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Abstract. The paper develops discretization schemes for mechanical systems
for integration and optimization purposes through a discrete geometric ap-
proach. We focus on systems with symmetries, controllable shape (internal

variables), and nonholonomic constraints. Motivated by the abundance of im-
portant models from science and engineering with such properties, we propose
numerical methods specifically designed to account for their special geometric
structure. At the core of the formulation lies a discrete variational principle

that respects the structure of the state space and provides a framework for
constructing accurate and numerically stable integrators. The dynamics of the
systems we study is derived by vertical and horizontal splitting of the varia-
tional principle with respect to a nonholonomic connection that encodes the

kinematic constraints and symmetries. We formulate a discrete analog of this
principle by evaluating the Lagrangian and the connection at selected points
along a discretized trajectory and derive discrete momentum equation and

discrete reduced Euler-Lagrange equations resulting from the splitting of this
principle. A family of nonholonomic integrators that are general, yet simple
and easy to implement, are then obtained and applied to two examples-the
steered robotic car and the snakeboard. Their numerical advantages are con-

firmed through comparisons with standard methods.

1. Introduction. The goal of this paper is to develop integrators for mechanical
systems subject to nonintegrable constraints on the velocities, i.e., nonholonomic

constraints. We study systems that evolve on a configuration manifold Q = M ×G
constructed from a Lie group G whose action leaves the kinetic energy invariant
(and so G is a group of symmetries) and a vector space M that describes the
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system internal shape. This general configuration space applies to systems from
several domains, e.g., locomotion systems found in nature [23, 28, 22], vehicles used
in robotics and aerospace [34, 35, 2, 5], systems in molecular dynamics [20, 37].

Their dynamics is derived by explicitly factoring out the group invariance through
reduction by symmetry, and consequently splitting the equations of motion into
vertical–corresponding to symmetries aligned with the constraints and defining the
evolution of a momentum, and horizontal–defining the dynamics of the shape space.
This has proven not only computationally beneficial, from reducing the dimension
and avoiding numerical ill-conditioning, but also crucial in studying the stability,
controllability, and motion generation of such systems. In this paper we focus on
their proper discretization and propose geometric integrators that respect the state-
space structure of the symmetries and constraints, preserve any invariants exhibited
by the continuous system, and result in stable and accurate numerical schemes.

We follow the approach of discrete mechanics [30] and derive discrete equations of
motion of the system through the discretization of the underlying variational prin-
ciples governing the dynamics. In particular, we employ a Lagrange-d’Alembert-
Pontryagin (LDAP) variational principle [39] that differs from a standard variational
principle, such as Lagrange-d’Alembert’s, by the presence of a new additional ve-
locity variable v ∈ TqQ at each point q ∈ Q which by definition does not correspond
to the rate of change of the configuration but this dependence is indirectly enforced
using a kinematic constraint of the form q̇ − v = 0 and a multiplier p ∈ T ∗

qQ cor-
responding to the momentum. We formulate a discrete version of this principle by
varying trajectories with discrete states of the form (qk, vk, pk) ∈ TQ⊕T ∗Q and by
evaluating the continuous Lagrangian and accounting for the constraint distribu-
tion along such a discrete path. While conceptually equivalent to using a discrete
Lagrangian Ld : Q×Q→ R (which is the standard way to approximate the action
integral in discrete mechanics, e.g. as formulated by Marsden and West [30]) and a
discrete nonholonomic distribution Dd → Q×Q (introduced in [10]) the Pontryagin
formulation has two key practical advantages. The first property that motivated
us to employ the approach is that it leads to a straightforward formulation of a
reduced principle for nonholonomic systems that involve a nontrivial intersection
of the tangent space of symmetries and the constraint distribution. This inter-
section contains a velocity component whose variation, in the classical variational
formulation, must be restricted using the curvature of a nonholonomic connection
(e.g. see [9]). Since the notion of discrete curvature of a connection in the discrete
setting is still not well understood we believe it is more appropriate to relax such
higher order constraints on variations and instead indirectly enforce them through
a Pontryagin-type approach. As we will show such a formulation leads to a sim-
ple derivation of the discrete mechanics retaining the preservation properties of the
dynamics. A second important advantage not explored in this paper lies in the
ability to treat degenerate Lagrangian systems, as proposed in the continuous set-
ting by [39], and their discrete reduction by symmetries. Further details about the
principle are given in Sec. 2.3, and Sec. 3.3.

The results presented here build upon previous work on the variational discretiza-
tion of systems with symmetries, as well as systems with nonholonomic constraints.
Bobenko and Suris [3] and Marsden et al. [31] first studied the discrete Euler-
Poincaré equations for systems on Lie groups; Bou-Rabee and Marsden [4] extended
those ideas in the framework of the Hamilton-Pontryagin principle in order to design
more versatile integrators; Jalnapurkar et al. [21] considered the discretization of the
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more general principle bundle case with abelian symmetry and its reduction using
Routh’s method. Nonholonomic constraints from a discrete variational viewpoint
were first studied by Cortés and Mart́ınez [10] who also considered the invariance
of such systems with respect to Lie group actions and derived a momentum equa-
tion with properties consistent with the continuous case. M. de Leon et al. [12, 13]
considered an alternative discretization of nonholonomic systems in terms of gen-
erating functions and constructed constraint-preserving integrators. Fedorov and
Zenkov [14] extended the reduced discrete approach to systems on a Lie group to
include nonholonomic constraints on the group and derived the so called Euler-
Poincaré-Suslov equations. McLachlan and Perlmutter [32] studied the general case
of systems on vector spaces as well as on a group with nonholonomic constraints
focusing on the time-reversibility and the importance of the preservation of invari-
ants.

The framework of Lie groupoids offers a general viewpoint for studying the dy-
namics of nonholonomic systems and their geometric discretization. Iglesias et
al. [18] developed nonholonomic integrators based on this methodology and ex-
amined their properties in terms of reversibility and momentum evolution. This
approach is also suitable for the type of systems we consider, more specifically by
considering an Atiyah Lie groupoid for discrete reduced systems such as the snake-
board. A family of geometric integrators on Lie groups that are not derived from
a discrete variational principle were proposed by Ferraro et al. [15] that introduce
an extra condition from an elastic impact onto the constraint distribution that, un-
der certain conditions, has energy-preserving properties and can also be folded into
a nonholonomic momentum evolution equation to produce an explicit integrator.
The construction of these particular integrators is related to the idea of projecting
the unconstrained discrete Euler-Lagrange equations onto the constraints to yield
a nonholonomic integrator as discussed in [13].

Contributions. Our work provides a systematic and practical approach to the
design of structure-respecting integrators for nonholonomic mechanical systems.
While related to the work of several authors noted above, our discrete approach to
nonholonomic systems with symmetries captures the geometry of general systems
(defined in terms of principle bundle and nonholonomic connections) with arbitrary
group structure, constraints, and shape dynamics, and is not restricted to a con-
figuration space that is either solely a group or has a Chaplygin-type symmetry.
As a result our formulation contains a discrete momentum equation and a set of
discrete reduced Euler-Lagrange equations analogous to the continuous case (e.g. as
described in [1, 9]) that explicitly account for and respect the interaction between
symmetries and constraints in the vehicle dynamics.

The constructed integrators are applied to two examples: the steered car with
simple dynamics and the snakeboard. Our method is compared to standard Runge
Kutta methods in terms of its numerical accuracy, stability, and run-time effi-
ciency. In addition, for the snakeboard we include comparisons with the discrete
Lagrange-d’Alembert (DLA) integrator [10] and with the geometric integrator pro-
posed by [15]. Interestingly, all three nonholonomic integrators studied have similar
accuracy for short term integrations but start to differ in stability as the time step
and integration duration increase.

2. Overview of Mechanical Integrators. The integrators employed in this pa-
per are based on the discretization of geometric, variational principles. We start
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with a brief review of these variational integrators, as well as their extensions that
handle group structure and symmetries.

2.1. Variational Integrators. Variational integrators [30] are based on the idea
that the update rules for a discrete mechanical system should come from a global
“least action” principle such as Hamilton’s principle. Variational integrators first
approximate the time integral of the continuous Lagrangian L(q, q̇) by a function
of two consecutive states qk and qk+1:

Ld(qk, qk+1) ≈

∫ tk+1

tk

L(q(t), q̇(t))dt.

Equipped with such a discrete Lagrangian, one can now formulate a discrete version
of Hamilton’s principle according to

δ

N−1∑

k=0

Ld(qk, qk+1) = 0,

where variations are taken with respect to each position qk along the path. Thus,
if we use Di to denote the partial derivative w.r.t the ith variable, one must have:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0

for every three consecutive positions qk−1, qk, qk+1 of the mechanical system: this
equation thus defines an integration scheme which solves for qk+1 knowing the two
previous positions qk and qk−1.

Simple Example. Consider a continuous Lagrangian of the form L(q, q̇)= 1
2 q̇
TMq̇−

V (q) (here, V is a potential function) and define the discrete Lagrangian

Ld(qk, qk−1) = hL

(
qk+ 1

2
,
qk+1 − qk

h

)
,

using the notation qk+ 1
2

:= (qk + qk+1)/2. The resulting equations are

M
qk+1 − 2qk + qk−1

h2
= −

1

2

(
∇V (qk− 1

2
) + ∇V (qk+ 1

2
)
)
,

which is a discrete analog of Newton’s law Mq̈ = −∇V (q). For controlled (i.e., non
conservative) systems, forces can be added using a discrete version of Lagrange-
d’Alembert principle in a similar manner [30].

2.2. Lie Group Integrators. Classical integrators (including the variational ones
we just reviewed) are formulated to compute a displacement in a vector space (e.g.
R
n) added to the current configuration in order to advance the numerical solution

in time. If the configuration space has special structure such as a Lie group or such
that arise from other holonomic constraints then this solution must be projected
onto the constraint manifold. This might be computationally expensive and causes
energy dissipation which leads to inaccuracies that multiply over time. A typical
example is the integration of rigid body dynamics either using rotation matrices
whose projection requires costly orthogonal decomposition [17], or using quaternions
that require increased resolution in order to perform stably even in a short-time
integration (see [25] for a numerical comparison for systems on SE(3)).

In order to avoid such problems Lie group integrators have been proposed in the
mechanical literature to automatically enforce that the updated poses remain within

the proper group. These special integrators often express the updated configuration
in terms of a retraction map τ , i.e., a map that expresses changes in the group in
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terms of elements in its Lie algebra. The exponential map is such a map proposed for
integration purposes in [36]. Retaining the Lie group structure and motion invari-
ants under discretization has, since then, proven to be not only a nice mathematical
property, but also key to improved numerics, as they capture the right dynamics
(even in long-time integration) and exhibit increased accuracy [19, 4].

More abstractly, Lie group integrators preserve symmetry and group structure for
systems with motion invariants. Throughout this paper we will use a configuration
manifold Q = M×G where G is a Lie group (with Lie algebra g) whose action leaves
the system invariant. In our case of vehicle dynamics, G = SE(3) is typically the
group of rigid body motions of an articulated body while M is a space of internal
variables of the vehicles. The idea of Lie group integrators is to transform the
equations of motion from the original state space TQ into equations on the reduced

space TM × g—elements of TG are translated to the origin and expressed in the
algebra g. This reduced space being a linear space, standard integration methods
can then be used. The inverse of this transformation is then used to map curves
in the algebra back onto the group. Two standards retraction maps τ have been
commonly used to achieve this transformation for any Lie group G:

• Exponential map exp : g → G, defined by exp(ξ) = γ(1), with γ : R → G
is the integral curve through the identity of the left invariant vector field
associated with ξ ∈ g (hence, with γ̇(0) = ξ);

• Canonical coordinates of the second kind ccsk : g → G, ccsk(ξ) = exp(ξ1e1) ·
exp(ξ2e2) · ... · exp(ξnen), where {ei} is the Lie algebra basis.

A third choice for τ , valid only for certain quadratic matrix groups [6] (which
include the rigid motion groups SO(3), SE(2), and SE(3)), is the Cayley map cay :
g → G, cay(ξ) = (e − ξ/2)−1(e + ξ/2). Although this last map provides only
an approximation to the integral curve defined by exp, we include it as one of
our choices since it is very easy to compute and thus results in a more efficient
implementation.

2.3. Unified View. The integration algorithms proposed in this paper are based
on a discrete version of the Lagrange-d’Alembert-Pontryagin (LDAP) principle [39,
16]. The LDAP viewpoint unifies the Lagrangian and Hamiltonian descriptions of
mechanics [4] and extends to systems with symmetries and constraints.

The Lagrange-d’Alembert-Pontryagin Principle. We briefly recall the general formu-
lation of the continuous LDAP principle for a system with Lagrangian L : TQ→ R,
regular nonholonomic distribution D ⊂ TQ, and control force f : [0, T ] → T ∗Q.
For a curve (q(t), v(t), p(t)) in TQ⊕ T ∗Q, t ∈ [0, T ] the principle states that

δ

∫ T

0

[L(q, v) + 〈p, q̇ − v〉] dt+

∫ T

0

〈f, δq〉dt = 0,

δq ∈ Dq and vq ∈ Dq,

(1)

for variations that vanish at the endpoints. The curve v(t) describes the velocity
determined from the dynamics of the system. In view of the formulation, v does not
necessarily correspond to the rate of change of the configuration q. The additional
variable p, though, indirectly enforces this dependence and corresponds to both
Lagrange multipliers and the momenta of the system. Thus (1) generalizes the
Lagrange-d’Alembert principle and is linked to the Pontryagin maximum principle
of optimal control.
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The LDAP principle is conceptually equivalent to the Lagrange-d’Alembert prin-
ciple. For systems evolving on Lie groups our formulation could be alternatively
derived along the lines of the discrete Euler-Poincaré (DEP) approach [31]. For
more general systems with principal bundle structure and regular Lagrangians it
is possible to derive the discrete mechanics by restricting variations along sections
consistent with the constraints and symmetries, as described in the groupoid frame-
work [18]. We choose to employ a discrete Pontryagin approach (Sec. 4.2) approach
since it is self-contained, does not require restrictions on the variations, and leads to
simple construction of integrators that can be easily implemented. This is linked to
the fact that the additional, seemingly redundant, multiplier variables in fact have
concrete physical meaning – i.e. they denote the momenta – and fit naturally into
the resulting integration algorithms.

3. Nonholonomic Systems with Symmetry. This section considers nonholo-
nomic systems with symmetries in the continuous setting. We start by recalling
standard concepts used to define the state space geometry. Then we formulate the
nonholonomic LDAP principle and obtain the continuous nonholonomic equations
of motion.

Assume that π : Q→ Q/G is a principle bundle on the manifold Q with group G.
The system has Lagrangian L : TQ→ R and is subject to nonholonomic constraints
defined by the regular distribution D consisting of subspaces Dq ⊂ TqQ defined at
each q ∈ Q. A group orbit is a submanifold denoted by Orb(q) := {gq | g ∈ G}.
If g is the Lie algebra of G, then Tq Orb(q) = {ξQ(q) | ξ ∈ g}, where ξQ is the
infinitesimal generator corresponding to the Lie algebra element ξ defined by

ξQ(q) =
d

ds

∣∣∣∣
s=0

exp(sξ)q.

Define the subspaces Vq,Sq,Hq according to

Vq = Tq Orb(q), Sq = Dq ∩ Vq, Dq = Sq ⊕Hq.

These definitions have the following physical meaning (see [2] for a more detailed
description):

• Vq – space of tangent vectors parallel to symmetry directions, i.e. the vertical
space;

• Sq – space of symmetry directions that satisfy the constraints;
• Hq – space of tangent vectors that satisfy the constraints but are not aligned

with any directions of symmetry, i.e. the horizontal space.

We make the following additional assumptions that are standard in the literature
(see [2, 9])

• Dimension Assumption: For each q ∈ Q, we have TqQ = Dq + Vq.
• Invariance of L: The Lagrangian L is G-invariant.

• Invariance of D: The distribution D is G-invariant.

Define the vector space sq ⊂ TqQ/G to be the set of Lie algebra element whose
infinitesimal generators lie in Sq, i.e. the space of symmetry directions that satisfy
the constraints, by

sq = {ξ(q) | ξQ(q) ∈ Sq}.

The bundle with fibers sq at all q ∈ Q is denoted s.
Since our main interest is in a configuration space that is by construction of the

form Q = M ×G we will restrict any further derivations to the trivial bundle case.
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While the more general case (introduced so far) can be treated in an analogous
manner with slight modification we stick to the trivial case for clarity without loos-
ing the general applicability of our results. Using (global) trivial bundle coordinates
(r, g) ∈ M × G we have ξQ(r, g) = (0, ξ(r, g)g) ∈ Sq. If we denote the basis for sq
by {eb(r, g)}, for b = 1, ...,dim(S) then since D is G-invariant g can be factored out
from this basis, i.e. eb(r, g) = Adg eb(r), where {eb(r)} is the body-fixed basis. We
denote sr the space spanned by {eb(r)}.

Lastly, the system is subject to control force f : [0, T ] → T ∗M restricted to the
shape space.

3.1. Nonholonomic Connection. With these definitions we can define a princi-
ple connection A : TQ → g with horizontal distribution that coincides with Hq at
point q. This connection is called the nonholonomic connection and is constructed
according to A = Akin+Asym, where Akin is the kinematic connection enforcing the
nonholonomic constraints and Asym is the mechanical connection corresponding to
symmetries in the constrained directions (i.e. the group orbit directions satisfying
the constraints). These maps satisfy

Akin(q) · q̇ = 0,

Asym(q) · q̇ = Adg Ω,
(2)

where Ω ∈ sr is called the locked angular velocity, i.e. the velocity resulting from
instantaneously locking the joints described by the variables r. Intuitively, when
the joints stop moving the system continues its motion uniformly along a curve
(with tangent vectors in S) with body-fixed velocity Ω and a corresponding spatial
momentum that is conserved.

By definition the principle connection can be expressed as

A(q) · q̇ = Adg(g
−1ġ + A(r)ṙ),

where A(r) is the local form and the two components in (2) can be added to get

g−1ġ + A(r)ṙ = Ω.

The vector verr q̇ = (0,Ω) ∈ (TM × s)r is the vertical component relative the
combined connection A and horr q̇ = (ṙ,−A(r)ṙ) ∈ (TM × g)r is the horizontal

component. Velocity vectors on TQ/G ∼ TM × g are split according to

(ṙ, g−1ġ)r = verr q̇ + horr q̇ = (0,Ω) + (ṙ,−A(r)ṙ).

3.2. Vertical and Horizontal Variations. We now consider variations of the
configuration variables in the vertical and horizontal directions. Following [8, 2]
define the following

Definition 3.1. Vertical variations δq = (δr, δg) are such that δr = 0 and δgg−1 =
A(r, g) · (δr, δg) ∈ s(r,g). This is because (0, δgg−1) ∈ TrM × s(r,g) is clearly vertical

and so is (0, g−1δg) ∈ TrM × sr. For trivial bundles s is constructed using a basis
{eb : Q → s} such that eb(r, g) = Adg eb(r), where eb(r) is a body-fixed basis in a
left-trivialization.

Definition 3.2. Horizontal variations δq = (δr, δg) satisfy A(r, g) · (δr, δg) = 0,
or equivalently g−1δg + A(r)δr = 0. In a left-trivialization this condition reads
(δr, g−1δg) = (δr,−A(r)δr) ∈ TrM × g.
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Since vertical and horizontal variations can be taken independently we can con-
sider variational principles based on vertical and horizontal variations separately.
The next section presents these principles and the derivation of the resulting non-
holonomic equations of motion.

Lie algebra basis. In practice, the constrained symmetry space S(r,g) often must be
generated from Lie algebra basis that depends on the shape r ∈ M . Therefore,
we assume that the basis {ea(r) | a = 1, ...,dim(G)} spans gr, in such a way that
{eb(r) | b = 1, ...,dim(s)} is an orthogonal basis for sr at each r. Then Ω ∈ sr in
this basis is Ω = Ωbeb(r).

3.3. Lagrange–d’Alembert–Pontryagin Nonholonomic Principle. Define
the reduced Lagrangian ℓ : TM × g → R according to

ℓ(r, ṙ, ξ) = L(r, ṙ, e, g−1ġ),

and the constrained reduced Lagrangian lc : TM × s → R such that

lc(r, ṙ,Ω) = ℓ(r, ṙ,Ω −A(r)ṙ).

While both reduced Lagrangians capture the group invariance of the system,
using the constrained reduced Lagrangian lc has several advantages. One is that,
unlike ξ, the locked angular velocity Ω diagonalizes the kinetic energy which has
important implications in studying the stability of the system [29]. Another is that
in the resulting equations of motion the rate of change of the generalized momentum
decouples from that of the shape variables which is key in exploiting the holonomy
of the system for locomotion and motion planning purposes.

Next, we begin from the general formulation of the LDAP principle (1) and ex-
tend it to the principle bundle setting introduced earlier. Then we formulate two
equivalent reduced principles, first in terms of the reduced Lagrangian ℓ and then
in terms of the constrained reduced Lagrangian lc. A related cotangent bundle re-
duction approach in the more general setting of Dirac structures (without explicitly
focusing on nonhonolonmic constraints) is developed in [38].

The LDAP principle (1) can now be written in a reduced form by substituting
the constrained reduced Lagrangian, by enforcing the nonholonomic connection,
and by expressing the momentum components at point (r, g) ∈ M × G in a local
trivialization according to (p, TL∗

g−1µ) ∈ T ∗
rM × T ∗

gG, where µ ∈ g∗ is the body

fixed momentum. Next, we formulate the reduced LDAP principle directly and
state the resulting equations of motion. See [24] for details of the derivation.

Definition 3.3. Reduced Nonholonomic LDAP Principle

δ

∫ T

0

{lc(r, u,Ω) + 〈p, ṙ − u〉 + 〈µ, g−1ġ + A(r)u− Ω〉} dt+

∫ T

0

〈f, δr〉dt = 0

subject to:

vertical variations s.t. (δr, g−1δg) = (0, η), where η ∈ sr and,

horizontal variations s.t. (δr, g−1δg) = (δr,−A(r)δr).

(3)

The principle (3) now contains all information necessary to derive the equations
of motion that explicitly account for the symmetries, nonholonomic constraints, and
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their interaction. The resulting equations of motion are

g−1ġ = Ω −A(r)u, (4)

ṙ = u, (5)

µ =
∂lc

∂Ω
, (6)

µ̇b =

〈
µ,
∂eb(r)

∂r
u+ adΩ−A(r)u eb(r)

〉
, (7)

〈
∂lc

∂r
−
d

dt

∂lc

∂u
+ f, δr

〉
= 〈µ,B(r)(u, δr) + adΩ A(r)δr〉 , (8)

for b = 1, ...,dim(s).
These equations are standard in the literature on nonholonomic systems with

symmetries (e.g. [1, 26, 9, 2]) and were obtained here directly from a reduced vari-
ational principle by restricting the variations on the configuration variables only.
This is equivalent to the approach of separately studying the evolution of a momen-
tum map (e.g. as taken in [1]) or by additionally restricting the allowable variations
on the velocity variables ξ or Ω (explored in [9, 7]). Yet, our main motivation for
this alternative intrinsic formulation is that such a self-contained principle can be
easily cast in a discrete framework and we expect that the resulting discrete equa-
tions of motion would most closely preserve the variational, geometric structure of
the original system. We develop the discrete framework in the next section.

4. Geometric Discretization of Nonholonomic Systems. In this section we
formulate a discrete variational principle and derive a family of simple nonholo-

nomic integrators that account for the group structure and constraint distribution,
respect the work-energy balance, and have discrete momentum equation and a cor-
responding momentum map with properties analogous to the continuous case.

4.1. Discrete Approximation. As we noted in Sec. 2 the discrete mechanics ap-
proach is based on varying discrete trajectories in order to find critical values of
an action integral approximated through quadrature. The approximation scheme
can be simple, i.e. by joining the discrete points along the path with simple local
interpolation and few quadrature evaluations along the segments; or they can be
higher-order by further discretizing each segment and performing multiple quadra-
ture computations. Here, for clarity we focus on a simple type of discretization using
one quadrature point per segment (as depicted in Fig. 4.1); higher order discretiza-
tion can also be achieved following the Lie group discretization proposed by [27]
or [4].

Discrete Trajectory. The discrete LDAP framework is defined in terms of a discrete
trajectory whose states are elements of the tangent spaces in the reduced bundle
of velocities and momenta. The trajectory is formally defined as follows (see also
Fig. 4.1)

Definition 4.1. The discrete reduced path is denoted

(r, u, p, g,Ω, µ)d : {tk}
N
k=0 → (TM ⊕ T ∗M) ×G× s × g∗

and is subject to the constraints

rk+1 − rk = huk, τ−1(g−1
k gk+1) = hξk,
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Figure 1. Discrete approximation (dashed) of continuous trajec-
tories (solid) in the shape space (left) using linear interpolation,
and in the group (right) using local geodesics defined by the flow
of the map τ . The discrete velocity vectors shown approximate the
average velocity along the segment and satisfy the constraint as de-
fined underneath the figures. These velocity vectors are attached
at quadrature points determined by the choice of α ∈ [0, 1].

where ξk = Ωk −A(rk+α)uk, with rk+α := (1−α)rk +αrk+1 for a chosen α ∈ [0, 1]
and the map τ : g → G represents the difference between two configurations in the
group by an element in its algebra (see Sec. 2.2).

The discrete control force is fd : {tk}
N
k=0 → T ∗M approximating a force control-

ling the shape.
Based on this simple approximation, the continuous and discrete state variables

are related through (Fig. 4.1):

(r(tk+α), ṙ(tk+α)) ≈ (rk+α, (rk+1 − rk)/h)

(g(tk+α), ġ(tk+α)) ≈
(
gk+α, gk+ατ

−1(g−1
k gk+1)/h

)
,

(9)

where tk+α := t0 + h(k + α), gk+α = gkτ(ατ
−1(g−1

k gk+1)) for each k = 0, ..., N − 1
and α ∈ [0, 1].

Constraint Consistency. It is important to note that the discretization constraints
between configurations and velocities from Dfn. 4.1 are invariant to left translations
of the discrete trajectory. Left-translating a pair of configurations (gk, gk+1) used
to define velocity ξk is equivalent to applying the lifted left action to ξk itself, i.e.

(gk, gk+1) =⇒ gk+ατ
−1(g−1

k gk−1) = gk+αξk,

(g′gk, g
′gk+1) =⇒ g′gk+ατ

−1((g′gk)
−1(g′gk−1)) = g′gk+αξk.

Therefore, the approximation (9) remains valid in a left trivialization
(
e, g−1(tk+α)ġ(tk+α)

)
≈

(
e, τ−1(g−1

k gk+1)/h
)
,

and the left-invariant discrete body-fixed velocity ξk can be used for discrete reduc-
tion analogous to the continuous case.

Connection Equivariance. Similarly to (9) the nonholonomic connection is approx-
imated as

A(r(tk+α), g(tk+α)) · (ṙ(tk+α), ġ(tk+α)) ≈ A(rk+α, gk+α) · (uk, gk+αξk)

= Adgk+α
(ξk + A(rk+α)uk) = Adgk+α

Ωk,
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for all k = 0, ..., N − 1 and α ∈ [0, 1]. Note that the discretization constraint is also
consistent with the required equivariance of the connection:

Adg′A(rk+α, gk+α)·(uk, gk+αξk) = Adg′Adgk+α
(τ−1(g−1

k g′
−1
g′gk+1)+A(rk+α)uk)

= Adg′gk+α
(τ−1((g′gk)

−1g′gk+1) + A(rk+α)uk) = A(rk+α, g
′gk+α)·(uk, g

′gk+αξk).

4.2. Discrete Reduced LDAP Nonholonomic Principle. We formulate the
discrete version of the LDAP principle (3) by approximating the action integral
along each discrete segment using a single evaluation determined by the choice of
α ∈ [0, 1].

Definition 4.2. Discrete Reduced LDAP Principle

δ

N−1∑

k=0

h [{lc(rk+α, uk,Ωk) + 〈pk, (rk+1 − rk)/h− uk〉

+〈µk, τ
−1(g−1

k gk+1)/h+ A(rk+α)uk − Ωk〉}
]
+

N−1∑

k=0

[h〈fk+α, δrk+α〉] = 0

subject to:

vertical variations s.t. (δrk, g
−1
k δgk) = (0, ηk), where ηk ∈ srk

and,

horizontal variations s.t. (δrk, g
−1
k δgk) = (δrk,−A(rk)δrk).

(10)

In the above formulation variations δuk, δΩk, δpk, δµk are free. Allowing the
Lagrangian and the connection to be evaluated at rk+α gives design freedom. Stan-
dard values of α are 0, 0.5, 1. Setting α = 0.5 provides more accurate approximation
of the base dynamics while α = 0, 1 results in less accurate, but simpler integra-
tors. As noted earlier, there are more general ways to define the discrete principle
that allows arbitrary high approximation order but here the exposition is limited
to lower order integrators for clarity.

The discrete force fk+α = (1 − α)fk + αfk+1 is used to approximate the work
done by f in a manner consistent with the rest of the discretization, i.e. through

∫ (k+1)h

kh

〈f, δr〉dt ≈ h〈fk+α, δrk+α〉.

Taking variations δrk, δgk, δuk, δΩk, δpk, δµk in (10) and noting that

δ(τ−1(g−1
k gk+1)) = dτ−1

hξk
(−ηk + Adg−1

k
gk+1

ηk+1),

where ηk = g−1
k δgk, ξk = τ−1(g−1

k gk+1)/h, and dτ ξ : g → g is the right-trivialized

tangent of τ(ξ) defined by D τ(ξ) · δ = TRτ(ξ)(dτ ξ ·δ) and dτ−1
ξ : g → g is its

inverse(see App. A), we obtain respectively
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δrk ⇒ h

〈
α
∂lck−1+α

∂r
+ (1 − α)

∂lck+α
∂r

, δrk

〉
+ 〈−pk + pk−1, δrk〉

+ h 〈µk−1, αDAk−1+α(δrk, uk−1)〉 + h 〈µk, (1 − α)DAk+α(δrk, uk)〉

+ h 〈(1 − α)fk−1+α + αfk+α, δrk〉
(11)

δgk ⇒ +
〈
−(dτ−1

hξk
)∗µk + (dτ−1

−hξk−1
)∗µk−1, ηk

〉
(12)

δuk ⇒ + h

〈
∂lck+α
∂u

, δuk

〉
+ h 〈−p, δuk〉 + h 〈µk,A(rk+α)δuk〉 (13)

δΩk ⇒ + h

〈
∂lck+α
∂Ω

, δΩk

〉
− h〈µk, δΩk〉 (14)

δpk ⇒ + h 〈δpk, (rk+1 − rk)/h− uk〉 (15)

δµk ⇒ + h
〈
δµk, τ

−1(g−1
k gk+1)/h+ A(rk+α)uk − Ωk

〉
= 0, (16)

where lck+α := lc(rk+α, uk,Ωk).
Since δuk, δΩk, δpk, and δµk are free we immediately obtain from (13)-(16)

∂lck+α
∂u

− pk + A(rk+α)∗µk = 0 (17)

∂lck+α
∂Ω

− µk = 0 (18)

(rk+1 − rk)/h− uk = 0 (19)

τ−1(g−1
k gk+1)/h+ A(rk+α)uk − Ωk = 0 (20)

Next we consider vertical and horizontal variations of (δrk, δgk) separately.

4.2.1. Vertical Equations. Vertical variations (Sec. 3.2) are of the form δrk = 0,
g−1
k δgk = ηk, where ηk ∈ srk

, or in the previously defined basis ηk = ηbkeb(rk).
Therefore, after substituting the constraint (20), (12) gives

〈
−(dτ−1

hξk
)∗µk + (dτ−1

−hξk−1
)∗µk−1, η

b
keb(rk)

〉
= 0,

where ξk = Ωk −A(rk+α)uk.
Since ηbk are arbitrary, the vertical equations become

〈
(dτ−1

hξk
)∗µk − (dτ−1

−hξk−1
)∗µk−1, eb(rk)

〉
= 0, (21)

for b = 1, ...,dim(S), and k = 1, ..., N − 1.

The Discrete Momentum Map. Next, we define a discrete momentum map, examine
its properties, and compare it to its continuous analog. It is well-known that for
the nonholonomic systems that we consider the momentum, even in the direction
of constrained symmetries, is not conserved in general. Instead, the momentum

equation defines how the momentum components evolve in time. In the discrete
setting the vertical equation (or the discrete momentum equation) is its analog.

Similar to the continuous setting the discrete vertical equation can be viewed as
defining the evolution of a discrete momentum map that we define next.
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Figure 2. Evolution of the discrete momentum map. At point
rk−1 the map is computed by projecting the covector Jloc

k−1 onto
srk−1

defined by the basis eb(rk−1); then in the Lie algebra ba-

sis attached at rk the covector Jloc
k−1 transforms by Ad∗

g−1

k
gk+1

and

the change in the momentum map is computed by subtracting it
from the next momentum Jloc

k and projecting onto srk
(the nota-

tion Jloc
k := Jloc(rk, uk, ξk) was used with covectors drawn pointing

towards the vectors that they act on).

Definition 4.3. Discrete Nonholonomic Momentum Map. Define the local discrete
momentum map Jloc : TM × g → g∗ by

Jloc(rk, uk, ξk) = (dτ−1
hξk

)∗µk, where µk =
∂ℓ

∂ξ
(rk, uk, ξk),

and the spatial discrete momentum map J : TQ→ g∗ through

J(rk, uk, gk, vk) := Ad∗

g−1

k

Jloc(rk, uk, g
−1
k vk),

where (rk, uk) ∈ TM and (gk, vk) ∈ TG.

With these definitions we can compute the evolution of the discrete momentum
map along symmetry directions that are allowed by the constraints, i.e. along the
elements of the basis {eb(r, g)} at point (r, g) ∈ Q, for b = 1, ...,dim(S). Note that
this basis is constructed from a body-fixed basis {eb(r)} according to eb(r, g) =
Adg eb(r). For all such eb : Q → s we define the momentum map components

Jnh
b (rk, uk, gk, vk) at point k by

Jnh
b (rk, uk, gk, vk) := 〈J(rk, uk, gk, vk), eb(rk, gk)〉 = 〈Jloc(rk, uk, g

−1
k vk), eb(rk)〉〉.

Proposition 1. Discrete Momentum Map Change. The momentum components

Jnh
b evolve along discrete LDAP solution trajectories according to

Jnh
b (rk, uk, gk, vk) − Jnh

b (rk−1, uk−1, gk−1, vk−1)

= 〈J(rk−1, uk−1, gk−1, vk−1), eb(rk, gk) − eb(rk−1, gk−1)〉.
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Proof. Rewriting the momentum equation (21), derived form the discrete LDAP
principle, in terms of the momentum map we obtain

〈Jloc(rk, uk, ξk) − Ad∗

τ(hξk−1)
Jloc(rk−1, uk−1, ξk−1), eb(rk)〉 = 0,

which is a momentum map balance equation depicted in Fig. 4.2.1. In spatial frame
it reads

〈J(rk, uk, gk, gkξk) − J(rk−1, uk−1, gk−1, gk−1ξk−1), eb(rk, gk)〉 = 0

which yields the component difference.

Corollary 1. Properties of the momentum map

1. The map components Jnh
b are not conserved in general.

2. If eb(r) are independent of r, then the discrete momentum equations are

the discrete Euler-Poincaré equations projected onto the constraint symme-

try space s.

3. If eb(r) are independent of r and if G is abelian then Jnh
b are constant along

the discrete trajectory. This follows from the equality e(rk, gk) = e(rk−1, gk−1)
since in this special case eb(rk) = eb(rk+1) and Adg = Id.

Horizontal Equations. Horizontal variations (Sec. 3.2) are constrained according to
g−1
k δgk = ηk, where ηk = −A(rk)δrk for variations δrk in the base. With this

definition of ηk and after substituting pk from (17) into (11) we get
〈
h

(
α
∂lck−1+α

∂r
+(1−α)

∂lck+α
∂r

)
−

(
∂lck+α
∂u

+
∂lck−1+α

∂u

)
+h(αfk−1+α+(1−α)fk+α) , δrk

〉

= 〈µk,A(rk+α)δrk〉−〈µk−1,A(rk−1+α)δrk〉

− h 〈µk−1, αDAk−1+α(δrk, uk−1)〉−h 〈µk, (1−α)DAk+α(δrk, uk)〉

−
〈
(dτ−1

hξk
)∗µk−(dτ−1

−hξk−1
)∗µk−1,A(rk)δrk

〉

(22)

for k = 1, ..., N − 1.
While in the continuous case the shape acceleration can be written independently

from the momentum change evolution (see (4)) this is not generally the case in
the geometric discretization resulting from (22). The reason is that, generally,
momentum preservation results into an implicit numerical condition. For numerical
purposes it is then easier to work with the horizontal equations expressed in terms
of the reduced Lagrangian ℓ instead of the the constrained reduced Lagrangian lc.
The equations are then

(
∂ℓk+α
∂u

−
∂ℓk−1+α

∂u

)
− h

(
α
∂ℓk−1+α

∂r
+ (1 − α)

∂ℓk+α
∂r

)

= A(rk)
∗((dτ−1

hξk
)∗µk − (dτ−1

−hξk−1
)∗µk−1) + h (αfk−1+α + (1 − α)fk+α) .

(23)

The Case of a Linear Connection. Next we study the special case when the con-
nection A(r) is linear in the base point r. This case is useful in comparing the
resulting integrator to the continuous case in order to gain insight into the effect of
discretization.

Assume that A(r) is linear. The following expressions then trivially hold

A(rk+α)δrk = A(rk)δrk + h(1 − α)DAk+α(uk, δrk),

A(rk−1+α)δrk = A(rk)δrk − hαDAk−1+α(uk−1, δrk),
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and after substituting them into (22) and using τ = exp the horizontal equations
become〈

α
∂lck−1+α

∂r
+(1−α)

∂lck+α
∂r

−
1

h

(
∂lck+α
∂u

−
∂lck−1+α

∂u

)
+αfk−1+α+(1−α)fk+α, δrk

〉

= α

〈
µk−1, dAk−1+α(uk−1, δrk)−

∞∑

i=1

Bi
i!

adiΩk−1−A(rk−1+α)uk−1
A(rk)δrk

〉

+(1−α)

〈
µk, dAk+α(uk, δrk)−

∞∑

i=1

Bi
i!

adiΩk−A(rk+α)uk
A(rk)δrk

〉
(24)

where the curvature covariant derivative dA is defined by

dA(u, δr) = DA(u, δr) −DA(δr, u),

and Bi are the Bernoulli numbers with the first few given by B1 = −1/2, B2 = 1/6,
B3 = 0, ...

There are several special cases that lead to further simplification of the horizontal
equations. The Lie bracket in (24) vanishes, for instance, when G is abelian; when
g is one-dimensional; or whenever Ω and A(r)u lie in the same one-dimensional
vector space for all Ω, r, and u (as in the snakeboard example from Sec. 5.2).

Proposition 2. If the connection A(r) is linear and the ad operator in (24) maps

to 0 along the path, then the non-conservative forces on the right-hand side of the

reduced discrete Euler-Lagrange equations (22) match the continuous case exactly.

Proof. If the ad operator maps to 0 then the curvature equals the covariant de-
rivative, i.e. B = dA. Then if we denote the continuous gyroscopic force by
FA(r, u, µ)β = 〈µ, dA(u, δrβ)〉, the discrete forces on the right-hand side of (24)
become αFA(rk−1+α, uk−1, µk−1) + (1 − α)FA(rk+α, uk, µk) exactly representing
the continuous force acting on the left and the right (depending on the value of α)
of the fiber at rk.

This claim is analogous to the result obtained by Cortés [11] for Chaplygin-
type symmetries and, as noted by the same author, if the gyroscopic forces vanish
then the horizontal equations become a decoupled variational integrator on their
own. Prop. 2 asserts that under similar conditions (linearity of the connection and
vanishing of the bracket) this is also true for the systems considered in this paper.

Numerical formulation. For numerical purposes it is convenient to write the
discrete dynamics in terms of vector-matrix notation, by treating the Lie algebra
variables ξ and Ω as vectors of coordinates with respect to a chosen canonical basis
(see App. B for an example). The equations (23) and (21) are expressed as

[
Id 0

[A(rk)] [e1(rk), ..., ec(rk)]

]T([
∂uℓk

(dτ−1
hξk

)∗∂ξℓk

]
−

[
∂uℓk−1

(dτ−1
−hξk−1

)∗∂ξℓk−1

])
=

[
hfk
0

]
, (25)

where ℓk := ℓ(rk+α, uk, ξk) and ξk = Ωk −A(rk+α)uk. These equations along with
the reconstruction equations

gk+1 = gkτ(hξk),

rk+1 = rk + huk,

constitute the complete discrete evolution.
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5. Examples.

Figure 3. Car (left) and snakeboard (right).

5.1. Car with Simple Dynamics. We study the kinematic car model defined
in [23] with added simple dynamics (Fig. 3). The configuration space is Q = S1 ×
S1 × SE(2) with coordinates q = (ψ, σ, θ, x, y), where (θ, x, y) are the orientation
and position of the car, ψ is the rolling angle of the rear wheels, and σ is defined by
σ = tan(φ) where φ is the steering angle. The car has mass m, rear wheel inertia I,
rotational inertia K, and we assume that the steering inertia is negligible. The car
is controlled by rear wheels torque fψ and steering velocity uσ. The Lagrangian is
then expressed as:

L(q, q̇) =
1

2

(
Iψ̇2 +Kθ̇2 +m(ẋ2 + ẏ2)

)
,

and the constraints (see [23]) are

cos θdx+ sin θdy = ρdψ,

− sin θdx+ cos θdy = 0,

dθ =
ρ

l
σdψ,

where l is the distance between front and rear wheel axles, and ρ is the radius of
the wheels. These constraints simply encode the fact that the car must turn in the
direction in which the front wheels are pointing, that the car cannot slide sideways,
and that the change in orientation is proportional to the steering angle and turning
rate of the wheels.

Note now that for any element g = (α, a, b) of SE(2), the action Φg(q) =
(φρ, φL, θ + α, a + cos(α)x − sin(α)y, b + sin(α)x + cos(α)y) leaves the Lagrangian
and constraints invariant. As the shape coordinates are r = (ψ, σ), the reduced

Lagrangian thus becomes

ℓ(r, u, ξ) =
1

2



uT
[
I 0
0 0

]
u+ ξT




K 0 0
0 m 0
0 0 m



 ξ



 ,

where ξ is used as a vector in R
3 of coordinates with respect to the standard Lie

algebra basis (see App.B).
The matrix representation of the connection A dependent on r becomes:

[A(r)] =




−ρ
l
σ 0

−ρ 0
0 0



 (26)



GEOMETRIC DISCR OF NONH SYS WITH SYMM 17

This model is an example of the principle kinematic case in which the constraint
distribution complements the space tangent to the group orbits. This is easily seen
noting that

Dq = span

{
∂

∂ψ
,
∂

∂σ

}
, Vq = span

{
∂

∂x
,
∂

∂y
,
∂

∂θ

}

Thus, S = ∅ and there is no momentum equation.

Continuous Equations of Motion. The resulting continuous equations of motion are

ẋ = ρ cos θψ̇,

ẏ = ρ sin θψ̇,

θ̇ =
ρσ

l
ψ̇,

(
I +mρ2 +

Kρ2σ2

l2

)
u̇ψ = −

Kρ2σψ̇σ̇

l2
+ fψ,

σ̇ = uσ.

Car Integrator. The discrete equations of motion will be derived by substituting
the Lagrangian and the connection of the steered car into (25). Define u = (uψ, uσ)
and ξ = −A(r) · u and pick τ = exp (defined in App. B). The discrete dynamics
involves the term dexp−1

ξ defined in (28). Observing that in the case of the car

〈ad∗

A(r)·u µ,A(r) · δ〉 = 0 for any µ ∈ h∗ and u, δ ∈ TM and therefore

〈(dexp−1
ξ )∗µ,A(r) · δ〉 = 〈µ,A(r) · δ〉

which leads to the simplified equations of motion

gk+1 = gk exp(−hA(rk+α) · uk),

rk+1 = rk + huk,

∂ℓk+α
∂u

−
∂ℓk−1+α

∂u
= [A(rk)]

T (µk − µk−1) + h (αfk−1+α + (1 − α)fk+α) .

The exact equations of motion can now be derived by substituting

µ =
∂ℓ

∂ξ
= (Kξ1,mξ2, 0),

∂ℓ

∂r
= (0, 0),

∂ℓ

∂u
= (Iuψ, 0),

and become

xk+1 − xk =

{
vk

ωk

(sin(θk + hωk) − sin θk) if ω 6= 0;

cos θkhvk if ω = 0.

yk+1 − yk =

{
vk

ωk

(− cos(θk + hωk) + cos θk) if ω 6= 0;

sin θkhvk if ω = 0.

θk+1 = θk + hωk,

σk+1 = σk + huσk ,

(I + ρ2m)(uψk − uψk−1) +
ρ2K

l2
σk(σk+αu

ψ
k − σk−1+αu

ψ
k−1)

= h
(
αfψk−1+α + (1 − α)fψk+α

)
,

where vk = ρuψk , ωk = (ρ/l)σk+αu
ψ
k . Thus, the integrator is easily computed as it is

fully explicit for any choice of quadrature point α. We would like to refer the reader
to the numerical comparisons with standard methods developed in [25] which verify
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that the proposed integrator is at least as accurate as the second order Runge-Kutta
(RK2) at a fraction of its runtime.

5.2. The Snakeboard. The snakeboard (Fig. 3) is a wheeled board closely re-
sembling the popular skateboard with the main difference that both the front and
the rear wheels can be steered independently. This feature causes an interesting
interplay between momentum conservation and the nonholonomic constraints: the
rider is able build up velocity without pushing off the ground by transferring the
momentum generated by a twist of the torso into motion of the board coupled with
steering of the wheels through pivoting of the feet. When the steering wheels stop
turning the systems moves along a circular arc and the momentum around the cen-
ter of this rotation is conserved. A robotic version of the snakeboard also exists,
equipped with a momentum-generating rotor and steering servos [33].

The shape space variables of the snakeboard are r = (ψ, φ) ∈ S × S denoting
the rotor angle and the steering wheels angle, while its configuration is defined
by (θ, x, y) denoting orientation and position of the board (see Figure 3). This
corresponds to a configuration space Q = S×S×SE(2) with shape space M = S×S
and group G = SE(2). Additional parameters are its mass m, distance l from its
center to the wheels, and moments of inertia I and J of the board and the steering.
The kinematic constraints of the snakeboard are:

− l cosφdθ − sin(θ + φ)dx+ cos(θ + φ)dy = 0,

l cosφdθ − sin(θ − φ)dx+ cos(θ − φ)dy = 0,

enforcing the fact that the system must move in the direction in which the wheels are
pointing and spinning. The constraint distribution is spanned by three covectors:

Dq = span

{
∂

∂ψ
,
∂

∂φ
, c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

}
,

where a = −2l cos θ cos2 φ, b = −2l sin θ cos2 φ, c = sin 2φ. The group directions
defining the vertical space are:

Vq = span

{
∂

∂θ
,
∂

∂x
,
∂

∂y

}
,

and therefore the constrained symmetry space becomes:

Sq = Vq ∩ Dq = span

{
c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

}
. (27)

Since Dq = Sq ⊕Hq, we have Hq = span
{

∂
∂ψ
, ∂
∂φ

}
. Finally, the Lagrangian of the

system is L(q, q̇) = 1
2 q̇
TMq̇ where

M =





I 0 I 0 0
0 2J 0 0 0
I 0 ml2 0 0
0 0 0 m 0
0 0 0 0 m




.

The reduced Lagrangian is, therefore: ℓ(r, u, ξ) = (u, ξ)T M (u, ξ). There is only one
direction along which snakeboard motions lead to momentum conservation: it is
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defined by the basis element

e1(r) = 2l cos2 φ




tanφ
l

−1
0



 ,

and, hence, there is only one momentum variable µ1 =
〈
∂ℓ
∂ξ
, e1(r)

〉
. Using this

variable we can derive the connection according to [33, 1] as

[A] =




I
ml2

sin2 φ 0
− I

2ml sin 2φ 0
0 0



 , and Ω =
µ1

4ml2 cos2 φ
e1(r).

Continuous Equations of Motion. The dynamics of the system can be derived either
in terms of Ω or in terms of µ as unknown variables. Here, we provide the resulting
equations of motion based on µ since this has been the choice in previous work
and will be easier to compare against. The continuous equations of motion can be
derived as


ẋ
ẏ

θ̇



 =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1







 1

2ml
(µ1 − sin 2φψ̇)




−1
0

tanφ
l







 ,

µ̇1 = 2I cos2 φψ̇φ̇− µ1 tanφφ̇,
(

1 −
I

ml2
sin2 φ

)
ψ̈ =

I

2ml2
sin 2φψ̇φ̇−

1

2ml2
φ̇p+

1

I
fψ,

φ̈ =
1

2J
fφ.

A Nonholonomic Integrator. The discrete equations of motion will be derived by
substituting the Lagrangian and the connection of the snakeboard into (25) and
choosing the map τ = exp. Observing that in the case of the snakeboard 〈ad∗

ξ µ, η〉 =
0 for any µ ∈ h∗ and ξ, η ∈ s and therefore

〈(dexp−1
hξk

)∗µk − (dexp−1
−hξk−1

)∗µk−1, e1(rk)〉 = 〈µk − µk−1, e1(rk)〉 = 0

In addition, since e1(rk) and A(rk) · δ lie in the same one-dimensional subspace srk

for any δ ∈ Trk
M then

〈(dexp−1
hξk

)∗µk − (dexp−1
−hξk−1

)∗µk−1,A(rk) · δ〉 = 0.

The equations of motion simplify to

gk+1 = gk exp(h(Ωk −A(rk+α) · uk)),

rk+1 − rk = huk,

µk =
∂ℓk+α
∂ξ

,

〈µk − µk−1, e1(rk)〉 = 0,

∂ℓk+α
∂u

−
∂ℓk−1+α

∂u
= h (αfk−1+α + (1 − α)fk+α)

for k = 1, ..., N − 1.
Defining ξ = Ω −A(r) · u and u = (uψ, uφ) the equations are derived by substi-

tuting

µ = (ml2ξ1 + Iuφ,mξ2, 0),
∂ℓ

∂u
= (I(uψ + ξ1), 2Juφ).
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and can be expressed in a fully explicit form for the unknowns gk+1, rk+1, µk, and
uk.
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Figure 4. Stability and efficiency of the nonholonomic integrators
for 10 seconds snakeboard trajectories: averaged over 1000 runs
using different maneuvers, all three geometric integrators remain
as accurate as RK2 at a fraction of its runtime. The position
error graphs of RDP, DLA, and GNI nearly coincide. The average
runtime for DLA was around 25 usec. due to its implicit nature
and is not displayed for clearer view of the other curves.
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Figure 5. 10 minute-long snakeboard trajectories: averaged over
1000 runs using different random maneuvers, the geometric integra-
tors RDP and GNI exhibit good accuracy even at very low resolution.

Numerical Comparisons. The snakeboard has interesting dynamics that has been
studied numerically in robotics through standard integration and motion planning
methods (see [5] for references). Yet it is rarely used in the geometric integration
literature (probably because of its more complicated dynamics) with the exception
of the work of Ferraro et al. [15] which though does not report numerical results.
This motivated us to perform extensive comparisons with standard Runge-Kutta
methods as well as with the DLA method [10] (applicable to general nonholonomic
systems) and the geometric nonholonomic integrator (GNI) method [15]. These
two methods were modified in order to account for the presence of control forces.
The numerical comparisons are based on two sets of trajectories: short 10 second
motions (Fig. 4) of varying resolution (total number of time steps) and longer 10
minute trajectories (Fig. 5) at the same resolutions. In both cases the vehicle is
controlled using sinusoidal inputs of frequency and amplitude designed to produce
nontrivial paths such as parallel parking, sharp turns, and winding maneuvers. In
the first case (Fig. 4) since the trajectory is relatively short all RK methods up to
fourth order that we test are stable. Yet, our integrator (termed RDP shorthand
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for reduced d’Alembert-Pontryagin) and GNI perform as accurately as RK2, at
a fraction of the computational time–due to their explicit update scheme. The
accuracy of the DLA also almost coincides with RDP but the method is more
expensive due to its implicit nature that requires iterative root-finding. Note that
all methods are implemented using simplified and optimized C-code for maximum
efficiency. In the second case of longer trajectories (Fig. 5) as the number of time
steps used is reduced, the RK methods start to become unstable and accumulate
large errors. The RDP integrator at this resolution now becomes more accurate
than RK4. The implicit DLA scheme is not included in this graph since at such low
resolutions it frequently failed to converge (using Euler-type initialization) either
because of Jacobian ill-conditioning or after converging to a point that is not a root.
This is due to the fact that when not initialized close to the real root the iterative
Newton-type method can quickly become unstable. We plan to investigate these
limitations of DLA in more depth in our future work. RDP and GNI still require
only a fraction of the RK4 runtime with GNI being slightly more efficient.

6. Conclusion. This paper was concerned with the discretization of nonholonomic
mechanical systems through a discrete variational approach. Our main contribu-
tion was the derivation of reduced integrators for systems with Lie group structure
and internal controllable shape dynamics. The geometric nature of the integra-
tors enabled us to identify a discrete nonholonomic momentum map and discrete
constraint forces which in certain cases have properties similar to their continuous
analogs. Numerical comparisons with standard integration methods as well as other
nonholonomic integrators revealed that the variational and reduced nature of the
proposed algorithms contributes to stable and accurate integration even at larger
time steps. It would be useful to investigate the nature of these numerical results
further through backward error analysis and to also establish a notion of optimality
of the chosen discretization. Further insight is still necessary to precisely define
the notions of a discrete curvature of a connection as well as discrete constraint
forces. It is interesting to determine how the proposed integrators fit in the more
general framework of Lie groupoids [18] and whether some of the raised issues can
be explained through this more general viewpoint.

Acknowledgments. The authors would like to thank M. Desbrun, J. C. Marrero,
D. Mart́ın De Diego, and S. Ferraro for their valuable input and advise.

Appendix.

Appendix A. Retraction map tangents. The two common choices for retrac-
tion maps are the exponential map τ = exp and the Cayley map τ = cay. In
this section we provide their right-trivialized tangents d τ of these maps and their
inverses d τ−1 (see [4] for more details).

A.1. Exponential map. The right-trivialized derivative of the map exp and its
inverse are defined as

dexpx y =

∞∑

j=0

1

(j + 1)!
adjx y, dexp−1

x y =

∞∑

j=0

Bj
j!

adjx y, (28)

where Bj are the Bernoulli numbers. Typically, these expressions are truncated in
order to achieve a desired order of accuracy. The first few Bernoulli numbers are
B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0 (see [6, 17] for more details).
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A.2. Cayley map. The derivative maps become (see [17] for derivation)

dcayx y =
(
I−

x

2

)−1

y
(
I+

x

2

)−1

, dcay−1
x y =

(
I−

x

2

)
y

(
I+

x

2

)
. (29)

Appendix B. Retraction Maps on SE(2). The coordinates of SE(2) are (θ, x, y)
with matrix representation g ∈ SE(2) given by:

g =




cos θ − sin θ x
sin θ cos θ y

0 0 1



 . (30)

Using the isomorphic map ·̂ : R
3 → se(2) given by:

v̂ =




0 −v1 v2

v1 0 v3

0 0 0



 for v =




v1

v2

v3



 ∈ R
3,

{ê1, ê2, ê3} can be used as a basis for se(2), where {e1, e2, e3} is the standard basis
of R

3.
The two maps τ : se(2) → SE(2) are given by

exp(v̂)=









cos v1 − sin v1 v2 sin v1−v3(1−cos v1)

v1

sin v1 cos v1 v2(1−cos v1)+v3 sin v1

v1

0 0 1



 if v1 6= 0




1 0 v2

0 1 v3

0 0 1



 if v1 = 0

cay(v̂)=




1

4+(v1)2

[
(v1)2− 4 −4v1 −2v1v3 + 4v2

4v1 (v1)2− 4 2v1v2 + 4v3

]

0 0 1





The maps [dτ−1
ξ ] can be expressed as the 3 × 3 matrices:

[dexp−1
bv ] ≈ I3 −

1

2
[adv] +

1

12
[adv]

2, (31)

[dcay−1
bv ] = I3 −

1

2
[adv] +

1

4

[
v1 · v 03×2

]
, (32)

where

[adv] =




0 0 0
v3 0 −v1

−v2 v1 0



 .
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