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Summary. This paper studies optimal control of multi-body systems by constructing numerical methods operating intrinsically in the
state space manifold and exploiting its Lie group structure. The goal is to avoid issues with singularities related to local coordinates and
to achieve efficiency through more accurate discrete trajectory representation in terms of sequences of flows along vector fields. This
is accomplished by defining the multi-body dynamics as a differential equation on a Lie group and constructing geometric integrators
as a basis for numerical optimal control. Standard nonlinear programming methods such as direct transcription can then be applied by
performing differential operations in the Lie algebra. The resulting algorithms are generally applicable to dynamical systems on Lie
groups and are illustrated with robotic vehicle examples.

Continuous Optimal Control Formulation
We consider the optimal control of articulated multi-body systems, expressed through the standard optimization problem

minimize Jpuq “ ϕpqptf q, 9qptf q, tf q `

ż tf

t0

Lpq, 9q, u, tqdt subject to Mpqq:q ` bpq, 9qq “ Bpqqu, (1)

where q are local coordinates describing the system pose and joint angles,M is the mass matrix, b is the bias term,B is the
control input transformation matrix and u are the control inputs that are typically restricted to uptq P U . The trajectory cost
is defined by L and the terminal cost is ψ. The system can also be subject to final state constraints ψpqptf q, 9qptf q, tf q ď 0.
Unlike standard methods which employ local coordinates, our approach is to define and solve the optimization problem
intrinsically in the state space manifold of the system. In particular, the configuration space can be decomposed as
Q “ G ˆM , where G is a Lie group such as the Euclidean group G “ SEp3q and the vector space M Ă R` denotes
the joint space assuming there are ` joints. Since Q is a direct product of a Lie group G and vector space M then Q is a
Lie group itself, also referred to as a trivial fiber bundle (i.e. there is a fiber G attached at each base point r P M ). The
configuration space dimension is denoted by m “ dimpQq, where for instance m “ 6` ` when G “ SEp3q.
The Lie group structure can be exploited [7, 8] to develop coordinate-invariant algorithms with two key benefits over
standard methods: a) avoid singularities associated with choosing rotational coordinates such as Euler angles [4, 2]; b)
achieve higher accuracy in discretization through sequencing of discrete flows along left-invariant vector fields rather than
interpolation in a Cartesian space [5, 6]. In addition, the proposed methods achieve numerical efficiency by 1) selecting
minimal discrete representation while 2) guaranteeing stability of the discrete integrator.
Lie group equations of motion. The fundamental property of Lie groups is that each tangent vector on the manifold
can be generated by translating a unique tangent vector at the identity using the group operation. More formally, each
vector 9q P TqQ at configuration q P Q corresponds to a unique vector ξ P Rm through 9q “ qpξ where the “hat”
operator p̈ : Rm Ñ q identifies ξ with a Lie algebra element matrix pξ P q. Here q ” TeQ denotes the Lie algebra and
e P Q denotes the group identity. The “vee” map p¨q_ : TeQ Ñ Rm is defined as the inverse of p̈, so that p pξ q_ “ ξ.
Finally, nonholonomic constraints are encoded by replacing the body-fixed velocities ξ with reduced or pseudovelocities
v P Rm´k which satisfy ξ “ Gpqqv where the matrix G specifies the direction of motion allowed by the constraints. The
Lie group equations of motion of a nonholonomic multi-body system are then expressed as 1

kinematics: 9q “ q ¨ rGpqqvsp, dynamics: Mpqq 9v ` bpq, vq “ Bpqqu (2)

With these definitions, the state space of the system is denoted by X “ Q ˆ Rm´k and its dimension is dimpXq “
2m ´ k ” n. The algorithms developed in this work perform optimization over state trajectories x : r0, T s Ñ X (see
Figure 1). This motivates us to regard X as an abstract n-dimensional Lie group to enable a straightforward extension of
existing optimal control algorithms to X based on a set of general Lie group operations defined in Table 2.

Geometric Integration on Lie groups
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Figure 1: Trajectory variations and updates
performed in the Lie algebra.

Denoting the state by x “ pq, vq P X the dynamics can be written according to

9x “ x pfpt, x, uq, (3)

which is the generalized version of the equations of motion (2). The Lie algebra
element fpt, x, uq P Rn „ TeX is interpreted as the “body-fixed” state velocity
and the product x pf denotes the tangent group action of x on f . A time-update
xk Ñ xx`1 is performed by evolving a geodesic motion on X, i.e. a curve with
constant velocity fk P Rn which approximates the continuous flow along f using
the exponential map exp : Rn Ñ X according to

xk`1 “ xk exppfkq, (4)

where fk can be constructed either explicitly from xk, uk or could also be an implicit function of xk`1 as well.
1we purposefully swiched the role of the coordinates q P Rm employed in (1) to now denote the intrinsic configuration q P GˆM used in (2). The

terms M, b,B are also different are defined with respect to the new configuration q.
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Operation Vector space, x P Rn Lie group, x P X Lie algebra, η P Rn „ TeX

Variation δx P Rn δx P TxX sδx “ px´1δxq_ P Rn

Difference ∆x “ x1 ´ x P Rn ∆x “ x´1x1 P X s∆x “ logpx´1x1q P Rn

Increment x1 “ x`∆x P Rn x1 “ x∆x P X x1 “ x exp
`

s∆x
˘

P X

Gradient ∇Lpxq P Rn ∇Lpxq P TxX s∇Lpxq “ ∇ηLpx exppηqq|η“0 P Rn

ODE 9x “ fpx, uq 9x “ x pF px, uq 9η “ dexp´1
´η F px, uq, x “ x0 exppηq

Figure 2: Optimal control algorithms on Lie groups can be developed analogously to standard methods in Rn with the help of reduced variations sδx,
left-translated gradients s∇L, and ODEs evolving in the Lie algebra.

Discrete Optimal Control Formulation.
For numerical optimal control purposes we will employ discretized trajectories x0:N “ tx0, ..., xNu and controls u0:N´1 “

tu0, ..., uN´1u, where xk “ pqk, vkq. The discrete optimal control problem is formulated by minimizing

Jpu0:N´1q “ LN pxN q `
N´1
ÿ

k“0

Lkpxk, ukq, subject to: ckpxk`1, xk, ukq “ 0, k “ 0, . . . , N ´ 1, (5)

whereLk is the total cost during time-segment rtk, tk`1s for k “ 0, . . . , N´1 andLN is the terminal cost. The constraints
ck encode the discrete dynamics generally expressed as the implicit variable-time stepping scheme

ckpxk, xk`1, ukq “

«

logpq´1
k qk`1q ´

hk`1

2 rGpqkq `Gpqk`1qs vk`1

Mk,k`1vk`1 ´Mk´1,kvk`
1
2 rhkbpqk, vkq`hk`1bpqk, vk`1qs ´ hk` 1

2
Bpqkquk

ff

“ 0, (6)

where hk`1 fi tk`1 ´ tk, hk` 1
2
fi

hk`hk`1

2 , and Mk,k`1 fi 1
2 rMpqkq`Mpqk̀ 1qs. The relationship (6) is a particular

example of the integrator (4) and is also consistent with variable time-step symplectic variational integrators [3].

Implementation: sparse nonlinear programming
Standard optimal control methods such as sequential quadratic programming (SQP) [1] are directly applicable by em-
ploying reduced/trivialized operations on Lie group elements as defined in Table 2. Denote the optimization parameter by
y “ px1:N , u0:N´1q P X

N ˆ RNc and its variation by sδy “ psδx1:N , δu0:N´1q P RNpn`cq. Assume that all constraints
can be encoded through the equalities C fi rc0, c1, ¨ ¨ ¨ , cN´1s “ 0 while the boundary constraint and any other constraint
using the inequalities bpyq ă 0. Nonlinear programming problems are typically formulated by adjoining the constraint to
the cost Jpyq using the Lagrangian Lpy, λq “ Jpyq ´ λTCpyq ´ µT bpyq and solving the sparse QP subproblem

min
sδy

s∇LpyqT sδy ` 1

2
sδyT s∇yyLpy, λqsδy, subject to: Cpyq ` s∇CpyqT sδy “ 0, bpyq ` s∇bpyqT sδy ě 0, (7)

iteratively by computing the direction sδy which is then used to update the next iterate y1 either according to x1k “
x1k exppsδxq or using the updated controls u10:N´1 to update x10:N using the nonlinear dynamics. Figure 3 shows several
computed examples employing the symplectic discrete dynamics formulation defined in (6).
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Figure 3: Examples of optimal control of various simulated underactuated vehicles using symplectic Lie group methods. Such optimization can be
performed in a few milliseconds (single-body systems) to a few seconds (18 DOF multi-body systems with simplistic contact models).
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