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Discrete Geometric Optimal Control on Lie Groups
Marin Kobilarov and Jerrold E. Marsden

Abstract—We consider the optimal control of mechanical
systems on Lie groups and develop numerical methods which
exploit the structure of the state space and preserve the system
motion invariants. Our approach is based on a coordinate-free
variational discretization of the dynamics leading to structure-
preserving discrete equations of motion. We construct necessary
conditions for optimal trajectories corresponding to discrete
geodesics of a higher order system and develop numerical
methods for their computation. The resulting algorithms are
simple to implement and converge to a solution in very few
iterations. A general software implementation is provided and
applied to two example systems: an underactuated boat and a
satellite with thrusters.

I. INTRODUCTION

We consider the optimal control of mechanical systems
evolving on a finite dimensional Lie group. Our primary
motivation is the control of autonomous vehicles modeled as
rigid bodies. The goal is to actuate the system to move from
its current state to a desired state in an optimal way, e.g. with
minimum control effort or time.

The standard way to solve such problems is to first derive
the continuous nonlinear equations of motion, for example
using a variational principle such as Lagrange-d’Alembert.
Two general methods, termed direct and indirect, are then
available to compute a minimum-cost trajectory [1]. In the
direct method, the differential equations are discretized (or
represented using a finite set of parameters) and enforced as al-
gebraic constraints in a nonlinear optimization program. Such
a formulation is then computationally solved using a pack-
age such as sequential quadratic programming. The indirect
method is to derive necessary conditions for optimality, i.e.
using Pontryagin-maximum principle by formulating another
variational problem based on the original continuous equations
and cost function. The necessary conditions are expressed
through the evolution of additional adjoint variables satisfying
a set of ordinary differential and transversality equations.
These equations are then discretized and solved iteratively, e.g.
using Newton’s method, in order to compute an approximate
numerical solution.

The framework proposed in this work uses a different
computational strategy. It employs the theory of discrete
mechanics based on a discrete variational formulation. In
particular, we employ a discrete Lagrange-d’Alembert (DLA)
variational principle yielding a set of discrete trajectories that
approximately satisfy the dynamics and that respect the state
space structure. Among these trajectories we find the extremal
one without any further discretization or approximation. This
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is achieved by formulating a higher order variational problem
to be solved through a repeated application of the DLA
principle to obtain the optimal control trajectory. Such a
construction enables the preservation of important properties
of the mechanical system–group structure, momentum, and
symplectic structure–and results in algorithms with provable
accuracy and stability.

Our approach is designed for accurate and numerically sta-
ble computation and is especially suited for nonlinear systems
that require iterative optimal control solvers. We construct a
general optimization framework for systems on Lie groups
and demonstrate its application to rigid body motion groups
as well as to any real matrix subgroup. Finally, in addition to
developing a computational control theory for Lie groups, we
spell out the details necessary for a practical implementation.

The Lagrangian Mechanical System

We consider mechanical systems evolving on an n-
dimensional Lie group G. The fundamental property of Lie
groups is that each tangent vector on the manifold can be
generated by translating a unique tangent vector at the iden-
tity using the group operation. More formally, each vector
ġ ∈ TgG at configuration g ∈ G corresponds to a unique
vector ξ ∈ g through ġ = gξ, where g := TeG denotes the
Lie algebra and e ∈ G is the group identity.

In view of this structure the dynamics can be derived
through the reduced Lagrangian ` : G × g → R defined
by `(g, ξ) = L(g, gξ) where L : TG → R is the standard
Lagrangian. As we will show working with the reduced state
(g, ξ) has important implications for constructing numerical
optimization schemes.

In this work we employ general Lagrangians of the form

`(g, ξ) = K(ξ)− V (g), (1)

where K : g → R and V : G → R are given kinetic and
potential energy functions. The kinetic energy Hessian ∂2ξK
is assumed non-singular over the control problem domain.

The system is actuated using a control force f(t) ∈ g∗

defined in the body reference frame1. We will begin our
development with fully actuated systems, i.e. such that f can
act in any direction of the linear space g∗. We will then
consider underactuated systems with control parameters, i.e.
systems such that f =

∑c
i=1 f

i(φ)ui, where f i ∈ g∗ define
the allowed control directions (covectors) which depend on
the controllable parameters φ ∈ M ⊂ Rm. Here, u ∈ U ⊂ Rc
denotes the control inputs. The control input set U and the
control shape space M are bounded vector spaces. The reader

1In the Lagrangian setting a force is an element of the Lie algebra dual
g∗, i.e. a one-form 〈f, ·〉 that pairs with velocity vectors to produce the total
work

∫ T
0 〈f, ξ〉dt done by the force along a path between g(0) and g(T ).
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can also consult e.g. [2], [3], [4] regarding standard notation
as well as more formal introduction to Lie groups and robot
dynamics.

The Optimization problem

The system is required to move from a fixed initial state
(g(0), ξ(0)) to a fixed final state (g(T ), ξ(T )) during a time
interval [0, T ]. The problem is to find the optimal control u∗ =
argminu J(u, T ) where the cost function J is defined by

J(u, T ) =
1

2

∫ T

0

‖u(t)‖2dt, (2)

subject to the dynamics and boundary state conditions.

Related work

Our approach is based on recently developed structure-
preserving numerical integration and optimal control methods.
While standard optimization methods are based on shooting,
multiple shooting, or collocation techniques, recent work on
Discrete Mechanics and Optimal Control (DMOC) [5] em-
ploys variational integrators [6], [7] that are derived from the
discretization of variational principles such as Hamilton’s prin-
ciple for conservative systems or the Lagrange-D’Alembert
principle for dissipative systems. Momentum preservation and
symplecticity are automatically enforced, avoiding numerical
issues (like numerical dissipation) that generic algorithms
often possess.

Structure preservation plays an especially important role
for systems on manifolds such as Lie groups which has led
to a number of geometric integration methods for ordinary
differential equations [8]. Symplectic-momentum integrators
on Lie groups [9], [10] are a particular class of such methods
that were combined with ideas developed in the context of
Lie group methods [11] to construct more general and higher
order integrators on Lie groups [12], [13], [14].

The optimal control problem considered in this work has a
rich history both in the analytical exploration of its interesting
geometric structure as well as in its numerical treatment. In
particular, finding trajectories extremizing an action similar
to (2) can be equivalently stated as computing geodesics
for a higher-order system known as Riemannian cubics [15].
Riemannian cubics are generalizations of straight lines on a
manifold for which, roughly speaking, the higher-order system
velocity corresponds to the acceleration of the original system.
When the manifold is a Lie group, such cubics can be reduced
by symmetry to Lie quadratics (since the resulting curves are
quadratic in the Lie algebra, while the cubics are cubic in
the manifold tangent bundle). General optimality conditions
as well as insightful geometric invariants have been derived
(e.g. [15], [16], [17]) with particular attention to rigid body
rotation problems on SO(3) while other works [18], [19],
[20] have focused on a more practically computable approach
applicable to SE(3).

Note that such works focused on the deriving optimality
conditions of the two-state boundary value problem in the
standard continuous setting. In contrast, we focus on develop-
ing numerical algorithms for computing high-quality solutions.

Existing numerical implementations were mainly restricted to
simple systems, e.g. ones possessing bi-invariant metrics or
fully actuated ones.

Necessary conditions resulting from (Pontryagin’s) opti-
mality principle have been derived for simple mechanical
systems [4] and for systems on Lie groups [21]. Our work
reformulates these problems through a discrete geometric
framework in order to directly obtain an algorithm for comput-
ing optimal solutions with provable numerical properties. Our
approach, partially documented in [22], is based on necessary
conditions formulated in a manner similar to [23], [24] which
study optimal control of rigid bodies. The main difference is
that our framework is applicable to any Lie group (not just
the Euclidean groups) and offers greater flexibility by allowing
different numerical parametrizations as well as underactuation.
This generality is accomplished through the formulation of
discrete necessary conditions in the spirit of the Riemannian
cubics [15] employed in the continuous setting. In essence,
optimal trajectories are derived as discrete geodesics of a
higher-order action. Following this approach, the numerical
formulation requires only the very basic ingredients–the La-
grangian, group structure, control basis, and external forces–
and can automatically obtain a solution. Thus, both the regular
and higher-order problems are solved using the same general
discrete variational approach leading to structure-preserving
dynamics and symplectic necessary conditions. Our approach
is also linked to the symplectic derivation of optimal control
studied in [25] to address the more generic case of an explicit
discrete control system evolving in a vector space.

Finally, we point out that group structure and symme-
tries play an important role in robotic dynamics and motion
control [26]. Variational integrators have been used in an
interesting way [27] to derive the dynamics of complex multi-
body systems through recursive differentiation rather than
explicitly computing equations of motion. Various control
methods have been developed, e.g. [28], [29], to numeri-
cally compute optimal trajectories for systems such as the
snakeboard or the robotic eel. In relation to such methods,
our proposed approach is unique since it builds on a unified
discrete variational framework for both deriving the dynamics
as well as computing the optimal controls. Note that while
this work deals with systems evolving on Lie groups, it
can be extended to multi-body systems with nonholonomic
constraints following the construction proposed in [30].

Contributions
This paper provides a simple numerical recipe for com-

puting optimal controls driving a mechanical system between
two given boundary conditions on pose and velocity. The
framework is general and can automatically generate opti-
mal trajectories for any system on a given Lie group by
providing its Lagrangian, group structure, and description of
acting forces. There are several practical benefits over existing
standard methods:
• the algorithm does not require choosing coordinates and

avoids issues with expensive chart switching that cause
sudden jumps or singularities, e.g. due to gimbal lock,
that prevent convergence in iterative optimization;
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• the optimization is based on minimum reduced dimension
and does not require Lagrange multipliers enforcing, e.g.
matrix orthogonality constraints or quaternion unit norms;

• the discrete mechanics approach guarantees symplectic
structure and momentum preservation as well as energy
approximation which is close to the true energy. The
combination of these factors leads to an accurate and
numerically robust approximation of the dynamics and
optimality conditions as a function of the time step
(formal and numerical comparisons to standard methods
can be found in [7], [31], [14], [32], [30], [27]);

• predictable computation even at lower resolutions allows
increased run-time efficiency.

Since the dynamics are nonlinear, an optimal solution gen-
erally does not exist in closed-form and must be computed
using iterative root-finding. Numerical tests show that our
proposed iterative scheme converges to a solution in surpris-
ingly few iterations irrespective of the chosen resolution, even
when applied to an underactuated system with external non-
conservative forces.

Outline.

After a quick review of regular variational integrators in §II,
we present in §III a formal, general treatment of the discrete
variational principle used to formulate the numerical optimal
control problem for systems on Lie groups. We then present
the resulting optimal control algorithms first for fully actuated
systems (§IV) and then for underactuated systems with con-
trol parameters (§V). The explicit expressions necessary for
implementation are given in §VI for any system on the groups
SE(2), SO(3), or SE(3), as well as on any general real matrix
subgroup. Specific cases of a boat and a satellite are detailed
as concrete examples in §VII. We also point out issues related
to controllability in the underactuated case and on numerical
implementation in §VIII.

II. BACKGROUND ON VARIATIONAL INTEGRATORS

A mechanical integrator advances a dynamical system for-
ward in time. Such numerical algorithms are typically con-
structed by directly discretizing the differential equations that
describe the trajectory of the system, resulting in an update
rule to compute the next state in time. In contrast, variational
integrators [7] are based on the idea that the update rule for
a discrete mechanical system (i.e., the time stepping scheme)
should be derived directly from a variational principle rather
than from the resulting differential equations. This concept of
using a unifying principle from which the equations of motion
follow (typically through the calculus of variations [33])
has been favored for decades in physics. Chief among the
variational principles of mechanics is Hamilton’s principle
which states that the path q(t) (with endpoint q(t0) and q(t1))
taken by a mechanical system extremizes the action integral∫ t1
t0
L(q, q̇)dt, i.e., the state variables (q, q̇) evolve such that

the time integral of the Lagrangian L of the system (equal to
the kinetic minus potential energy) is extremized. A number
of properties of the Lagrangian have direct consequences on
the mechanical system. For instance, a symmetry of the system

(i.e., a transformation that preserves the Lagrangian) leads to
a momentum preservation.

Although this variational approach may seem more mathe-
matically motivated than numerically relevant, integrators that
respect variational properties exhibit improved numerics and
remedy many practical issues in physically based simula-
tion and animation. First, variational integrators automatically
preserve (linear and angular) momenta exactly (because of
the invariance of the Lagrangian with respect to translation
and rotation) while providing good energy conservation over
exponentially long simulation times for non-dissipative sys-
tems. Second, arbitrarily accurate integrators can be obtained
through a simple change of quadrature rules. Finally, they
preserve the symplectic structure of the system, resulting in
a much-improved treatment of damping that is essentially
independent of time step [31].

Practically speaking, variational integrators based on Hamil-
ton’s principle first approximate the time integral of the con-
tinuous Lagrangian by a quadrature rule. This is accomplished
using a “discrete Lagrangian,” which is a function of two
consecutive states qk and qk+1 (corresponding to time tk and
tk+1, respectively):

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt.

One can now formulate a discrete principle over the whole
path {q0, ..., qN} defined by the successive position at times
tk = kh. This discrete principle requires that

δ

N−1∑
k=0

Ld(qk, qk+1) = 0,

where variations are taken with respect to each position qk
along the path. Thus, if we use Di to denote the partial
derivative w.r.t the ith variable, we must have

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0

for every three consecutive positions qk−1, qk, qk+1 of the
mechanical system. This equation thus defines an integration
scheme which computes qk+1 using the two previous positions
qk and qk−1.

Simple Example: Consider a continuous, typical La-
grangian of the form L(q, q̇) = 1

2 q̇
TMq̇ − V (q) (V be-

ing a potential function) and define the discrete Lagrangian
Ld(qk, qk+1) =hL

(
qk+ 1

2
, (qk+1 − qk)/h

)
, using the notation

qk+ 1
2

:= (qk + qk+1)/2. The resulting update equation is:

M
qk+1 − 2qk + qk−1

h2
= −1

2
(∇V (qk− 1

2
) +∇V (qk+ 1

2
)),

which is a discrete analog of Newton’s law Mq̈ = −∇V (q).
This example can be easily generalized by replacing qk+1/2

by qk+α = (1 − α) qk + α qk+1 as the quadrature point used
to approximate the discrete Lagrangian, leading to variants
of the update equation. For controlled (i.e., non conservative)
systems, forces can be added using a discrete version of
Lagrange-d’Alembert principle in a similar manner [34].
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III. DISCRETE MECHANICS ON LIE GROUPS

Variational integration on Lie groups requires additional
development since a Lie group is a nonlinear space with
special structure. We first recall the standard variational prin-
ciple for mechanical systems on Lie groups and state the
resulting differential equations of motion. A discrete structure-
preserving dynamics update scheme is then constructed. It will
serve as a basis for developing the proposed optimal control
algorithms.

A. The Continuous Setting

The state trajectory is formally defined as (g, ξ) : [0, T ]→
G× g while the control force takes the form f : [0, T ]→ g∗.
In most practical cases one can regard g as a matrix, ξ as
a column vector, and f as a row vector which “pairs” with
velocities through a product 〈·, ·〉 such as the standard dot
product. The Lagrange-d’Alembert principle requires that

δ

∫ T

0

[K(ξ)− V (g)] dt+

∫ T

0

〈f, g−1δg〉 = 0, (3)

where ξ = g−1ġ. The curve ξ(t) describes the body-fixed ve-
locity determined from the dynamics of the system. Variations
of the velocity ξ and the configuration g are related through

δξ = η̇ + adξ η, for η = g−1δg ∈ g,

where the Lie bracket operator for matrix groups ad : g×g→g
is defined by

adξ η = ξη − ηξ,
for given ξ, η ∈ g. The continuous equations of motion become
(see e.g. [35], [4])

µ̇− ad∗ξ µ = −g∗∂gV (g) + f, (4a)

µ = ∂ξK(ξ), (4b)
ġ = gξ. (4c)

These equations2 are called the controlled Euler-Poincaré
equations and µ ∈ g∗ denotes the system momentum. Given
initial conditions, the momentum µ evolves according to (4a).
The velocity ξ can be computed in terms of µ using (4b)
since ∂2ξK is non-singular allowing the inversion of ∂ξK. The
configuration then evolves according to (4c).

B. Trajectory Discretization

A trajectory is represented numerically using a set of N+1
equally spaced in time points denoted g0:N := {g0, ..., gN},
where gk ≈ g(kh) ∈ G and h = T/N denotes the time-
step. The section between each pair of points gk and gk+1

is interpolated by a short curve that must lie on the manifold
(Fig. 1). The simplest way to construct such a curve is through
a map τ : τ : g → G and Lie algebra element ξk ∈ g such
that ξk = τ−1(g−1k gk+1)/h. The map is defined as follows.

Definition III.1. The retraction map τ : g → G is a C2-
diffeomorphism around the origin such that τ(0) = e. It is used
to express small discrete changes in the group configuration
through unique Lie algebra elements.

2ad∗ξ µ is defined by 〈ad∗ξ µ, η〉 = 〈µ, adξ η〉, for some η ∈ g.

Thus, if ξk were regarded as an average velocity between
gk and gk+1 then τ is an approximation to the integral flow of
the dynamics. The important point, from a numerical point of
view, is that the difference g−1k gk+1 ∈ G, which is an element
of a nonlinear space, can now be represented uniquely by the
vector ξk in order to enable unconstrained optimization in the
linear space g for optimal control purposes.

G

gk−1

gk

gk+1

ξk = τ−1(g−1
k gk+1)/hg

e

ξk

ξk−1

τ

τ

Fig. 1. A trajectory (solid) on the Lie group G discretized using a sequence of
arcs (dashed) represented by Lie algebra vectors ξk ∈ g through the retraction
map τ .

Next, we define the following operators related to τ .

Definition III.2. [11], [14] Given a map τ : g→ G, its right-
trivialized tangent dτ ξ : g → g and its inverse dτ−1ξ : g → g
are such that, for a some g = τ(ξ) ∈ G and η ∈ g, the
following holds

∂ξτ(ξ) · η = dτ ξ ·η · τ(ξ), (5)

∂ξτ
−1(g) · η = dτ−1ξ · (η · τ(−ξ)) . (6)

Note that it can be shown by differentiating the expression
τ−1(τ(ξ)) = ξ that

dτ−1ξ · dτξ · η = η,

to confirm that these linear maps are indeed the inverse of
each other.

Intuitively, after the derivative in the direction η is taken,
i.e. ∂ξτ(ξ) · η, the resulting vector (at point τ(ξ)) is translated
back to the origin using right-multiplication by τ(−ξ) [14].
In practice, as will be shown, these maps are easily derived
as n× n matrices. Finally, we require the tangent maps to be
nonsingular over the optimization domain, defined next.

Definition III.3. The optimization domain Dτ ⊂ g is a
connected open set containing the origin e ∈ g such that dτhξ
(and dτ−1hξ ) are non-singular for every ξ ∈ Dτ .

The numerical algorithms proposed in the paper are re-
stricted to operate over Dτ , i.e. the time-step h and velocities
ξk are chosen to satisfy hξk ∈ Dτ for all k = 0, ..., N − 1.

Retraction Map (τ ) Choices: a)
The exponential map
exp : g → G, defined by
exp(ξ) = γ(1), with γ : R → G
is the integral curve through the
identity of the vector field asso-
ciated with ξ ∈ g (hence, with
γ̇(0) = ξ). The right-trivialized derivative of the map exp
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and its inverse are defined as

dexpx y =

∞∑
j=0

1

(j + 1)!
adjx y, (7a)

dexp−1x y =

∞∑
j=0

Bj
j!

adjx y, (7b)

where Bj are the Bernoulli numbers. Typically, these ex-
pressions are truncated in order to achieve a desired order
of accuracy. The first few Bernoulli numbers are B0 = 1,
B1 = −1/2, B2 = 1/6, B3 = 0 (see [8]).

b) The Cayley map cay : g → G is defined by cay(ξ) =
(I−ξ/2)−1(I +ξ/2) and is valid for a general class for
quadratic groups that include the groups of interest in the
paper. Based on this simple form, the derivative maps become
([8], §IV.8.3)

dcayx y =
(
e− x

2

)−1
y
(
e+

x

2

)−1
, (8a)

dcay−1x y =
(
e− x

2

)
y
(
e+

x

2

)
. (8b)

The third choice is to use canonical coordinates of the second
kind (ccsk) [8] which are based on the exponential map and
are not considered in this paper.

C. Discrete Variational Formulation

With a discrete trajectory in place we follow the approach
taken in [10], [9] in order to construct a structure-preserving
(i.e. group, momentum, and symplectic) integrator of the dy-
namics. We make a simple extension to include potential and
control forces through a trapezoidal quadrature approximation.
In particular, the action in (3) is approximated along each
discrete segment between points gk and gk+1 through∫ (k+1)h

kh

[K(ξ)−V (g)]dt≈h
[
K(ξk)− V (gk)+V (gk+1)

2

]
, (9a)∫ (k+1)h

kh

〈f, g−1δg〉≈ h
2

[
〈fk, g−1k δgk〉+〈fk+1, g−1k+1δgk+1〉

]
. (9b)

Variations of Lie algebra elements are related to variations
on the group through the following expression which may be
obtained through differentiation and application of (6),

δξk = δτ−1(g−1k gk+1)/h = dτ−1hξk(−ηk + Adτ(hξk) ηk+1)/h,

where ηk = g−1k δgk. The operator Adg : g → g can be
regarded as a change of basis with respect to the argument
g ∈ G (see [3], [35]) and is defined by

Adg ξ = gξg−1.

The discrete variational principle which will form the basis
for our discrete optimal control framework can now be stated.
The following result is a straightforward extension from [10],
[9]. The only difference is that we consider Lagrangians of
the form (1) and employ a trapezoidal discretization:

Proposition 1. A mechanical system on Lie group G with
kinetic energy K, potential energy V , subject to forces f ,
satisfies the following equivalent conditions:

1. The discrete reduced Lagrange-d’Alembert principle holds

δ

N−1∑
k=0

[
K(ξk)− V (gk) + V (gk+1)

2

]

+

N−1∑
k=0

1

2

[
〈fk, g−1k δgk〉+ 〈fk+1, g

−1
k+1δgk+1〉

]
= 0,

(10)

where ξk = τ−1(g−1k gk+1)/h.
2. The discrete reduced Euler-Poincaré equations of motion

hold

µk −Ad∗τ(hξk−1)
µk−1 = h (−g∗k∂gV (gk) + fk) , (11a)

µk = (dτ−1hξk)∗∂ξK(ξk), (11b)

gk+1 = gkτ(hξk). (11c)

Equations (11) can be considered as a discrete approx-
imation to (4). The discrete Euler-Poincaré equation (11a)
corresponds to (4a). Eq. (11b) is the discrete Legendre trans-
form corresponding to (4b), while (11c) is the discrete
reconstruction analogous to (4c). These equations can be used
to compute the next velocity and group elements ξk, and gk+1,
respectively, given the previous elements ξk−1 and gk. Fig. 2
gives a more geometric explanation of the update (11a).

(dτ−1
hξk−1

)∗

∂ξK(ξk−1)

(dτ−1
hξk

)∗
µk−1

µk

Ad∗τ(hξk−1)
µk−1Ad∗τ(hξk−1)

hfk

gk
gk−1

gk+1

∂ξK(ξk)

move to next

point by change

of basis
move to point at
start of segment

Fig. 2. The discrete covariant version of the Euler-Poincaré equation µ̇ −
ad∗ξ µ = f , where µ = ∂ξK(ξ). The discrete momentum µk at point k
is obtained using the right trivialized tangent (dτ−1

hξk
)∗ which brings the

derivative ∂ξK(ξk) to the body-fixed basis at gk . The momentum evolution
is then expressed through the difference of µk−1 and µk , i.e. by transforming
µk−1 in that same basis at gk through the Ad∗ map where proper vector
subtraction can be applied. The resulting change is caused by forces hfk (the
effects of potential V are omitted for clarity). Note that all vectors shown are
elements of g∗ and are shown above the group configuration only to illustrate
the basis with respect to which they are defined.

Boundary Conditions: While the discrete configurations
gk and forces fk approximate their continuous counterparts
at times t = kh, we still have not established the exact
relationship between the discrete and continuous momenta,
µk and µ(t) = ∂ξK(ξ(t)), respectively. This is particularly
important for properly enforcing boundary conditions that
are given in terms of continuous quantities. The following
equations (12a) and (12b) relate the momenta at the initial
and final times t = 0 and t = T and are used to transform
between the continuous and discrete representation:

µ0 − ∂ξK(ξ(0)) =
h

2
(g∗0∂gV (g0) + f0) , (12a)

∂ξK(ξ(T ))−Ad∗τ(hξN−1)µN−1 =
h

2
(g∗N∂gV(gN )+fN ) . (12b)

These equations can also be regarded as structure-preserving
velocity boundary conditions for given fixed velocities ξ(0)
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and ξ(T ). They follow from properly enforcing energy balance
at the boundaries, achieved by adding the momentum change
term 〈µ(T ), g−1N δgN 〉 − 〈µ(0), g−10 δg0〉 to the discrete action
in the principle (10).

The exact form of (11) and (12) depends on the choice of
τ . It is important to point out that this choice will influence
the computational efficiency of the optimization framework
when the equalities above are enforced as constraints. We have
specified two basic choices, τ = exp (7a) and τ = cay (8a)
for their ease of implementation and run-time efficiency.

D. Preservation Properties

One of the main benefits of employing the variational
numerical framework lies in its preservation properties, sum-
marized by the following theorems.

Theorem III.4. [9] The discrete flow (11) preserves the
discrete symplectic form, expressed in coordinates as

ω` =
∂2`(gk, τ

−1(g−1k gk+1)/h)

∂gik∂g
j
k+1

dgik ∧ dgjk+1,

where ∧ is the standard wedge product between differential
forms [35]. The symplectic form can also be written as the
differential of the canonical one-form θ` with ω` = dθ` where

θ` · δgk =

〈
− 1

h
µk − g∗k∂gV(gk), g−1k δgk

〉
.

The symplectic form is physically related to the phase space
structure. Its preservation during integration, for instance,
signifies that a volume of initial conditions would not be spu-
riously inflated or deflated due to numerical approximations.
Volume preservation means that the orbits of the dynamics will
have a predictable character and no artificial damping normally
employed by Runge-Kutta methods is needed to stabilize the
system [7].

Theorem III.5. [9], [14] The discrete dynamics (11) pre-
serves the momentum. In particular, in the absence of potential
and non-conservative forces, the update scheme preserves the
discrete spatial momentum map J : G× g→ g,

J(gk, ξk) · v = Ad∗
g−1
k
µk · v,

for any v ∈ g; or equivalently J(ga, ξa) = J(gb, ξb), for any
time indices a, b.

Practically speaking, whenever the continuous system pre-
serves momentum, so does the discrete. Any change in the
momentum then exactly reflects the work done by non-
conservative forces. Such a momentum-symplectic scheme
also exhibits long-term stable energy behavior close to the true
system energy [7]. Another property carried over to continuous
case is time-scaling.

Remark 1. Order of Accuracy. The order of accuracy of the
dynamics update depends on the accuracy of the Lagrangian
approximation. Since the trapezoidal approximations (9a) and
(9b) are second-order accurate then it can be shown (see
[7]) that the discrete equations (11) are also of second order
accuracy. The trapezoidal rule was chosen since it provides

the simplest second-order scheme. Higher-order methods by
proper choice of the Lagrangian, termed symplectic Runge-
Kutta (see [8], [12], [14]), are possible but not considered in
this work.

Remark 2. Time-scaling preservation. The trajectory g0:N ,
ξ0:N−1 with time-step h satisfies the discrete dynamics (11)
subject to forces f0:N if and only if the trajectory g0:N ,
{ξ0/s, ..., ξN−1/s} with time-step h′ = sh, subject to forces
{f0/s2, ..., fN/s2} satisfies the discrete dynamics, for a given
scalar s > 0.

Finally, the group structure is exactly preserved since the
trajectory g0:N is reconstructed from the discrete velocity
ξ0:N−1 using the map τ which by definition maps to the
group (11c). This avoids issues with dissipation and numerical
drift associated with reprojection used in other methods,
e.g. in methods based on matrix orthogonality constraints or
quaternions.

IV. FULLY ACTUATED SYSTEMS

We first develop the simplest case with a mechanical kinetic
energy

K(ξ) =
1

2
〈Iξ, ξ〉,

with full unconstrained actuation, without potential or external
forces and without any velocity constraints. The map I : g→
g∗ is called the inertia tensor and is assumed full rank. Since
there is full control over f the control effort cost function (2)
can be expressed as J(f) =

∫
1
2‖f(t)‖2dt. It is approximated

through trapezoidal quadrature, analogously to (10), using the
summation

J(f) ≈
N−1∑
k=0

h

4

(
‖fk‖2 + ‖fk+1‖2

)
. (13)

The optimal control problem for the system (11) with given
fixed initial and final states (g(0), ξ(0)) and (g(T ), ξ(T ))
respectively can be stated as

Compute: ξ0:N−1, f0:N

minimizing
N−1∑
k=0

h

4

(
‖fk‖2 + ‖fk+1‖2

)
subject to:

µ0 − I ξ(0) = (h/2)f0,

µk −Ad∗τ(hξk−1)
µk−1 = hfk, k = 1, ..., N − 1,

I ξ(T )−Ad∗τ(hξN−1) µN−1 = (h/2)fN ,

µk = (dτ−1hξk)∗ I ξk,
g0 = g(0),

gk+1 = gkτ(hξk), k = 0, ..., N − 1,

τ−1(g−1N g(T )) = 0.

(14)

The constraints follow directly from the discrete mechan-
ics (11), boundary conditions (12), and by noting that ∂ξK =
Iξ. The last equation ensures that the difference between the
given and reconstructed configurations is zero.
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A. Optimality Conditions

Trajectories satisfying the constrained nonlinear optimiza-
tion problem (14) are computed through the derivation of
optimality conditions stated in the following proposition.

Proposition 2. The trajectory of a discrete mechanical sys-
tem on a Lie group G with algebra g and Lagrangian
`(ξ) = 1

2 〈I ξ, ξ〉 with fixed initial and final configurations and
velocities (g(0), ξ(0)) ∈ G × g and (g(T ), ξ(T )) ∈ G × g
minimizes the total control effort only if the discrete body-
fixed velocity curve ξ0:N−1 satisfies the following conditions:

Necessary Conditions for Optimality

νk −Ad∗τ(hξk−1)
νk−1 = 0, k = 1, ..., N − 1 (15a)

τ−1(τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T ))−1) = 0, (15b)
where:

νk=(dτ−1hξk)∗∂ξK(λ0:N ,k)(ξk), (15c)

K(λ0:N,k)(ξk)=〈(dτ−1hξk)
∗Iξk, λk−Adτ(hξk)λk+1〉/h, (15d)

λ[0 =2 (µ0−I ξ(0)) /h, (15e)

λ[k=
(
µk−Ad∗τ(hξk−1)

µk−1
)
/h, k=1, ..., N−1 (15f)

λ[N =2
(
I ξ(T )−Ad∗τ(hξN−1) µN−1

)
/h, (15g)

µk=(dτ−1hξk)∗ Iξk. (15h)

Note: The proposition defines Nn equations (15a)-(15b) in
the Nn unknowns ξ0, ..., ξN−1. A solution can be found using
nonlinear root finding.

Proof: Define the discrete action S according to

S(ξ0:N−1, f0:N , λ0:N )

= 〈µ0 − Iξ(0)− hf0/2, λ0〉

+

N−1∑
k=1

〈µk −Ad∗τ(hξk−1)
µk−1 − hfk, λk〉

+ 〈Iξ(T )−Ad∗τ(hξN−1) µN−1 − hfN/2, λN 〉

+

N−1∑
k=0

h

4

(
‖fk‖2 + ‖fk+1‖2

)
, (16)

where µk = (dτ−1hξk)∗ Iξk should be regarded as a function of
ξk. Taking variations δS with respect to fk and λk we obtain3

λ[k = fk = (µk −Ad∗τ(hξk−1)
µk−1)/h.

Next, freeze the adjoint trajectory λ0:N and define the func-
tions K(λ0:N ,k) : g→ R, for k = 0, ..., N − 1 by

K(λ0:N ,k)(ξ) = 〈(dτ−1hξ )∗ Iξ, λk −Adτ(hξ) λk+1〉/h. (17)

The ξ-dependent discrete action along fixed λ0:N can be
rewritten as

Sλ0:N
(ξ0:N−1) = h

N−1∑
k=0

K(λ0:N ,k)(ξk).

3The superscript operators [ : g → g∗ (flat) and ] : g∗ → g (sharp)
are used to convert between vector fields and their duals (one-forms). Under
identification g ∼ Rn, [ can simply be regarded as converting a column vector
into a row vector, and ] as the opposite operation [35].

For less cluttered notation the shorthand expression

K(ξk) := K(λ0:N ,k)(ξk), (18)

will also be employed since the index k in K(λ0:N ,k) becomes
clear from the argument ξk. The point is that λ in (17) should
be regarded as fixed, i.e. not dependent on ξ. The optimality
conditions can now be regarded as a set of equations satisfying
the dynamics of another higher order discrete Hamiltonian
system with discrete Lagrangian L = K through
δSλ0:N

(ξ0:N−1) = 0 ⇐⇒ νk −Ad∗τ(hξk−1)
νk−1 = 0, (19)

where νk = (dτ−1hξk)∗∂ξK(ξk) ∈ g∗ is a momentum-like
quantity for the system with Lagrangian L. The relation (19)
is nothing but the discrete Euler-Poincaré equation of this
new system and was obtained in the same way the standard
dynamics update (11a) followed from the principle (10). This
key insight leads directly to a convenient numerical scheme
for computing the optimal controls.

The final configuration gN is computed by reconstructing
the curve from the velocities ξ0:N−1 and the boundary condi-
tion gN = g(T ) is enforced through the relation (15b) without
the need to optimize over any of the configurations gk.

We point out the resulting formulation does not require
optimizing over additional Lagrange multiplier variables. It
has the minimum possible problem dimension and avoids
convergence and instability issues due to improper multiplier
initialization.

B. Implementing the Necessary Conditions.

An optimal trajectory is computed as the root of equa-
tions (15a)-(15b). Their exact form depends on the momentum
expression (15c) which can be computed numerically using
finite differences, e.g. using:

〈νk, η〉 (20)

≈ 1

2ε

[
K(λ0:N ,k)(ξk+εdτ−1hξkη)−K(λ0:N ,k)(ξk−ε dτ−1hξkη)

]
,

along basis elements η ∈ g with a small ε > 0. In other
words, the components of νk with respect to a chosen Lie
algebra basis {ei} are computed according to νik = 〈νk, ei〉
for any Lie group G.

Alternatively, the momentum can be expressed in closed
form by differentiating the kinetic energy K to obtain
〈νk, η〉
= 〈(∂ξdτ−1hξk ·dτ

−1
hξk

η)∗ I ξk,∆λk〉
+ 〈(dτ−1hξk)

∗ I(dτ−1hξk)∆λk + h ad∗Adτ(hξk)λk+1
µk, η〉,

(21)

where ∆λk = λk−Adτ(hξk) λk+1. Expression (21) is derived
using straightforward differentiation (one can also consult [22]
for more details) and using A.1. One can choose to implement
the necessary conditions using either (20) or (21).

V. UNDERACTUATED SYSTEMS WITH CONTROL
PARAMETERS

We next extend the system dynamics to include non-trivial
actuation and position dependent forces. Assume that the con-
trol forces are applied along body-fixed directions defined by
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the control covectors {f1(φ), ..., f c(φ)}, c ≤ n, f i : M→ g∗

which depend on control parameters φ : [0, T ] → M. These
extra parameters can be regarded as the shape variables of the
control basis, i.e. parameters that do not affect the inertial
properties of the systems but which determine the control
directions. Assume that the system is controlled using control
input u : [0, T ] → U applied with respect to the basis
{f i(φ)}. In addition, assume that the system is subject to
configuration-dependent forces collectively represented by the
function fconf : G → g∗ and dissipative velocity-dependent
forces fvel : g → g∗. For instance, forces arising from the
potential V take the form fconf(g) = −g∗∂gV (g). while simple
viscous resistance or linear drag forces can be expressed as
fvel(ξ) = −Dξ, where D is damping positive definite map.

The total force acting in the body frame can then be
expressed as the sum of the control and external forces
according to

f(g, ξ) =

c∑
i=1

uif i(φ) + fconf(g) + fvel(ξ).

In this problem the control effort to be minimized is expressed
as
∫ T
0

1
2‖u(t)‖2dt.

Dissipative Force discretization: In our framework
velocity-dependent forces fvel(ξk) are defined over the k-
th segment, and have no clear meaning over a particular
point. The contribution of such forces at a particular point
can be specified by assuming the following virtual work
approximation

∫ (k+1)h

kh

fvel(ξ) ·η(t)≈ h
2
〈(dτ−1hξk)

∗fvel(ξk), ηk+Adτ(hξN)ηk+1〉,

where η = g−1δg denotes the usual Lie group variations. Such
discretization is motivated by the way variations contribute to
Hamilton’s principle discretization (10)

δ

(∫ (k+1)h

kh

`(ξ)dt

)
·η≈h〈(dτ−1hξk)

∗∂ξ`(ξk),−ηk+Adτ(hξN)ηk+1〉,

where the left and right variations are averaged instead of
subtracted. Fig. 2 also helps explain how vectors defined along
a segment transform to its start and end points.

The necessary conditions for an optimal trajectory are
defined in the following proposition (which extends Prop. 2).

Proposition 3. A discrete mechanical system with kinetic en-
ergy K(ξ) and control input directions f i(φ) subject to config-
uration and dissipative forces fconf(g) and fvel(ξ), respectively,
moves with minimum control effort between fixed initial and
final states (g(0), ξ(0)) ∈ G× g, ((g(T ), ξ(T )) ∈ G× g, only
if the discrete velocity curve ξ0:N−1, control parameters φ0:N ,
and adjoint variables λ0:N satisfy the following conditions:

Necessary Conditions for Optimality

νk−Ad∗τ(hξk−1)
νk−1 =−hg∗k∂g〈fconf(gk),λk〉,

k = 1, ..., N−1
(22a)

τ−1(g−1N g(T )) = 0, (22b)

µ0−I ξ(0) = (h/2)f+0 , (22c)

µk−Ad∗τ(hξk−1)
µk−1 =(h/2)(f−k +f+k ), k=1, ..., N−1 (22d)

I ξ(T )−Ad∗τ(hξN−1) µN−1 =(h/2)f−N , (22e)
c∑
i=1

uik
(
∂φf

i(φk)]
)
λk = 0, k = 0, ..., N (22f)

where νk ∈ g∗, f±k ∈ g∗, uk ∈ U are defined by

νk = (dτ−1hξk)∗∂ξKλ0:N ,k(ξk), (22g)

Kλ0:N ,k(ξk) = 〈(dτ−1hξk)∗Iξk, λk −Adτ(hξk) λk+1〉/h

− 1

2
〈(dτ−1hξk)∗fvel(ξk), λk+Adτ(hξk)λk+1〉,

f−k =
c∑
i=1

uikf
i(φk) + fconf(gk) + (dτ−1−hξk−1

)∗fvel(ξk−1),

f+k =

c∑
i=1

uikf
i(φk) + fconf(gk) + (dτ−1hξk)∗fvel(ξk),

uik = 〈f i(φk), λk〉, (22h)
g0 = g(0), (22i)
gk+1 = gkτ(hξk), (22j)

Note: The proposition defines (Nn+ (N + 1)n+ (N + 1)m)
equations (22a)-(22f) in the (Nn + (N + 1)n + (N + 1)m)
unknowns (ξ0:N−1, λ0:N , φ0:N ). A solution can be found using
standard nonlinear root finding. When the control basis is con-
stant (i.e. m = 0) then the optimization is over (ξ0:N−1, λ0:N )
only; f i(φk) should be replaced with f i and (22f) is omitted.

Proof: Define the discrete action S similarly to (16)
according to

S(ξ0:N−1, u0:N , φ0:N , λ0:N ) =

〈µ0 − Iξ(0)− (h/2)f+0 , λ0〉

+

N−1∑
k=1

〈µk−Ad∗τ(hξk−1)
µk−1−(h/2)(f−k +f+k ), λk〉

+ 〈Iξ(T )−Ad∗τ(hξN−1) µN−1−(h/2)f−N , λN 〉

+

N−1∑
k=0

h

4

(
‖uk‖2 + ‖uk+1‖2

)
,

(23)

where we used the shorthand notation

f−k =

c∑
i=1

uikf
i(φk) + fconf(gk) + (dτ−1−hξk−1

)∗fvel(ξk−1),

f+k =

c∑
i=1

uikf
i(φk) + fconf(gk) + (dτ−1hξk)∗fvel(ξk).

Analogously to the fully actuated case (17), keep the
multiplier trajectory λ0:N frozen and define the function
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K(λ0:N ,k) : g→ R by

K(λ0:N ,k)(ξ) =〈(dτ−1hξ )∗Iξ, λk −Adτ(hξ) λk+1〉/h

− 1

2
〈(dτ−1hξ)∗fvel(ξ), λk+Adτ(hξ)λk+1〉.

(24)

In addition, define the function V(λ0:N ,k) : G→ R by

V(λ0:N ,k)(g) = 〈fconf(g), λk〉.
Similarly to (18) assume that following shorthand notation

K(ξk) := K(λ0:N ,k)(ξk), V(gk) := V(λ0:N ,k)(gk).

As the naming suggests, K and V play the role of kinetic and
potential energies for the higher order system whose dynamics
will determine the optimality conditions. The ξ-dependent part
of the action (23) can be expressed, along fixed λ0:N , by

Sλ0:N
(ξ0:K)=h

N−1∑
k=0

(
K(ξk)− 1

2
[V(gk) +V(gk+1)]

)
. (25)

Note that the action (23) was expressed in terms of each
K(ξk) (24) by combining all terms in S containing ξk and
using the identity

(dτ−1−hξk)∗fvel(ξk) = Ad∗τ(hξk)(dτ
−1
hξk

)∗fvel(ξk)

which follows from A.3.
After extremizing this action, it immediately follows from

the general discrete Lagrange-d’Alembert principle (Prop. 1)
that

νk −Ad∗τ(hξk−1)
νk−1 = −hg∗k∂gV(gk), (26)

where νk = (dτ−1hξk)∗∂ξK(ξk) ∈ g∗ is a momentum-like quan-
tity for the higher-order system with Lagrangian L = K − V .
In summary, the relation (22a) follows from applying the
variational equations (10) to the action Sλ0:N

.
Eqs. (22c)-(22e) enforce the dynamics after taking varia-

tions δλk, i.e.

δλ0 ⇒ µ0−I ξ(0) = (h/2)f+0 ,

δλk ⇒ µk−Ad∗τ(hξk−1)
µk−1 =(h/2)(f−k +f+k ),

δλN ⇒ I ξ(T )−Ad∗τ(hξN−1) µN−1 =(h/2)f−N .

Variations of the parameters φk result in

δφk ⇒
〈

c∑
i=1

uik∂φf
i(φk), λk

〉
= 0, for k = 0, ..., N,

which can be rewritten as the relation (22f). In the special
case when the control input basis elements f i are constant, the
relation (22f) vanishes. Variations with respect to the controls
δuk result in

δuik ⇒ −〈f i(φk), λk〉+ uik = 0, for k = 0, ..., N,

from which the controls uk can be computed in terms of the
multipliers (included as condition (22h)). Since the controls
u0:N can be computed internally it is not necessary to include
them as part of the optimization variables in Prop. 3.

The remaining equations are identical to the ones derived in
Prop. 2. Note that the optimization is not performed over the
configurations gk, since they can be internally reconstructed
according to (22i)-(22j).

Vector-matrix Form.: The term on the right hand side
of (22a) can be better understood under the identification g ∼
Rn by treating g as a matrix and all other variables as column
vectors. In this case g∗∂g〈fconf(g), λ〉 = gT (∂gfconf(g))Tλ.
Similarly, the expression in (22f) should be understood as(
∂φf

i(φ)]
)
λ = ∂φf

i(φ)Tλ.
Example: constant force field.: The force (22a) has a

closed form whenever the external force is constant in the
global frame, i.e. when it can be written as fconf(g) =
Ad∗g fconst. Typical examples of such forces are gravity (on
the surface of the Earth) or a simple model of wind blowing
in a constant direction. Using A.1 the expression becomes

g∗∂g〈fconf(g), λ〉 = − ad∗λ Ad∗g fconst = − ad∗λ fconf(g).

Corollary 1. The optimality conditions in Prop. 2 and 3
preserve the higher order discrete symplectic form ωL = dθL
where the canonical one-form θL is given by

θL · δgk =

〈
− 1

h
νk − g∗k∂gV(gk), g−1k δgk

〉
.

The claim follows directly from Thm. III.4.

Controllability Issues

In the fully actuated case §IV, gradient-based methods
are always guaranteed to find a (local) optimum since the
constraints are linearly independent. This is not the case with
underactuation since controllability is generally not guaran-
teed. In the discrete setting, lack of controllability appears
as a singularity of the optimality conditions which obstructs
iterative optimization. This is an issue with any numerical
method for solving optimal optimal control problems for
constrained systems. In that respect our proposed approach
is no better than any other standard nonlinear programming
technique. Yet, there appears to be an interesting connection
between the standard, i.e. continuous, controllability and its
counterpart in our proposed discrete setting. This link is briefly
explored next with further development left for future work.

A standard way to define controllability for the type of
systems considered in this paper is through the symmetric
product, denoted 〈· : ·〉 : g× g→ g and defined by

〈ξ : η〉 = −I−1
(
ad∗ξ Iη + ad∗η Iξ

)
.

In the continuous setting, iterated symmetric products of the
input vector fields bi = I−1f i determine which velocities
can be reached while iterated Lie brackets of these reachable
velocities determine which configurations are achievable. In
particular, exact controllability tests are directly computable
assuming the system starts and ends with zero velocity [36].
A similar general claim can be made regarding our discrete
setting for N → ∞ since the discrete dynamics approaches
the continuous one. However, such a claim is not useful in
practice since a realistically implementable algorithm is based
on a small N .

In that respect, there is an interesting link between the
standard continuous and the required discrete controllability
conditions. More specifically, the discrete dynamics (22d) can
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be expressed (after setting τ = exp and ignoring external
forces) as
∞∑
i=0

Bi
i!2i

(
〈ξk :i ξk〉 − (−1)i〈ξk−1 :i ξk−1〉

)
= huib

i (27)

where 〈ξ :i ξ〉 denotes taking the product using the first
argument recursively i times. In addition, the reconstruction
condition (22b) can be expressed through the Baker-Campbell-
Hausdorff formula [4] as

τ−1(τ(hξ0)· · ·τ(hξN−1))=h

N−1∑
k=0

ξk+
h2

2

N−1∑
i,j=0

[ξi, ξj ]+hot, (28)

where “hot” denotes higher-order terms of iterated Lie brack-
ets. Note that if the closure under Lie algebra bracket operation
[·, ·], denoted Lie(ξ0:N−1), spans all possible directions of
motions then (28) ensures that any final configuration g(T )
can be reached from any starting configuration g(0). This
corresponds exactly to the continuous controllability condition
requiring that the Lie algebra closure of achievable velocities
has full rank [4]. Note that this similarity applies in the context
of kinematic systems since the discrete composition of flows
in (28) can be regarded as a curve generated by a kinematically
reduced continuous system.

It would be interesting to define more precisely the notion
of discrete controllability through (27) and (28). This will
enable the algorithm to determine not only whether a state is
reachable but also an appropriate number of discrete segments
N required to reach it. As a rule of thumb, any practical
implementation should have N ≥ 2 + n, where n = dim(G),
to account for the two boundary conditions on velocities and
to provide at least n discrete flows.

VI. APPLICATIONS TO MATRIX GROUPS

We now specify the operators required to implement Prop. 2
and Prop. 3 for typical rigid body motion groups and general
real matrix subgroups. While we have given more than one
general choice for τ , for computational efficiency we rec-
ommend the Cayley map since it is simple and does not
involve trigonometric functions. In addition, it is suitable
for iterative integration and optimization problems since its
derivatives do not have any singularities that might otherwise
cause difficulties for gradient-based methods.

A. SO(3)

The group of rigid body rotations is represented by 3-by-3
matrices with orthonormal column vectors corresponding to
the axes of a right-handed frame attached at the body. Define
the map ·̂ : R3 → so(3) by

ω̂ =

 0 −w3 w3

w3 0 −w1

−w2 w1 0

 . (29)

A Lie algebra basis for SO(3) can be constructed as
{ê1, ê2, ê3}, êi ∈ so(3) where {e1, e2, e3} is the standard
basis for R3. Elements ξ ∈ so(3) can be identified with the
vector ω ∈ R3 through ξ = ωαêα, or ξ = ω̂. Under such

identification the Lie bracket coincides with the standard cross
product, i.e. adω̂ ρ̂ = ω × ρ, for some ρ ∈ R3. Using this
identification we have

cay(ω̂) = I3 +
4

4 + ‖ω‖2
(
ω̂ +

ω̂2

2

)
. (30)

The linear maps dτ ξ and dτ−1ξ are expressed as the 3 × 3
matrices

dcayω=
2

4+‖ω‖2 (2I3+ω̂) , dcay−1ω =I3−
ω̂

2
+
ωωT

4
. (31)

We point out that with the choice τ = cay the optimization
domain is not restricted, i.e. Dcay = g since the maps (31)
are non-singular for any ξ ∈ g. This is not the case for the
exponential map for which Dexp = {ξ ∈ g | ‖ξ‖ < 2π/h}
since the exponential map derivative is singular whenever the
norm of its argument is a multiple of 2π [8], and the origin
requires special handling.

B. SE(2)

The coordinates of SE(2) are (θ, x, y) with matrix repre-
sentation g ∈ SE(2) given by:

g =

 cos θ − sin θ x
sin θ cos θ y

0 0 1

 . (32)

Using the isomorphic map ·̂ : R3 → se(2) given by:

v̂ =

 0 −v1 v2

v1 0 v3

0 0 0

 for v =

v1v2
v3

 ∈ R3,

{ê1, ê2, ê3} can be used as a basis for se(2), where {e1, e2, e3}
is the standard basis of R3.

The map τ : se(2)→ SE(2) is given by

cay(v̂)=

 1
4+(v1)2

[
(v1)2−4 −4v1 −2v1v3+4v2

4v1 (v1)2−4 2v1v2+4v3

]
0 0 1

 ,
while the map [dτ−1ξ ] becomes the 3x3 matrix:

[dcay−1v̂ ] = I3 −
1

2
[adv] +

1

4

[
v1 · v 03×2

]
, (33)

where

[adv] =

 0 0 0
v3 0 −v1
−v2 v1 0

 .
C. SE(3)

We make the identification SE(3) ≈ SO(3) × R3 using
elements R ∈ SO(3) and x ∈ R3 through

g =

[
R x
0 1

]
, g−1 =

[
RT −RTx
0 1

]
.

Elements of the Lie algebra ξ ∈ se(3) are identified with
body-fixed angular and linear velocities denoted ω ∈ R3 and
v ∈ R3, respectively, through

ξ =

[
ω̂ v
0 0

]
,
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where the map ·̂ : R3 → so(3) is defined in (29).
Using this identification we have

τ(ξ) =

[
τ(hω̂k) hdτhωk vk

0 1

]
,

where τ : so(3) → SO(3) is given by (30) and dτω : R3 →
R3 by (31).

The matrix representation of the right-trivialized tangent
inverse dτ−1(ω,v) : R3 × R3 → R3 × R3 becomes

[dcay−1(ω,v)] =

[
I3 − 1

2 ω̂ + 1
4ωω

T 03

− 1
2

(
I3 − 1

2 ω̂
)
v̂ I3 − 1

2 ω̂

]
. (34)

D. General matrix subgroups

The Lie algebra of a matrix Lie group coincides with the
one-parameter subgroup generators of the group. Assume that
we are given a k-dimensional Lie subalgebra denoted g ⊂
gl(n,R). It is isomorphic to the space of generators of a unique
connected k-dimensional matrix subgroup G ⊂ GL(n,R).
Therefore, a subalgebra g determines the subgroup G in a
one-to-one fashion:

g ⊂ gl(n,R)⇐⇒ G ⊂ GL(n,R).

The two ingredients necessary to convert the necessary condi-
tions in Prop. (2) into algebraic equalities are: a choice of basis
for g; and an appropriate choice of inner product (metric).

Assume that the Lie algebra basis elements are {Eα}kα=1,
Eα ∈ g, i.e. that every element ξ ∈ g can be written as ξ =
ξαEα. Define the following inner product for any ξ, η ∈ g

〈〈ξ, η〉〉 = tr(BξT η),

where B is an n × n matrix such that 〈〈Eα, Eβ〉〉 = δβα and
tr is the matrix trace. Correspondingly, a pairing between any
µ ∈ g∗ and ξ ∈ g can be defined by

〈µ, ξ〉 = tr(Bµξ),

since the dual basis for g∗ is {[Eα]T }kα=1 in matrix form.
Example: If g = so(3) then setting B =

diag(1/2, 1/2, 1/2) yields the standard inner product under
the identification so(3 ∼ R3, i.e. 〈µ, ξ〉 = µαξ

α.
Example: If g = se(3) with basis then setting B =

diag(1/2, 1/2, 1/2, 1) the pairing yields the standard inner
product if we identify se(3) with R3 × R3.

Kinetic Energy-Type Metric: After having defined a met-
ric pairing, a kinetic energy operator I can be be expressed
as

〈I(ξ), η〉 = tr(BIdξ
T η),

for some symmetric matrix Id ∈ GL(n,R).
Example: Consider a rigid body on SO(3) with moments

of inertia J1, J2, J3 and Lagrangian `(ξ) = 1
2Jiξ

2
i where the

ξi are the velocity components in the Lie algebra basis defined
in §VI-A. The matrix Id must have the form

Id = diag(−J1+J2+J3,−J2+J1+J3,−J3+J1+J2)

Example: Consider a rigid body on SE(3) with princi-
pal moments of inertia J1, J2, J3, mass m, and Lagrangian
`(ω, v) = 1

2

(
Jiω

2
i +mvT v

)
, where (ω, v) ∈ (R3 × R3) ∼

se(3) are the body-fixed angular and linear velocities using
the identification defined in §VI-C. The Lagrangian in this
case can be equivalently expressed as `(ξ) = 1

2 tr(BIdξ
T ξ),

where ξ ∈ se(3) and

Id = diag(−J1+J2+J3,−J2+J1+J3,−J3+J1+J2,m).

With these definitions the optimality conditions in Prop. 2
can be implemented for any given linear group by choosing
B, Id and setting the inner product to the matrix trace. For
numerical efficiency though, it is always preferable to employ
an identification with a vector space where a standard dot
product is used.

VII. EXAMPLES

v

v⊥

ω

c

damping

wind
thrust

z

x

y

thrusters firing

sensor

Fig. 3. Planar boat (left) controlled with two thrusters, and subject to
hydrodynamic damping and wind forces. Model of a satellite (right) with
16 thrusters and a ranging sensor with limited field-of-view.

A. Planar Boat

Consider a planar boat model (Fig. 3). The configuration
space of the system is the group G = SE(2) with coordinates
q = (θ, x, y) denoting orientation and position with respect
to a fixed global frame. The body-fixed velocity ξ ∈ se(2) is
defined by

ξ := (ω, v, v⊥),

where ω is the angular velocity (yaw), v is the forward velocity
(surge), and v⊥ is the sideways velocity (sway). The inertia
operator can be written in matrix form as [I] = diag(J,m,m),
where J is the moment of inertia around the vertical axis and
m is the mass. The system is actuated with thrust produced by
two fixed propellers placed at the rear of the boat at distance
±c from the long axis of the boat producing forces ur and ul,
respectively. The control vector fields corresponding to these
inputs are

f1 = (c, 1, 0), f2 = (−c, 1, 0).

The boat is subject to simple linear damping, commonly
employed to model drag at low velocity, encoded as

fvel(ξ) = −Dξ,
where D is a positive definite matrix, and to constant (e.g.
from west) wind force fwind ∈ g∗ which results in the body-
frame force

fconf (g) = Ad∗g fwind.
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The discrete mechanics and necessary conditions for optimal-
ity are implemented using Prop. (3) by replacing the retraction
map τ and its tangents with the corresponding functions
defined in §VI-B. The results of three typical scenarios are
given next using the parameters J = .5, m = 1 kg, c = .2 m.,
D = diag(−.5,−.5,−5):

i) A basic case without wind, fwind = (0, 0, 0). Fig. 4 shows
the resulting optimal velocities, controls, and path.
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Fig. 4. A computed optimal trajectory between configurations q(T ) =
(0, 0, 0) and q(T ) = (π/2, 5, 5) with zero velocities at the boundaries with
T = 10 sec. Thruster control and simple linear damping model were used.
The resulting velocities are plotted in a), controls in b), and path in c). The
computation converged after six Newton iterations of the optimality conditions
(Prop. (3)).

ii) Optimal motion subject to fwind = (0,−.1,−.1) (Fig. 5).
Wind in direction opposite to the motion results in higher
cost and straighter trajectory.
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Fig. 5. The same scenario as in Fig. 4 with added configuration-dependent
external force. The resulting velocities are plotted in (a), controls in (b),
and path in (c). The optimization terminates successfully after nine Newton
iterations.

iii) Singular motion (parallel-parking) (Fig. 6). This test illus-
trates the ability of the algorithm to handle two typical
difficulties in optimization. The first is the ability to jump
out of singularities and the second is the ability to produce
non-smooth optimal trajectories containing cusp points.
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Fig. 6. A more challenging motion between q(0) = (0, 0, 0) and q(T ) =
(0, 0, 2) with zero velocities mimicking a parallel parking maneuver. The
resulting velocities are plotted in (a), controls in (b), and path in (c). The
algorithm can naturally compute trajectories with cusps and converges after
7 Newton iterations.

The above tests were repeated for 100 different boundary
conditions chosen randomly within a 10x10 m. box and
arbitrary orientations. Solutions with resolutions from N = 6

to N = 96 discrete segments were included in order to
study the algorithm efficiency and robustness. Fig. 7 shows
the resulting Newton iterations as a function of the time-
step resolution. The algorithm is evaluated in terms of the
number of iterations required for convergence and the CPU
computation times (on a standard PC using C++ code). Note
that our implementation is very basic, i.e. it uses finite differ-
ences and no information about Jacobian sparsity. The rate
at which the discrete solutions approach the true optimum
as a function of the resolution is also considered. Fig. 8
shows that the rate is close to quadratic which is consistent
with the second-order accuracy of the variational method (see
§III-D) used to formulate the optimal control problem. The
true optimal trajectory in Fig. 8 is computed using very high
resolution (N=256) and with various initial conditions in order
to guarantee that it is indeed the global optimum.
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Fig. 7. Number of iterations required to achieve algorithm convergence as
a function of the trajectory resolution N shown in (a). The corresponding
computation times are shown in (b). The results are averaged over 100 Monte
Carlo runs with random boundary conditions.
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Fig. 8. Illustration of the rate at which discrete optimal trajectories
approach the true optimal trajectory. Plot a) shows three discrete trajectories of
increasing resolution – even at smallest possible resolution N=6 the solution
trajectory is qualitatively correct. Plot b) shows the actual convergence rate to
the true optimum. The measure is the averaged distance between trajectories
in position space as a function of resolution. The rate is close to quadratic,
i.e. the graph is bounded by two curves decaying with exponents 1.5 and 2.1.

Optimality: In general it is not possible to claim that
any of the solution trajectories are globally optimal. Yet, it is
interesting to point out that through the coarse initialization
and resolution upsampling (described in §VIII) all computed
trajectories were indeed globally optimal (based on com-
parisons with 100 other randomly chosen initial trajectories
ξ0:N−1 to seed the iterative solver).

B. Satellite with Thrusters
Consider a satellite (Fig. 3) modeled as a rigid body with

configuration space G = SE(3) describing its orientation and
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position (defined in §VI-C). The system has mass m and
principal moments of inertia J1, J2, J3 forming the inertia
tensor I = diag(J1, J2, J3,m,m,m).

The craft is controlled with forces produced by 16 thrusters
placed at distance r from the craft central axis. The total force
f can be expressed in terms of the controls u ∈ R16 in matrix-
vector form as f = Fu, where the constant matrix F with
columns corresponding to the input vector fields f i has the
form

F:=


0 0 0 0 r 0 −r 0 0 0 0 0 −r 0 r 0
r 0 −r 0 0 0 0 0 −r 0 r 0 0 0 0 0
0 −r 0 r 0 −r 0 r 0 −r 0 r 0 −r 0 r
0 0 0 0 0 −1 0 1 0 0 0 0 0 1 0 −1
0 −1 0 1 0 0 0 0 0 1 0 −1 0 0 0 0
−1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0

 .

The optimal control algorithm is implemented using Prop. 3
based on the Cayley map and its derivatives on SE(3) defined
in §VI-C. Fig. 9 shows a typical control scenario. The resulting
motion is visualized in Fig. 10.
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Fig. 9. A computed optimal path between the origin and configuration
q(T ) = (π/2, 5, 5) with zero velocities at the boundaries with T = 10
sec. The resulting angular velocities, linear velocities, and control curves of
the 16 thrusters are plotted in a), b), and c), respectively. The computation
converged after nine Newton iterations of the optimality conditions (Prop. (3)).

VIII. NUMERICAL IMPLEMENTATION

Software Package: The presented algorithms along with
a library with all Lie group operations used in the paper are
implemented and assembled as a Matlab package available at

http://www.cds.caltech.edu/∼marin/index.php?n=lieopt

Fig. 10. An optimal trajectory between two given zero-velocity states of the
satellite. Thruster outputs are rendered as small red cones emanating from the
four boxes around the spacecraft.

It can be applied to new models by specifying their group
structure (currently supporting SE(2), SO(3), and SE(3)), in-
ertial properties, control vector fields, and external forces. The
example results from §VII are included for easier reference.

Trajectory Initialization and Resolution: Since there is
no established strategy for selecting an optimal resolution
N , our approach is to start the optimal control computation
with some minimum N0, e.g. enough to satisfy the dynamics.
The resolution is then increased by upsampling the trajectory
(resulting in N = 2N0 segments) and re-optimizing the new
finer trajectory. The process can be repeated as many times
as necessary to achieve a desired resolution. Interestingly,
Fig. 7 shows that such an approach effectively makes the
number of required Newton iterations independent and even
decreasing as N increases. In our numerical tests we do not
include exact CPU run-times taken which can vary based on
implementation but instead analyze the number of iterations
required for convergence. In practice, for a reasonable N , the
whole process can be implemented in near real-time (e.g. using
optimized C-code instead of Matlab).

Singularities: In the underactuated case there are a small
set of states which result in singularities of the optimal-
ity conditions (Prop. 3). For instance, Fig. 6 illustrates a
parallel parking task for which ∆g = τ−1(g(0)−1g(T )) is
perpendicular to the control directions f . A trajectory ξ0:N−1
such that ξk is parallel to ∆g for all k will render the
optimality conditions singular. A standard Newton step in this
case will fail. The easiest way to overcome this situation,
implemented in our system, is to detect the singularity and
perturb the trajectory as simply as ξk = ξk + ε randn(n) for
one or more k and a small variation, e.g. ε = 10−3. This
approach is a simplification of the procedure used by more
sophisticated homotopy-continuation methods to detect and
handle bifurcations [37] (in our case the split is because the
parallel displacement can be achieved equally well by either
first moving forward and then backwards, or vice versa).

Real Vehicle Implementation: The run-time efficiency
results obtained in §VII suggest that the proposed algorithm
is suitable for real-time maneuver control of vehicles such as
the boat shown on Figure 3. In particular, Figure 7 shows
that a reasonably accurate trajectory (e.g. one with N = 24
segments as depicted on Figure 8) can be computed in less
than 50 milliseconds with basic unoptimized C++ code. In
addition, the expected number of iterations and CPU time are
very predictable and the algorithms never failed to converge in
the performed 100 random runs. Ultimately, the method can
be used to optimally drive a vehicle from its current state to a
given state (g(T ), ξ(T )) in a given time T . Once the algorithm
computes the discrete control sequence u0:N , the continuous
curve u is reconstructed using linear interpolation. The vehicle
is then controlled using actuator inputs u(t) at time t ∈ [0, T ].
The process can be repeated if the vehicle deviates from its
path due to uncertainties.

IX. CONCLUSION

This paper shows how recent developments in the theory
of discrete mechanics and Lie group methods can be used to

http://www.cds.caltech.edu/~marin/index.php?n=lieopt
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construct numerical optimal control algorithms with certain
desirable features. Preservation of key motion properties leads
to robust dynamics approximation. In addition, a singularity-
free structure-respecting choice of trajectory representation
avoids numerical instability during iterative optimization.

Practically speaking, the message of our approach is that
a reliable numerical optimization of vehicle motions on Lie
groups (such as a robot modeled as a rigid body) can be
accomplished by selecting a coordinate-free and singularity-
free trajectory parametrization providing high accuracy and
stability at low resolution and complexity. There are existing
standard methods which address some of the raised issues. Our
approach is to circumvent any numerical problems through a
proper design of a general discrete variational framework.

It is necessary to study the precise effect of the discretization
resolution N on the optimality of the algorithm and to explore
the notion of discrete controllability. Future work will address
such issues and attempt to apply tools from standard nonlin-
ear controllability to provide formal numerical convergence
guarantees in the underactuated case.

APPENDIX A
TANGENT MAP IDENTITIES

The following identities supplement the derivations in the
paper.

Lemma A.1 (see [35]). Let g ∈ G, λ ∈ g, and δf denote
the variation of a function f with respect to its parameters.
Assuming λ is constant, the following identity holds

δ (Adg λ) = −Adg[λ, g
−1δg],

where [·, ·] : g × g → g denotes the Lie bracket operation or
equivalently [ξ, η] ≡ adξ η, for given η, ξ ∈ g.

Lemma A.2. The following identity holds

∂ξ
(
Adτ(ξ) λ

)
= −[Adτ(ξ) λ, dτ ξ]

Proof: By Lemma A.1

∂ξ
(
Adτ(ξ) η

)
= −Adτ(ξ)[λ, τ(−ξ)δτ(ξ)]

= −[Adτ(ξ) λ, δτ(ξ) · τ(−ξ)]
= −[Adτ(ξ) η,dτ ξ],

obtained from the tangent definition (5) and using the fact that
Adg[λ, η] = [Adg λ,Adg η] (see [35]).

Lemma A.3 (see [14]). The following identities holds

dτ ξ η = Adτ(ξ) dτ−ξ η, (dτ−1ξ )η = dτ−1−ξ
(
Adτ(−ξ) η

)
.
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optimal control,” in Proccedings of the 16th IFAC World Congress, 2005.

[6] J. Moser and A. P. Veselov, “Discrete versions of some classical
integrable systems and factorization of matrix polynomials,” Comm.
Math. Phys., vol. 139, no. 2, pp. 217–243, 1991.

[7] J. Marsden and M. West, “Discrete mechanics and variational integra-
tors,” Acta Numerica, vol. 10, pp. 357–514, 2001.

[8] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration,
ser. Springer Series in Computational Mathematics. Springer-Verlag,
2006, no. 31.

[9] J. E. Marsden, S. Pekarsky, and S. Shkoller, “Discrete euler-poincare
and Lie-poisson equations,” Nonlinearity, vol. 12, p. 16471662, 1999.

[10] A. I. Bobenko and Y. B. Suris, “Discrete lagrangian reduction, discrete
euler-poincare equations, and semidirect products,” Letters in Mathe-
matical Physics, vol. 49, p. 79, 1999.

[11] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, “Lie group
methods,” Acta Numerica, vol. 9, pp. 215–365, 2000.

[12] M. Leok, “Foundations of computational geometric mechanics,” Ph.D.
dissertation, California Institute of Technology, 2004.

[13] P. Krysl and L. Endres, “Explicit newmark/verlet algorithm for time
integration of the rotational dynamics of rigid bodies,” International
Journal for Numerical Methods in Engineering, 2005.

[14] N. Bou-Rabee and J. Marsden, “Hamilton-pontryagin integrators on Lie
groups,” Foundations of Computational Mathematics, vol. 9, pp. 197–
219, 2009.

[15] L. Noakes, “Null cubics and Lie quadratics,” Journal of Mathematical
Physics, vol. 44, no. 3, pp. 1436–1448, 2003.

[16] M. Camarinha, F. S. Leite, and P. Crouch, “On the geometry of Rie-
mannian cubic polynomials,” Differential Geometry and its Applications,
no. 15, pp. 107–135, 2001.

[17] R. Giambo, F. Giannoni, and P. Piccionez, “Optimal control on Rieman-
nian manifolds by interpolation,” Math. Control Signals System, vol. 16,
pp. 278–296, 2003.

[18] M. Zefran, V. Kumar, and C. B. Croke, “On the generation of smooth
three-dimensional rigid body motions,” IEEE Transactions On Robotics
And Automation, vol. 14, no. 4, pp. 576–589, 1998.

[19] C. Altafini, “Reduction by group symmetry of second order variational
problems on a semidirect product of Lie groups with positive definite
Riemannian metric,” ESAIM: Control, Optimisation and Calculus of
Variations, vol. 10, pp. 526–548, 2004.

[20] R. V. Iyer, R. Holsapple, and D. Doman, “Optimal control problems on
parallelizable riemannian manifolds: Theory and applications,” ESAIM:
Control, Optimisation and Calculus of Variations, vol. 12, pp. 1–11,
2006.

[21] A. Bloch, Nonholonomic Mechanics and Control. Springer, 2003.
[22] M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehi-

cles. PhD thesis, University of Southern California, 2008.
[23] T. Lee, N. McClamroch, and M. Leok, “Optimal control of a rigid body

using geometrically exact computations on SE(3),” in Proc. IEEE Conf.
on Decision and Control, 2006.

[24] A. M. Bloch, I. I. Hussein, M. Leok, and A. K. Sanyal, “Geometric
structure-preserving optimal control of a rigid body,” Journal of Dy-
namical and Control Systems, vol. 15, no. 3, pp. 307–330, 2009.

[25] M. de Leon, D. M. de Diego, and A. Santamaria Merino, “Geometric
numerical integration of nonholonomic systems and optimal control
problems,” European Journal of Control, vol. 10, pp. 520–526, 2004.

[26] J. Ostrowski, “Computing reduced equations for robotic systems with
constraints and symmetries,” IEEE Transactions on Robotics and Au-
tomation, pp. 111–123, 1999.

[27] E. Johnson and T. Murphey, “Scalable variational integrators for con-
strained mechanical systems in generalized coordinates,” IEEE Trans-
actions on Robotics, vol. 25, no. 6, pp. 1249 – 1261, 2009.

[28] J. P. Ostrowski, J. P. Desai, and V. Kumar, “Optimal gait selection
for nonholonomic locomotion systems,” The International Journal of
Robotics Research, vol. 19, no. 3, pp. 225–237, 2000.



15

[29] J. Cortés, S. Martinez, J. P. Ostrowski, and K. A. McIsaac, “Optimal
gaits for dynamic robotic locomotion,” The International Journal of
Robotics Research, vol. 20, no. 9, pp. 707–728, 2001.

[30] M. Kobilarov, J. E. Marsden, and G. S. Sukhatme, “Geometric dis-
cretization of nonholonomic systems with symmetries,” Discrete and
Continuous Dynamical Systems - Series S (DCDS-S), vol. 3, no. 1, pp.
61 – 84, 2010.

[31] L. Kharevych, Weiwei, Y. Tong, E. Kanso, J. Marsden, P. Schroder,
and M. Desbrun, “Geometric, variational integrators for computer an-
imation,” in Eurographics/ACM SIGGRAPH Symposium on Computer
Animation, 2006, pp. 1–9.

[32] M. Kobilarov, K. Crane, and M. Desbrun, “Lie group integrators for
animation and control of vehicles,” ACM Trans. Graph., vol. 28, no. 2,
pp. 1–14, 2009.

[33] C. Lanczos, Variational Principles of Mechanics. University of Toronto
Press, 1949.

[34] A. Stern and M. Desbrun, “Discrete geometric mechanics for variational
time integrators,” in ACM SIGGRAPH Course Notes: Discrete Differen-
tial Geometry, 2006, pp. 75–80.

[35] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry.
Springer, 1999.

[36] F. Bullo, N. Leonard, and A. Lewis, “Controllability and motion
algorithms for underactuated lagrangian systems on Lie groups,” IEEE
Transactions on Automatic Control, vol. 45, no. 8, pp. 1437 – 1454,
2000.

[37] E. Allgower and K. Georg, Introduction to Numerical Continuation
Methods. SIAM Wiley and Sons, 2003.

Marin B. Kobilarov is a post-doctoral fellow in
Control and Dynamical Systems at Caltech and is
affiliated with the Keck Institute for Space Studies.
His research focuses on computational control meth-
ods that exploit the geometric structure of nonlinear
dynamics. He develops autonomous vehicles with
applications in robotics and aerospace.

Jerrold E. Marsden is a professor of Control
and Dynamical Systems at Caltech. He has done
extensive research in the area of geometric me-
chanics, with applications to rigid body systems,
fluid mechanics, elasticity theory, plasma physics,
as well as to general field theory. His work in dy-
namical systems and control theory emphasizes how
it relates to mechanical systems and systems with
symmetry, along with concrete application areas of
dynamical systems and optimal control, including
Lagrangian Coherent Structures (LCS), space sys-

tems, and structured integration methods. He is one of the original founders
in the early 1970’s of reduction theory for mechanical systems with symmetry,
which remains an active and much studied area of research today.


	Introduction
	Background on Variational Integrators
	Discrete Mechanics on Lie Groups
	The Continuous Setting
	Trajectory Discretization
	Discrete Variational Formulation
	Preservation Properties

	Fully Actuated Systems
	Optimality Conditions
	Implementing the Necessary Conditions.

	Underactuated Systems with Control Parameters
	Applications to Matrix Groups
	SO(3)
	SE(2)
	SE(3)
	General matrix subgroups

	Examples
	Planar Boat
	Satellite with Thrusters

	Numerical Implementation
	Conclusion
	Appendix A: Tangent Map Identities
	References
	Biographies
	Marin B. Kobilarov
	Jerrold E. Marsden


