t ∈ [ti, ti+1]. Interpolation can now be performed by assuming a polynomial form for the

curve r(h). The simplest scheme ensuring continuity of R(t) and ω(t) is to employ quadratic curves

in the first m segments and a cubic in the last segment. The quadratic curves joining a given state

(Ri,ωi) to the next rotation Ri+1 are given by

r(h) = ωih+
log(R−1

i Ri+1)−∆ωi
∆2

h2,

where h ∈ [0,∆]. The cubic curves joining two given states (Ri,ωi) and (Ri+1,ωi+1) are given by

r(h) = ωih+ c2h
2 + c3h

3,

where

c3 =
dexp−1(− log(R−1

i Ri+1))ωi+1 + ωi
∆2

− 2
log(R−1

i Ri+1)

∆
, c2 =

log(R−1
i Ri+1)

∆2
− ωi

∆
−∆c3.

These expressions were obtained using the logarithm map log : SO(3)→ R3 which is the inverse

of the exponential log = exp−1 and is defined by

log(R) =


0, if φ = 0,

φ
2 sinφ

�(R−RT), if φ 6= 0

, (35)

19

where φ = arccos trace(R)−1
2 and the operator q· is the inverse of ·̂ defined in (4). The map dexp−1 is

the inverse of the right-trivialized tangent (15) and can be computed in closed form according to

dexp−1(r) =


I3, if r = 0

I3 − 1
2 r̂ +

2−‖r‖ cot
‖r‖
2

2‖r‖2 r̂2, if r 6= 0.

(36)

V. Motion Planning

Motion planning is formulated as finding the optimal parametrized trajectory z∗ ∈ Z which

does not violate the imposed constraints. Once the optimal parameter (i.e. sequence of waypoints)

is computed it is mapped back to a continuous path q(t) for all t ∈ [0, T] using the polynomial

interpolations in position space in the fully- and under-actuated cases using (25) and (29), respec-

tively, and in the space of rotations R(t) using (34). The poses q(t) are then mapped back to the

full trajectory and control inputs (s,u) : [0, T]→ S×U as described in §IIIA for the underactuated

case and in §III B for fully-actuated systems.

Global optimization over the trajectory parameter space Z is accomplished using the recently

proposed cross-entropy (CE) motion planning method [34]. The method was chosen for its simple

gradient-free implementation suitable for real-time execution on-board the vehicle. The method was

selected over other global tree-based randomized planning methods [7, 8, 40] since it globally explores

the space but is also expected to quickly converge near the optimal solution. In addition, it is directly

applicable to nonlinear dynamics and arbitrary constraints and does not require linearization or

additional smoothing steps. Its main limitation is that it cannot handle environments with narrow

passages and currently there is no principled way to determine in advance an optimal number of

waypoints m for a given environment. To overcome these limitations the method was combined with

recent sampling-based methods, in particular RRT∗ [41], to construct a family of adaptive graph-

based methods with improved efficiency [34]. In this work, though, it is sufficient to employ it as a

standalone trajectory optimization method since the environments considered are not expected to

have such narrow passages.

The main idea is to construct a probability distribution over the trajectory space, to sample

trajectories from the distribution, evaluate their costs, and adapt the distribution so that it becomes

concentrated over high-quality trajectory space regions. The process is repeated iteratively until the

20

distribution has collapsed close to a delta function near the optimum [35]. Note that many of the

sampled trajectories will violate the problem constraints (9) such as obstacles. The space of allowed

parametrized trajectories that satisfy these constraints is defined by Zcon ⊂ Z and only trajectories

z ∈ Zcon will be retained during sampling to update the distribution. In addition define the cost

function J : Z → R which computes the cost (37) of a given trajectory parametrized by z, i.e.

J(z) =

∫ T

0

C(s(t),u(t))dt, (37)

where s(t) and u(t) are obtained from z using the control computations (§IIIA,§III B).

Let Z be a random variable over Z with density p(Z;v), where v ∈ V is the density parameter.

Let nz = dim(Z). The parameter space is V = (Rnz × R(nz
2+nz)/2)K × RK with elements v =

(µ1,Σ1, ...,µK ,ΣK , w1, ..., wK) corresponding to K mixture components with means µk, covariance

matrices Σk (excluding identical elements due to the matrix symmetry) and weights wk. A mixture

of Gaussians is employed defined by

p(z;v) =

K∑
k=1

wk√
(2π)nz |Σk|

e−
1
2 (z−µk)T Σ−1

k (z−µk), (38)

where
∑K
k=1 wk = 1. The number of mixture componentsK is chosen adaptively (see e.g. [36]). Even

the simple case K = 1 is sufficient for solving complex multi-extremal problems as long as enough

samples are obtained. The complete algorithm adapted to the setting of this work is summarized

below (see [34] for complete details in a general setting).

Note that step (5) for K = 1 reduces to simply computing the mean and covariance of the

samples; for K > 1 it is performed using an adaptive expectation-minimization procedure [36].

The algorithm performs very efficiently when the environment is not very complex. If the optimal

trajectory lies in a narrow passage with small probability to be sampled then the algorithm will be

unlikely to find it. Such complex scenarios are handled by combining the proposed method with

standard motion planning techniques as detailed in [34].

Finally, note that Algorithm 1 assumes that Z is a vector space. Thus, the identification

Z ∼ (R3 × S3)m ⊂ R7m,

is employed so that sampling occurs in the product space of unit quaternions S3 rather than rotation

21

Algorithm 1: u(t)← Trajectory_Planner(s0, Sg, T,m)

1 Initialize CE method with equally spaced waypoints z0 ∈ Z connecting s0 and Sg

2 Set Σ0 so that the region {z ∈ Z | (z − z∗)T Σ(z − z∗) < 2, 0 ≤ t ≤ T} covers the workspace

3 Choose initial samples Z1, ..., ZN from Normal(z0,Σ0); set j ← 0 and γ̂0 ←∞

4 for j = 0 : maxIterations do

5 Update distribution over the elite set Ej = {Zi | J(Zi) ≤ γ̂j} through

v̂j ← argmin
v∈V

1

|Ej |
∑

Zk∈Ej

ln p(Zk;v)

6 Generate samples Z1, ..., ZN from p(·,vj)|Zcon and compute the %–th quantile γ̂j+1 ← Jd%Ne

7 if KL(p(·,vj−1)||p(·,vj)) < ε then
break

8 Set the best sample z∗ = arg minZi J(Zi)

9 Map z∗ to trajectory (x(t), R(t)) using (25,34) for underactuated, or (29,34) for fully-actuated case

10 Compute controls u(t) from (x(t), R(t)) using (23) in fully-actuated or (1) in under-actuated case

11 return u(t)

matrices SO(3). This enables sampling in the ambient vector space R7m by initially ignoring the

quaternion unit norm constraints and once the waypoints are chosen to project them back to Z.

VI. Applications

Two simulated scenarios are developed next in order to test the proposed methodology for a

reconfiguration task and a surface sampling task. In both cases two types of cubesats are employed:

an underactuated cubesat with a single thruster and attitude control and a fully-actuated cubesat

with ten thrusters.

The spacecraft, obstacles, and asteroid surfaces are modeled as triangulated polyhedra. The

obstacle avoidance constraint defined in (12) is then implemented using PQP [31]. All computations

are performed using an Intel CORE-i7 2GHz CPU.

22

initial state

final state

obstacles

thruster plume

0 100 200 3000

0.2

0.4

0.6

0.8

1x 10−3

s

N

u4

a) b)

0 100 200 300−0.01

−0.005

0

0.005

0.01

s

m
/s

vx
vy
vz

0 100 200 300−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

s

ra
d/

s

ωx
ωy
ωz

c) d)

Fig. 4 Reconfiguration of ACS+Z underactuated cubesat: a) resulting path to goal state on

opposite side of larger spacecraft; b) force produced by single thruster acting along +Z axis;

c) translational velocity components; d) angular velocity components.

A. Reconfiguration

The reconfiguration task requires a cubesat to navigate around a larger spacecraft and a few

other cubesats and arrive optimally to a designated zero-velocity state. The initial and final configu-

rations are one meter apart. The larger obstacle lies directly between these two configurations while

the smaller ones are scattered close to the path in order to create a non-trivial planning scenario.

Figure 4 shows the resulting trajectory and controls for the underactuated cubesat ACS+Z

(defined in (5)) computed using Proposition 1. The cost function used for the ACS+Z system is

C(s,u) = |u4|+ ‖u1:3‖, (39)

in order to encode the fuel expended by the thruster but also penalize excessive torque required by

23

0 50 100 150−4

−2

0

2

4

6

8x 10−3

s

N

a) b)

Fig. 5 Reconfiguration of T10 fully-actuated cubesat: a) resulting path to goal state on op-

posite side of larger spacecraft; b) forces produced by thrusters.

the ACS. The trajectory required ∆V = 0.089 m/s and angular momentum change 0.035 Nms. A

fixed duration of T = 300s. was chosen a priori which resulted in forces and torques magnitudes that

can be achieved by thrusters such as those in Figure 2a-c and ACS in Figure 2d. The computation

was based on trajectories with m = 4 waypoints and collision checking was performed by tracing the

trajectory with a time-step h = 0.5 s using the PQP package. The CE optimization method (1) was

run with a single Gaussian and N = 1000 samples. The total computation time for this scenario

lasted 30 seconds and required 11 iterations.

Similarly, Figure 5 shows the resulting trajectory and controls for the fully actuated cubesat

T10 (defined in (8)). The cost function is the total fuel C(s,u) = |u| expended by all ten thrusters

over a fixed time horizon of T = 120s. Since attitude is controlled by thrusters, this maneuver can

be executed in a shorter time than the ACS+Z system without violating the bounds on the inputs.

Finally, it is acknowledged that the quality of the computed solution depends on the number of

algorithm iterations and number of samples employed. Figure 6 illustrates the dependence between

the resulting trajectory cost and required runtime. Real-time performance is achieved by using a

smaller number of samples (N = 250) and by performing a fixed number of iterations (say 10). In

this particular scenario, such strategy results in a control law with performance roughly 20% worse

24

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

iterations

Trajectory Cost

0 20 40 60 80 100
0

5

10

15

20

iterations

Run−time

a) b)

Fig. 6 Trajectory cost and required runtime for CE motion planning method applied to sce-

nario shown in Figure 4 averaged over ten runs with randomly placed obstacles. Number of

algorithm iterations shown on x-axis.

than the performance achieved after 100 iterations which has almost converged near an optimum.

B. Asteroid Sampling

The second scenario is a sampling maneuver on the surface of a small asteroid. Motivated by

recent missions such MUSES-C [37] and DAWN [38] the proposed methodology can be used to

enhance autonomy and sampling capabilities. For instance, a cubesat could be carried on-board a

larger spacecraft and dispatched to various sampling points.

Note that only the near-surface navigation problem is considered, rather than the complete

asteroid trajectory transfer which can be very complex. Once the spacecraft is in a hovering state

a few meters above the surface of the asteroid, it can perform autonomous motion planning to

various points of interest. Unlike the reconfiguration example (§VIA) the external disturbances

in this example are dominated by microgravity, i.e. fext should additionally encode the asteroid

gravitational effects. Gravity is assumed to be constant with a chosen value between e.g. 0.0001 m/s2

(corresponding to the small Itokawa asteroid) to 0.25 m/s2 (on Vesta–one of the largest asteroids

in the Solar System). The cost function used in the reconfiguration scenario defined in (39) is used

in this scenario as well.

Figure 7 shows the optimized obstacle-free trajectory taking the underactuated spacecraft to

25

sampling site

rough terrain

thruster firing

initial state

a)

0 100 200 3000

2

4

6

8x 10−4

s

N

u4

0 100 200 300−0.01

−0.005

0

0.005

0.01

0.015

s

m
/s

vx
vy
vz

0 100 200 300−0.06

−0.04

−0.02

0

0.02

0.04

0.06

s

ra
d/

s

ωx
ωy
ωz

b) c) d)

Fig. 7 Asteroid crater sampling using ACS+Z underactuated cubesat: a) optimized path to

the bottom of crater; b) resulting force produced by single thruster along z-axis; c) resulting

translational velocities; d) angular velocities.

the bottom of a small crater with zero final velocity. The algorithm is setup similarly to §VIA with

external acceleration due to gravity set to 0.0001 m/s2. The trajectory shown is optimized for 10

CE iterations taking a total of 45 seconds of computation and resulted in ∆V = 0.126 m/s and total

angular momentum change 0.051 Nms. Figure 8 shows the first several iterations of the stochastic

optimization method. The random thin lines connect waypoints that compose each sample Zi. The

algorithm typically requires around ten iterations to produce a reasonable solution. It should be

noted though that it is difficult to claim how far from the optimal this solution is. The higher N

and m are the higher chance of reaching the true optimum but at an increased computational effort.

26

iteration #1: C=0.36 iteration #2: C=0.26 iteration #3: C=0.20

iteration #4: C=0.17 iteration #5: C=0.13 iteration #6: C=0.11

Fig. 8 Several iterations of CE optimization method (§V) applied to sampling scenario. Thin

lines connect waypoints corresponding to samples from parametrized trajectory space Z. As

the algorithm iterates the distribution and its samples concentrate close to the optimum.

Actual trajectory (not shown) passes through the waypoints and is smooth and feasible.

Similarly, results for the fully actuated cubesat are shown on Figure 9 with a few iterations of

the optimization shown on Figure 10. Unlike the underactuated case, the resulting motion for the

T10 system can be accomplished without much change in the spacecraft attitude. The scenario was

setup similarly to the previous system and required 60 seconds for computing the trajectory shown.

VII. Experiments

A simple testbed was developed in order to study the proposed techniques. It consists of an

air hockey-table which supports spacecraft on pucks. Engineering models of cubesats were devel-

oped with components necessary for testing reconfiguration maneuvers. The components include

an electromagnetic docking system, a visual pose estimation (VPE) system, a mock-up propulsion

system, and a control board with microprocessors and a single-board-computer with wireless com-

munication. Since at the time of this study no low-cost propulsion system for cubesats was readily

available a system consisting of six electric ducted microfans that can generate forces down to 1.0 mN

27

a) b)

0 100 200 300−0.015

−0.01

−0.005

0

0.005

0.01

s

m
/s

vx
vy
vz

0 100 200 300−3

−2

−1

0

1

2

3x 10−3

s

N

c) d)

Fig. 9 Asteroid crater sampling using T10 fully actuated cubesat: a) optimized path to bottom

of crater; b) close-up view c) resulting translational velocity components; d) resulting forces

produced by thrusters.

was built. The fans are used to simulate either underactuated or fully-actuated propulsion. The

VPE system is based on instrumenting each spacecraft with a unique configuration of bright visual

markers (LEDs) and performing full six degrees of freedom pose estimation through LED image

coordinates extraction and pattern matching using on-board cameras.

A cubesat-compatible control board was designed which interfaces to standard cubesat subsys-

tems through i2c and power interfaces. The board controls the fans, the magnets, the cameras and

the visual markers (LEDs), and hosts the high-level computer. Table 2 provides more details of the

engineering model.

The proposed motion planning algorithm was implemented and tested on the air table using

28

iteration #1: ∆V =1.83m/s iteration #2: ∆V =1.41m/s iteration #3: ∆V =1.19m/s

iteration #4: ∆V =1.02m/s iteration #5: ∆V =0.98m/s iteration #6: ∆V =0.86m/s

Fig. 10 Iterations of CE method applied to fully-actuated cubesat performing asteroid sam-

pling.

Component Qty Description Mass Power

cubesat frame 1 ISIS 3U 200g n/a

power 1 8.4 NiCad battery or ClydeSpace PSU 100g n/a

electromagnets 2 custom made at Univ. of Surrey 200g 3W

camera 1 PointGrey FireFly USB 30g 1.5W

fans 6 brushless EDF 12g 0.1 - 10 W

control board 1 controls fans, magnets, LEDs, etc 20g 0.1W

high-level computer 1 Gumstix Overo 600MHz 8g 1W

comms 1 i2c, wifi+bluetooth, antennas 10g 0.9W

Table 2 Details of engineering cubesat model.

a mock-up obstacle environment. Figure 12 shows an example setup and a few frames along the

computed motion. Here an earlier prototype of the robotic cubesat is shown. In the context of

this simple two-dimensional environment the proposed algorithm performs very efficiently. The CE

optimization method converges to a solution every 50 ms. Thus, there was no need for additional

trajectory tracking since the path was updated and executed in real-time. Figure 11 shows the

assembled robotic surrogate and a few frames along a docking motion using visual feedback from

29

a) b)

puck

docking pins

fans control board

camera

magnets

0 s.

7 s.

11 s.

14 s.

LEDs

Fig. 11 a) frames along path to docking using visual pose estimation b) close-up view of model

the on-board camera. Extending these results to a realistic 3-D environment imposes additional

challenges and requires further study.

VIII. Conclusion

The trajectory planning problem for small spacecraft proximity operations has been studied.

Motivated by the emergence of cubesat propulsion technologies the proposed method provides a prin-

cipled way for computing near-optimal motions that account for underactuation, obstacle avoidance,

and orbital and rigid body dynamics. An efficient algorithm capable of computing near-optimal so-

lutions has been constructed. It exploits the properties of the dynamics, i.e. differential flatness and

30

obstacles

a) b)

10 s.

25 s.

40 s.

55 s.

65 s.

Fig. 12 a) frames along trajectory of cubesat engineering model that avoids obstacles and

performs docking b) setup (top) and output of motion planning algorithm showing best path

(green lines)

natural external forces for instant trajectory generation based on reduced-order parametrization.

Stochastic optimization is then performed to globally search for a high-quality trajectory satisfying

all given constraints. The main limitations of the method lie in the lack of a formal procedure for

selecting the optimal finite dimensional resolution (i.e. number of waypoints) for a given scenario

and in its inability to handle very cluttered environments.

The algorithm is capable of operating in real-time on-board the experimental cubesats in a

simplified 2-D air-table setting. In the context of more complex simulated examples in 3-D, the

31

current implementation requires several seconds to produce high-quality solutions and tens of sec-

onds to converge near a (local) optimum. Through parallelization and more informed sampling it is

expected that the algorithm complexity can be significantly reduced to enable real-time on-board

implementation.

ACKNOWLEDGMENTS

Keith Patterson (Caltech) and Professor Craig Underwood (University of Surrey) are thanked

for providing help and advice in setting up the experiment. Financial support from the Keck

Institute for Space Studies is gratefully acknowledged.

REFERENCES

[1] Underwood, C., and Pellegrino, S., “Autonomous Assembly of a Reconfigurable Space Telescope

(AAReST) for Astronomy and Earth Observation”, In 8th IAA Symposium on Small Satellites for

Earth Observation, 2011.

[2] Scharf, D.P., Hadaegh, F.Y. , and Kang, B., “A Survey of Spacecraft Formation Flying Guidance”, In

Proceedings of the Intl. Symposium Formation Flying, 2002.

[3] Scharf, D.P., Hadaegh, F.Y., and Ploen, S.R., “A Survey of Spacecraft Formation Flying Guidance and

Control (Part 1): Guidance”, In American Control Conference, 2003. Proceedings of the 2003, volume 2,

pages 1733 – 1739, jun 2003.

[4] Acikmese, B., Scharf, D.P., Murray, E., and Hadaegh, F.Y., “A Convex Guidance Algorithm for For-

mation Reconfiguration”, In Proceedings of the 2003 American Control Conference , 2003.

[5] Sultan, C., Seereram, S., and Mehra, R.K., “Deep Space Formation Flying Spacecraft Path Planning”,

Int. J. Rob. Res., 26(4):405–430, April 2007.

[6] Richards, A., Schouwenaars, T., How, J.P., and Feron, E., “Spacecraft Trajectory Planning with Avoid-

ance Constraints using Mixed-Integer Linear Programming”, AIAA Journal on Guidance, Control, and

Dynamics, 25(4):755–764, July-August 2002.

[7] Frazzoli, E., “Quasi-Random Algorithms for Real-Time Spacecraft Motion Planning and Coordination”,

Acta Astronautica, 53(4âĂŞ10):485 – 495, 2003.

[8] Phillips, J.M., Kavraki, L.E., and Bedrosian, N., “Probabilistic Optimization Applied to Spacecraft

Rendezvous and Docking”, In 13th American Astronomical Society/AIAA - Space Flight Mechanics

Meeting, Puerto Rico, February 2003.

32

[9] Breger, L., and How, J.P., “Safe Trajectories for Autonomous Rendezvous of Spacecraft”, AIAA Journal

on Guidance, Control, and Dynamics, 31(5):1478–1489, 2008.

[10] Scharf, D.P., Hadaegh, F.Y., Rahman, Z.H., Shields, J.F., and Singh, G., “An Overview of the Formation

and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer”, In

International Symposium on Formation Flying Missions and Technologies, 14 Sep. 2004, Washington,

DC, United States, 2004.

[11] Aoude, G.S., How, J.P., and Miller, D.W., “Reconfiguration Maneuver Experiments Using the

SPHERES Testbed Onboard the ISS”, In Proceedings of the 3rd International Symposium on For-

mation Flying, Missions and Technologies, 2008.

[12] Saenz-Otero, A., and Miller, D.W., “Spheres: a Platform for Formation-Flight Research”, volume 5899,

page 58990O. SPIE, 2005.

[13] Tweddle, B.E., Saenz-Otero, A., and Miller, D.W., “Design and Development of a Visual Navigation

Testbed for Spacecraft Proximity Operations”, In AIAA SPACE 2009 Conference and Exposition, 2009.

[14] Miller, D.W., Mohan, S., and Budinoff, J., “Assembly of a Large Modular Optical Telescope (AL-

MOST)”, In SPIE Space Telescopes and Instrumentation, 2008.

[15] Faiz, N., Agrawal, S., and Murray, R.M., “Differentially Flat Systems with Inequality Constraints: An

Approach to Real-Time Feasible Trajectory Generation”, Journal of Guidance, Control, and Dynamics,

24(2):219–227, 2001.

[16] Murray, R.M., Rathinam, M., and Sluis, W.M., “Differential Flatness of Mechanical Control Systems”,

In Proceedings ASME International Congress and Exposition, 1995.

[17] Van Nieuwstadt, M.J., and Murray, R.M., “Real Time Trajectory Generation for Differentially Flat

Systems”, International Journal of Robust and Nonlinear Control, 8(11):995–1020, 1998.

[18] Tsiotras, P., “Feasible Trajectory Generation for Underactuated Spacecraft Using Differential Flatness”,

In AAS/AIAA Astrodynamics Specialist Conference, 1999.

[19] Louembet, C., “Collision Avoidance in Low Thrust Rendezvous Guidance Using Flatness and Positive

b-Splines”, In American Control Conference, 2011.

[20] Bullo, F., and Lynch, K. M., “Kinematic Controllability for Decoupled Trajectory Planning in Un-

deractuated Mechanical Systems”, IEEE Transactions on Robotics and Automation, 17(4):402–412,

2001.

[21] Frazzoli, E., Dahleh, M. A., and Feron, E., “Maneuver-Based Motion Planning for Nonlinear Systems

with Symmetries”, IEEE Transactions on Robotics, 21(6):1077–1091, dec 2005.

[22] Mueller, J., Hofer, R., and Ziemer, J., “Survey of Propulsion Technologies Applicable to Cubesats”,

33

Technical report, Jet Propulsion Laboratory, 2010.

[23] Hinkley, D. A., “Picosatellites at The Aerospace Corporation”, in: Small Satellites: Past, Present, and

Future, pages 635–674, Number 20, edited by H. Helvajian and S.W. Janson, 2009.

[24] Janson, S., Huang, A., Hansen, W., and Helvajian, H., “Development of an Inspector Satellite Propul-

sion Module using Photostructurable Glass/Ceramic Materials”, In AIAA Conference on Micro-

/Nanotechnologies, 2004.

[25] VACCO Industries, ChEMS micro-propulsion system.

[26] Schmuland, D. T., Masse, R. K., and Sota, C. G., “ Hydrazine Propulsion Module for Cubesats”, In

Small Satellite Conference, 2011.

[27] SSC Nanospace, Cubesat mems propulsion module.

[28] Wirz, R., and Conversano, R., “ Cubesat Lunar Mission Using a Miniature Ion Thruster”, In 47th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference, pages AIAA–2011–6083, 2011.

[29] BUSEK Space Propulsion Industries, Cubesat electrospray thruster system.

[30] Vallado, D., Fundamentals of Astrodynamics and Applications. Primis, 1997.

[31] Gottschalk, S., Lin, M. C., and Manocha, D., “ OBBTree: A Hierarchical Structure for Rapid Inter-

ference Detection”, Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 30:171–180,

1996.

[32] Frazzoli, E., Dahleh, M. A., and Feron, E., “Trajectory Tracking Control Design for Autonomous

Helicopters Using a Backstepping Algorithm”, In Proceedings American Control Conference, pages

4102–4107, Chicago, IL, June 2000.

[33] Kobilarov, M., and Marsden, J., “ Discrete Geometric Optimal Control on Lie Groups ”, IEEE Trans-

actions on Robotics, 27(4):641–655, 2011.

[34] Kobilarov, M., “ Cross-Entropy Motion Planning”, International Journal of Robotics Research,

31(7):855–871, 2012.

[35] Rubenstein, R. Y., and Kroese, D. P., Simulation and the Monte Carlo Method. Wiley, 2008.

[36] Figueiredo, M. A. F., and Jain, A. K., “ Unsupervised Learning of Finite Mixture Models”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(3):381–396, 2002.

[37] Kubota, T., Sawai, S., Hashimoto, T., Kawaguchi, J., and Fujiwara, A., “ Robotics Technology for As-

teroid Sample Return Mission Muses-c”, In Proceeding of the 6th International Symposium on Artificial

Intelligence and Robotics and Automation in Space: i-SAIRAS, 2001.

[38] NASA/JPL, Dawn: http://www.nasa.gov/dawn.

[39] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, ser. Springer Series in Com-

34

putational Mathematics. Springer-Verlag, 2006, no. 31.

[40] Garcia, I. and How, J. P., “Trajectory optimization for satellite reconfiguration maneuvers with position

and attitude constraints”, In American Control Conference (ACC), 2005, pp. 889-894.

[41] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. International

Journal of Robotics Research, 30(7):846–894,

35

