
Sampling-based Planning for Sensor Scheduling in
Constrained Environments

Marin Kobilarov (Johns Hopkins University), Gaurav S. Sukhatme (University of Southern California)
Jerrold Marsden (California Institute of Technology)

Abstract—This paper considers the optimal estimation of the
state of a dynamic observable using a mobile sensor. The main
goal is to compute a sensor trajectory which minimizes the
estimation error over a given time horizon taking into account
the uncertainty in the observable dynamics and its sensing and
respecting the constraints of the workspace. The main contribu-
tion is a methodology for handling arbitrary dynamics, noise
models and environment constraints in a global optimization
framework. It is based on sequential Monte Carlo methods
and sampling-based motion planning. Three variance reduction
techniques–utility sampling, shuffling, and pruning–based on
importance sampling, are proposed to speed-up convergence. The
developed framework is applied to two typical scenarios: a simple
vehicle operating in a planar polygonal obstacle environment;
a simulated helicopter searching for a moving target in a 3-D
terrain.
Note: the paper is a condensed version of the journal article [1].

I. INTRODUCTION

Consider a mobile sensor (a vehicle) estimating the state
of an observable (a target) with known stochastic dynamics
through noisy measurements. The vehicle and target motions
are constrained due to their natural kinematics and dynamics
and due to obstacles in the environment. The task is to compute
an open-loop vehicle trajectory over a given time horizon
resulting in a target state estimate with lowest uncertainty.
Such a capability arises, for instance, in the context for time-
critical surveillance or search-and-rescue missions.

The problem is formally defined through a hidden Markov
model (HMM) of a stochastic process {(Xk,Yk)}0≤k≤N
where Xk denotes the hidden target state and Yk denotes
the observation at the k-th time epoch. The process evolution
is studied over a horizon of N epochs. The respective state
and observation realizations are denoted by xk∈X⊂Rnx and
yk∈Y⊂Rny , where X and Y are vector spaces. The HMM is
defined according to

Xk+1=f(Xk,Ωk), (1a)
Yk=g(Xk,Vk;µk), (1b)

where Ωk and Vk are i.i.d. noise terms and µk∈M denotes
the vehicle state 1 at time k. The manifold M need not be
a vector space. A trajectory of states between two epochs
i and j, where 0≤i<j≤N , is denoted by xi:j , i.e. xi:j :=
{xi,xi+1,...,xj−1,xj}.

1a state denotes both the configuration and velocity of the vehicle (i.e.
“vehicle state”) or the target (i.e. “target state”); when used simply as “state”
its meaning will be clear from the context.

The vehicle trajectory µ0:N is subject to dynamical con-
straints, e.g. arising from discretized Euler-Lagrange equations
of motion, expressed through

µk+1=hd(µk,uk), for all 0≤k<N, (2)

where uk denotes the vehicle control input at time k. In
this work we assume that a local boundary value method
is available to compute the the required controls in order
to generate a trajectory to a given state. For instance, for
dynamical systems which are feedback linearizable [2] it is
possible to use spline-based interpolation techniques while
for systems with symmetries such as the helicopter example
described in §VIII-B one can employ planning with primitives
and inverse kinematics.

In addition the vehicle must avoid obstacles and is subject
to velocity and actuator bounds, jointly encoded through

hc(µk,uk)≥0, for all 0≤k≤N. (3)

A trajectory that satisfies the constraints (2) and (3) is termed
feasible. The functions hd and hc are typically non-convex and
in some cases non-smooth.

The vehicle computes numerically the target state distri-
bution, also referred to as the filtering distribution, denoted
by πk(dx|y1:k;µ0:k)dx:=P(Xk∈dx|y1:k;µ0:k) with respect to
some standard measure dx assuming the vehicle has moved
along trajectory µ0:k and obtained a sequence of measurements
y1:k.

A. Objective.

The goal is to control the vehicle to obtain a high-quality
estimate of the target state during the future N epochs.
Typically, only a subset of the target coordinates are of interest.
An appropriately chosen function ϕ:X→Rn′x , where n′x≤nx,
selects and weighs a combination of these coordinates. For
instance, ϕ can pick out only the position of a moving target
and ignore its velocity and heading. The optimization problem
is to compute the optimal future vehicle trajectory µ∗1:N which
minimizes the target estimate uncertainty defined through

µ∗1:N=argmin
µ1:N

E [‖ϕ(XN)−
∫
ϕ(x)πN (x|Y1:N ;µ1:N)dx‖2],

(4)

subject to the dynamics (2) and constraints (3). The expec-
tation in (4) is taken over all future realization of the states
X0:N and the measurements Y1:N while πN is the posterior
density after filtering these measurements given (1).

The cost function in (4) is equivalent to the trace of the
covariance of ϕ(XN). While it is possible to use other mea-
sures such as entropy or covariance determinant, this metric is
chosen since its value can be interpreted in meaningful units
(e.g. see 3). For instance, the special case ϕ(x)=M

1
2x for

some weighing matrix M corresponds to a well-established
tolerance-weighted error or L-optimal design [4].

The optimization (4) corresponds to the optimal sensor
scheduling problem [5, 6] which is of central importance in
the target tracking community. It is also highly relevant to the
problem of active sensing studied in robotics [7, 8, 3] where
the vehicle is estimating its own state [9, 10] and in some
cases refining its knowledge about the environment [11, 12].

The distinctive feature of this work is the treatment of
the constraints (2)-(3) in the optimization (4). In particular,
gradient-based optimization as in [9, 13, 6] is not suitable
unless a good starting guess is chosen since the constraints
impose many local minima. In addition, special differentia-
tion [14] is required to guarantee convergence due to the non-
smooth nature of the constraints.

To overcome these issues we instead employ a methodology
based on global exploration of the solution space of vehicle
trajectories. This is achieved through a random tree of feasible
trajectories. Such a tree is constructed following ideas from
sampling-based motion planning [15]. The key property of
motion planning trees relevant to this work is that the tree
is guaranteed to reach asymptotically close to any reachable
state in the state space as the algorithm iterates. Yet, the
problem (4) is more difficult than a typical motion planning
problem because the cost is based on uncertainty that depends
on the whole trajectory. In essence, the problem cannot be
cast as a graph or tree search typically employed in motion
planning, i.e. to solve shortest path problems, because the cost
function (4) is not derived from a local metric and is not
additive over separate trajectory segments. Additional tools are
necessary. The solution proposed in this work is to perform
stochastic optimization over a solution space encoded through
a dynamically adaptive trajectory tree.

The advantage of using a tree is that it provides a computa-
tionally efficient way to encode multiple solution trajectories
and to propagate probability distributions recursively. While
a uniformly random tree can asymptotically reach an optimal
solution this might be an infinitely slow process in practice.
Therefore, as with most Monte Carlo methods [16] it is
essential to exploit problem structure in order to speed up
the search. We employ three variance reduction techniques to
guide and accelerate the optimization:

1) Biased sampling: node sampling based on expected
utility of improving the target estimate in order to focus tree
exploration into more “promising” parts of the state space.

2) Shuffling: random modification of the tree structure in
an attempt to lower the optimal cost. This is achieved by
disconnecting a subtree from its parent and connecting it to
a different part of the tree. The tree parts to be modified are
chosen probabilistically.

3) Pruning: removal of existing nodes probabilistically

according to their performance.
These proposed methods result in a significant computa-

tional speed-up compared to a random baseline algorithm.
The proposed combination of techniques is motivated by the
need to address the exploration-exploitation trade-off paradigm
(see e.g. 17) with computational efficiency by dynamically
adjusting the search space. In particular, the basic random
tree expansion achieves exploration of the state space. The
biased sampling and shuffling steps exploit information known
a priori and collected during the algorithm operation to focus
the search in more promising parts of the state space. Pruning
is critical for maintaining a balance between the size and
quality of the search space in order to achieve computational
efficiency.

Links to Evolutionary Computing.: The resulting ap-
proach has close links to evolutionary computing. In particular,
biased sampling and pruning based on an importance function
correspond to selection from a “fitness” criteria employed
in genetic algorithms. Shuffling is related to cross-over and
migration used in genetic programming [18] since a shuffle
generates new trajectories by combining existing segments.
A standard genetic algorithm could be used to perform the
optimization (4) but will have difficulty managing the con-
straints (2) and (3) (e.g. see 19). Standard techniques, i.e.
penalty functions or infeasible path rejection, employed in
works such as [20, 21, 22, 23] depend on parametrized paths
and on cost function tuning parameters. It is not clear how
their performance scales as the environment becomes more
cluttered. In contrast, sampling-based trees are specifically
developed to handle systems with complicated dynamics and
obstacle constraints. Therefore, this work employs a general
motion tree to automatically encode feasible candidate paths
and avoid problem-specific parameter tuning. The stochastic
optimization then amounts to dynamically adapting the tree
structure towards converging to an optimal trajectory. While
shuffling and pruning might seem akin to standard genetic
operation, there is an important distinction–they are designed
to operate over a “population” encoded as a tree of trajectories
rather than as separate paths as in a standard genetic algorithm.
In that sense the proposed techniques are unique and make
a bridge between evolutionary algorithms and randomized
motion planning methods.

II. AN EXAMPLE SCENARIO

Consider a scenario depicted in Fig. 1. The vehicle and
target operate in a workspace (i.e. an environment) denoted by
W , where W=R2, or W=R3 [24]. The workspace contains
a number of obstacles denoted by O1,...,Ono⊂W with which
the vehicle must not collide.

The vehicle state is defined as µ=(r,v)∈C×Rnv consisting
of its configuration r∈C and velocity v∈Rnv . C is the vehicle
configuration space describing e.g. the position, orientation,
and joint angles of the system. Assume that the vehicle occu-
pies a region A(r)⊂W and that the function prox(A1,A2) re-
turns the closest Euclidean distance between two sets A1,2⊂W
and is negative if they intersect. One of the constraints defined

µ0
O1

O2

O3

W

initial vehicle state

obstacle

initial target density π0

particles X
(1:L)
0

X
(1:L)
k1

X
(1:L)
k2

X
(1:L)
N

µ∗k1

µ∗k2

µ∗N

sensor FOV

minimum uncertainty
vehicle trajectory

Fig. 1. A scenario with a vehicle (depicted as a small helicopter) at
state µ0∈M and a target with initial distribution π0 diffusing north. Both
target and vehicle avoid obstacles denoted Oi. The set of possible target
motions is approximated by L sampled trajectories X(`)

0:N for `=1,...,L. The
figure shows the sampled states (particles) at the beginning k=0, at two
intermediate times 0≤k1≤k2≤N , and at the horizon k=N . We seek to
find the vehicle trajectory µ∗0:N which minimizes the expected target state
estimate uncertainty. The vehicle sensor typically has a small field-of-view
(FOV) relative to the environment size.

in (3) is then to avoid obstacles, generally expressed as

h1c((r,v)k)=min
i

prox(A(rk),Oi), for all 0≤k≤N. (5)

The framework developed in the paper will be applied
to two types of vehicles. The first has a simple first order
model and operates in a polygonal obstacle environment (i.e.
dim(W)=2)–a setting suitable for measuring the algorithm
performance compared to an idealized scenario. The second
scenario is based on a low-flying underactuated UAV operating
in a mountainous terrain in 3-D (i.e. dim(W)=3)). The simpler
model is presented next while the helicopter application will
be developed in §VIII-B.

A simple vehicle.: Consider a point mass vehicle moving
in the plane. Its state space isM=R2×R2 with state µ=(r,v)
consisting of the position r:=(rx,ry)∈R2 and velocity v:=
(vx,vy)∈R2. It evolves according to the simple dynamics

rk+1=rk+τvk, (6)

which is encoded by the function hd defined in (2). The
constant τ is the time-step, i.e. the sampling period, measured
in seconds. The velocity vk can be directly controlled but is
bounded ‖vk‖<vmax. For instance, in the scenario (Fig. 1) a
bound of vmax=8m/s is chosen to create a problem that can be
solved optimally only by a particular type of trajectory known
in advance for a time horizon of 30 seconds.

Target dynamics.: The target is modeled as a point
mass on the ground with position r=(rx,ry)∈R2, velocity
v=(vx,vy)∈R2 forming the state x=(r,v) with X=R2×R2.

The target dynamics is governed by a general control law
including a proportional term, such as arising from a goal
attraction, a damping term in order to constrain the target
speed, and obstacle avoidance forcing. In addition, there is
white noise acceleration component Ω with standard deviations

σx and σy . The model is

rk+1=rk+τvk,

vk+1=vk+τ

(
ωk+Kp(rg−rk)−Kdvk+

[
0 −ko/dk

ko/dk 0

]
vk

)
,

ωk∼Normal(0,diag(σ2
x,σ

2
y)),

where τ is the time-step; Kp>0 and Kd>0 are potential and
dissipative matrices, respectively; ko>0 is an obstacle steering
scalar gain; rg∈R2 is a constant goal location; dk=‖gk‖ with
gk:=ro−rk, where ro is the closest point on the obstacle set.
The model corresponds to the function f defined in (1a).

Sensor Model.: The vehicle is equipped with sensors
which provide relative range and bearing to target, hence
Y=R2. The target is observed only if its line of sight is
not obstructed by obstacles and if it falls within the sensing
distance ds of the vehicle. This is formally expressed through
the target visibility area V(r′)⊂W for given vehicle position
r′=(r′x,r

′
y)∈R2 defined by

V(r′):=
{
r∈W | ‖r−r′‖<ds, h1c((r′+α(r−r′),·))≥0, ∀α∈[0,1]

}
.

In order to define the sensor function (1b) for a target with
position r=(rx,ry) first define the perfect sensor function

g∗((r,v);(r′,v′))=

[
‖r−r′‖

arctan((ry−r′y),(rx−r′x))

]
, (7)

This function is only valid if the target reading originated from
its visibility region. In addition, there is a small probability
Pf∈[0,1] of a false reading uniformly distributed over the
visibility region. The actual sensor function is then given by

g((r,v);(r′,v′),V)

=





g∗((r,v);(r′,v′))+‖r−r
′‖

ds
V, r∈V(r′)

∅, r 6∈V(r′)

}
if uf≥Pf

g∗((rf ,v);(r′,v′)), rf∼U(V(r′)) if uf<Pf .

with noise V :=(Vd,Vb) ∼Normal(0,diag(σ2
d,σ

2
b)) where σd

and σb define the range and bearing standard deviations,
respectively, and uf is a uniform sample from [0,1].

Cost function.: Finally, the vehicle is interested in mini-
mizing the uncertainty in the target position estimate. This is
encoded by simply setting

ϕ(x)=(rx,ry)∈R2

when performing the optimization (4).

III. PROBLEM FORMULATION

An alternative way to express the HMM (1) is through the
known densities

X0∼π0, (8a)
Xk∼p(·|Xk−1), k>0 (8b)
Yk∼q(·|Xk;µk), k>0 (8c)

where π0 is the initial distribution. Note that the expectation
operator E [·] used throughout the paper is applied with respect
to these densities, unless noted otherwise. The filtering density

employed in the computation of the cost (4) is then expressed
recursively (e.g. 25) according to

πk(x|y1:k;µ1:k)

=
q(yk|x;µk)

∫
p(x|x′)πk−1(x′|y1:k−1;µ1:k−1)dx′∫

q(yk|x;µk)
∫
p(x|x′)πk−1(x′|y1:k−1;µ1:k−1)dx′dx

.
(9)

In addition, the tree optimization algorithm will require the
definition of the prediction density at time k+i, for i>0, after
receiving measurements only during the first k epochs. It is
denoted πk+i|k and defined by

πk+i|k(x|y1:k;µ1:k)=

∫
p(x|x′)πk+i−1|k(x′|y1:k;µ1:k)dx′,

(10)

with πk|k≡πk. The estimate of ϕ(XN) after collecting a
sequence of measurements y1:k obtained from a vehicle tra-
jectory µ1:k is denoted ΦN |k:Yk×Mk→Rn′x and defined by

ΦN |k(y1:k;µ1:k):=E[ϕ(XN) | y1:k;µ1:k]

=

∫
ϕ(xN)πN |k(x|y1:k;µ1:k)dx.

(11)

The objective function in (4) or, equivalently, the expected
uncertainty cost at time N given a vehicle trajectory µ0:k, for
k≤N is denoted by JN |k:Mk→R and defined according to

JN |k(µ1:k)=E [‖ϕ(XN)−ΦN |k(Y1:k;µ1:k)‖2]

=

∫
‖ϕ(xN)−ΦN |k(y1:k;µ1:k)‖2p(x0:N ,y1:k|µ1:k)dx0:Ndy1:k.

(12)

The expectation over states and measurements in (12) is
taken with respect to the density p(x0:N ,y1:k|µ1:k) which,
for Markov models in the form (8), can be decomposed (see
e.g. [25]) as

p(x0:N ,y1:k|µ1:k)=π0(x0)

N∏

i=1

p(xi|xi−1)

k∏

i=1

q(yi|xi;µi). (13)

The cost of a complete trajectory µ1:N is denoted for brevity
by J :=JN |N . The goal (4) is then expressed in short as

µ∗1:N=argmin
µ1:N

J(µ1:N), (14)

subject to the dynamics and constraints.

IV. SAMPLING-BASED APPROXIMATION

The filtering densities (9) and (10) generally cannot
be computed in closed form since they are based on
nonlinear/non-Gaussian models. Therefore, following [6], we
employ particle-based approximation using L delta distribu-
tions, placed at state samples X(j)

k ∈X with positive weight
functions w(j)

k :Yk×Mk→R+, i.e.

πk(x|y1:k;µ1:k)≈π̂k(x|y1:k;µ1:k):=

L∑

j=1

w
(j)
k (y1:k;µ1:k)δ

X
(j)
k

(x),

(15)

where δy denotes the Dirac delta mass at point y.

A simple way to construct such a representation is to sample
L independent trajectory realizations {X(j)

0:k}Lj=1 using the
prior (8a) and target motion model (8b) and to compute the
weights, for given measurements y1:k obtained at vehicle states
µ1:k, according to

w̄
(j)
k (y1:k;µ1:k):=

k∏

i=1

q(yi|X(j)
i ;µi), (16)

w
(j)
k =

w̄
(j)
k∑L

`=1w̄
(`)
k

, (17)

so that the weights are normalized, i.e.
∑L
j=1w

(j)
k =1. This is

equivalent to a sequential importance sampling (SIS) scheme
with importance distribution π0(x0)Πk

i=1p(xi|xi−1). Note that
while more sophisticated sampling methods have been de-
veloped, e.g. that additionally account for measurements to
reduce variance [26, 25], this work follows the basic choice
for simplicity. Fig. 1 depicts a subset of possible evolutions
of such particles in the helicopter search scenario.

With this representation it is straightforward to show
that (10) is approximated simply according to

πk+i|k(x|y1:k;µ1:k)

≈π̂k+i|k(x|y1:k;µ1:k):=

L∑

j=1

w
(j)
k (y1:k;µ1:k)δ

X
(j)
k+i

(x).
(18)

The estimate (11) is then approximated by

ΦN |k(y1:k;µ1:k)

≈Φ̂N |k(y1:k;µ1:k):=

L∑

j=1

ϕ(X
(j)
N)π̂N |k(X

(j)
N |y1:k;µ1:k).

(19)

Note that updating the cost along a vehicle trajectory has
computational complexity O(L2) per time step. Yet, due to
particle independence the computation can be parallelized
using special hardware up to a factor of O(L) and sped up
significantly.

As the time N increases the approximation (19) degrades
since the probability mass becomes concentrated in a decreas-
ing number of particles [25]. A standard remedy is to include a
resampling step [26] to redistribute the samples equalizing the
weights. While it is possible to perform sequential importance
resampling (SIR) in the proposed framework it is avoided for
computational reasons specific to the tree structure employed
for uncertainty propagation. The drawback is that the method
is limited to small time horizons, e.g. N<30. The distinct
advantage though is that the simpler SIS scheme permits
a computationally efficient update of the density (15) and
estimate (19) during optimization. The idea (described in detail
in the following sections) is that SIS can be implemented as
a simple and fast parallel weights rescaling in a dynamically
changing tree of vehicle trajectories that explores the solution
space.

Finally, the error JN |k is approximated through impor-
tance sampling of the integrand in (12), i.e. by drawing

(
X

(`)
0:N ,Y

(`)
1:k

)
from p(x0:N ,y1:k|µ1:k). It is natural to use the

i.i.d. state particles X
(`)
0:N already sampled for the approxi-

mation of the density (15). Measurement sequences Y (`)
1:k are

then sampled by drawing Y (`)
i ∼q(·|X

(`)
i ;µi) for all i=1,...,k.

As long as the densities (8) can be directly sampled from,
which is valid for common models used in robotics (e.g. 7),
then the approximation simplifies to the Monte Carlo or the
stochastic counterpart, i.e.

JN |k(µ1:k)≈ĴN |k(µ1:k):=
1

L

L∑

`=1

‖ϕ(X
(`)
N)−Φ̂N |k(Y

(`)
1:k ;µ1:k)‖2,

(20)

with Ĵ :=ĴN |N denoting the approximate cost of a whole
trajectory µ1:N . The global optimization algorithms developed
in the paper will be based on the approximate estimate (19)
and cost (20), i.e. it will solve

µ̂∗0:N=argmin
µ0:N

Ĵ(µ0:N). (21)

In this sense only an approximate solution will be obtained.
Yet, by the law of large numbers [27] µ̂∗0:N will approach the
true solution µ∗0:N by increasing the number of simulations L.

V. RANDOM TREE OPTIMIZATION

We employ tree-based search based on sampling nodes from
the original continuous space M and connecting them with
edges correspond to trajectories satisfying any given dynam-
ics (2) and general constraints (3). Our approach is based on a
recent methodology under active development in the robotics
community known as sampling-based motion planning which
includes the rapidly-exploring random tree (RRT) [15] and
the probabilistic roadmap (PRM) [28]. Unlike these motion
planning algorithms though the trees employed in this work
are not expanded based on a “distance” metric between nodes.
Instead, the connections are made probabilistically, nodes and
edges can be added, swapped, or deleted during the algorithm
operation. This section considers the basic tree expansion that
explores the state space, while §VI introduces the variance
reduction techniques that complete the overall approach.

A. Tree Expansion

The set of nodes is denoted by N :=N×M×RL×L×R+×
N . Each node is defined by the tuple

η=(k,µ,W,Ĵ,ρ)∈N ,
consisting of: the epoch index 0≤k≤N ; vehicle state µ;
particle weights matrix W providing a convenient way to
compute the density π̂; target state estimate uncertainty cost
Ĵ≥0; tree parent index ρ. Nodes and their sub-elements are
indexed by superscript, i.e. ηa has state µa and its parent
node is ηρ

a

. The root of the tree that contains the starting
vehicle state is denoted η0=(0,µ0,W

0,Ĵ0,·), where the matrix
elements W 0

`j=1/L for all `,j=1,...,L. A trajectory between
two nodes ηa and ηb is denoted µa→b and a state at time k
along this trajectory is denoted µa→bk where ka≤k≤kb.

Variable Type Element Description

kb integer ≥0 time epoch index
µb dim(M)×1 vector vehicle state at node
W b L×L matrix weights W b

`j :=w
(j)

kb
(Y

(`)

1:kb
;µ0→b)

Ĵb scalar >0 uncertainty cost Ĵb:=ĴN|kb (µ0→b)

ρb integer ≥0 parent node index

Fig. 2. Description of the elements of a node ηb=(kb,µb,W b,cb,Ĵb,ρb)∈T .

A tree T ⊂N is a set of nodes connected by feasible
trajectories. The tree structure guarantees that there is a unique
trajectory leading from the root to each node ηa∈N which is
denoted µ0→a.. Overview of the elements comprising each
node is given in Fig. 2. Their exact computation is detailed
next.

A tree is constructed by assuming that a local controller
is available [15] that attempts to drive the vehicle between
two given nodes ηa and ηb. For instance, if the states µa

and µb were close enough and no obstacles between them
were present then a trajectory µa→b is produced, otherwise the
connection fails. Such a controller is abstractly represented by
the function Connect, i.e.

Connect(ηa,ηb)⇒
{
µa→b, if path found
∅, otherwise. (22)

The tree is constructed by sampling and connecting nodes.
Assume that a function Sample is available which returns a
new node, i.e.

ηb=Sample(). (23)

The default choice is to sample (state,time) pairs (µ,k) uni-
formly from M×{1,...,N} and discard samples that violate
the constraints (3), e.g. that lie inside obstacles. Next define
the set T →b⊂T of all existing tree nodes for which a feasible
trajectory to the newly sampled node can be found, i.e.

T →b={η∈T | Connect(η,ηb) 6=∅}.

One of these nodes denoted ηa∈T →b is selected uniformly
at random to become the parent of ηb linked with trajectory
µa→b, i.e. ρb=a. Fig. 3 illustrates the construction.

O1

O2

O3

W

η0

ηb

initial target density π0

particles X
(1:L)
0

X
(1:L)
k1

X
(1:L)
k2

X
(1:L)
N

tree T sampled node

O1

O2

O3

W

η0

ηb

ηa

initial target density π0

particles X
(1:L)
0

X
(1:L)
k1

X
(1:L)
k2

X
(1:L)
N

µ a→
b

a) tree T and a sampled node ηb b) connecting to ηb

Fig. 3. A tree expansion step implemented by Expand (§V-A): a) a node
ηb is sampled; b) it is then connected to a randomly chosen node ηa∈T

After a new node ηb is added to the tree, the target
filtering density π̂ (18) is propagated along the newly added
trajectory segment µa→b for all sampled target paths X(`)

ka:kb

by simulating measurements

Y
(`)
k ∼q(·|X

(`)
k ;µa→bk), for k=ka,...,kb, (24)

for all `=1...L. A row in the matrix W b, i.e. W b
` for any 1≤`≤

L corresponds to the resulting weights for each measurement
sequence, i.e. W b

`j :=w
(j)

kb
(Y

(`)

kb
;µ0→b), where w(j)

kb
is defined

in (16). The weights are computed incrementally using the
parent weights W a

`j through

W̄ b
`j=W

a
`j ·U`j , for U`j :=

kb∏

k=ka

q(Y
(`)
k |X

(j)
k ;µa→bk), (25a)

W b
`j=

W̄ b
`j∑L

j=1W̄
b
`j

. (25b)

The error (20) of the complete trajectory µ0→b, denoted by
Ĵb, becomes

Ĵb:=ĴN |kb(µ
0→b)=

L∑

`=1

‖ϕ(X
(`)
N)−

L∑

j=1

W b
`jϕ(X

(j)
N)‖2. (26)

Note again that Ĵb represents the uncertainty measure at the
end of the time horizon N but only based on measurements
collected along µ0→b, i.e. up to time kb. If Ĵb<Ĵ∗, where Ĵb

is computed using (26) and Ĵ∗ is the current best cost, then
the current best node is reset, i.e. η∗=ηb. The updated optimal
vehicle trajectory can be backtracked from ηb to the root η0.

Let s∼U(S) denote uniform sampling of an element s from
a finite set S. The complete tree expansion algorithm can now
be summarized as

Expand
1) ηb=Sample()
2) ηa∼U(T →b)
3) µa→b=Connect(ηa,ηb)
4) T =T ∪{ηb}; ρb=a
5) Compute W b and Ĵb using (25) and (26)
6) if Ĵb<Ĵ∗ then η∗=ηb.

The expansion is repeated n−1 times in order to produce
a tree with n nodes. Initially, the tree contains only the root,
i.e. T ={η0}, and η∗=η0.

Computational Saving.: It is important to stress that
the computation (26) is accomplished through an incremental
propagation of the filtering density weights along the newly
added trajectory µa→b from parent ηa to child node ηb

rather than the complete trajectory µ0→b. This signifies the
advantage of using a tree rather than a naive enumeration of
vehicle trajectories in order to explore the solution spaceMk.
For instance, assume that the tree were a complete binary
tree with n nodes and, hence, with depth d=log(n+1)−1.
Then it encodes n/2 different trajectories since each leaf
can be backtracked to generate a unique trajectory µ0:N . If
each edge lasts on average of N/d time epochs then the
density computation (25) must be performed n

dN times for
the tree compared to n

2N times if the n/2 trajectories were
enumerated. In other words, the tree provides a O(log(n))
savings factor on average.

B. Example: simple vehicle

Consider the simple vehicle with dynamics (6). The op-
timal estimation algorithm is tested in a polygonal obstacle
environment mimicking the scenario in §II. A tree built after
calling Expand 500 times is shown on Fig. 4(a). It takes a
few milliseconds of computation to generate such a tree. In
practice, a tree will contain tens of thousands of vertices. Fig. 5
shows a few frames of the resulting motion along an optimal
trajectory obtained by a denser tree with 10000 nodes which
took 5 seconds to compute. More detailed computational
studies are performed in §VIII.

√
Ĵ∗=52.3m

√
Ĵ∗=71.2m

√
Ĵ∗=66.2m

a) Random Tree (RND) b) Tree with local metric (RRT) c) Tree with cost-to-come metric (iPRM)

Fig. 4. Three types of search trees used to explore the vehicle trajectory
space corresponding to the scenario in §II. The vehicle has simple dynamics
and a circular sensing radius shown as a disk at its starting state. A subset
of the target paths X(1:L)

0:N are shown diffusing from the bottom right to the
top of the environment. The trees are: a) a random tree (RND) constructed
using Expand (§V-A); b) a rapidly-exploring random tree (RRT) using nearest
neighbor metric; c) an incremental tree-based probabilistic roadmap (iPRM)
expanded based on cost-to-come distance. Each tree has 500 nodes. While the
optimal (i.e. with minimum target position variance) trajectories of all trees
are quite different (shown as thicker lines), they all yield very similar costs
Ĵ∗. It is evident that these solutions are of poor quality since the square root
of the variance is large (i.e. >52.3 meters) relative to the environment size
(200×200 meters.).

t=0 sec. t=6 sec. t=12 sec.

t=18 sec. t=24 sec. t=30 sec.

Fig. 5. The optimal vehicle path computed using algorithm Expand (§V-A)
with L=100 particles, time horizon T=30 s., and time-step τ=250 ms.
The consecutive frames show the evolution of the sampled target trajectories
X

(1:L)
0:N and the vehicle trajectory µ∗0:N . The computed cost is

√
Ĵ∗=43.9m.

VI. VARIANCE REDUCTION TECHNIQUES

A. Utility Sampling of Nodes

The difficulty of optimization in a complicated high-
dimensional landscape can in practice be alleviated by in-
corporating problem-specific knowledge. For instance, the set
of nodes considered during randomized motion planning can
be chosen in a biased way, e.g. proportional to some utility
function known to reduce the trajectory cost (see e.g. 29).

This paper employs a similar approach dictated by the
fact that an optimal vehicle trajectory µ∗0:N , i.e. with lowest
uncertainty cost J , is likely to pass close to states with high
observation likelihood. Thus, a sample µsample

k is chosen so
that

µsample
k =argmax

µ
q(Y `k |X`

k;µ), (27)

where (X
(`)
k ,Y

(`)
k) is a single particle selected by sampling `

uniformly from {1,...,L}. The optimal state µ in (27) is usually
straightforward to compute. For instance, the optimal vehicle
position in the example scenario from §II will coincide (on
average) with the target position at X`

k so according to (27)
one can simply set µsample

k =X`
k.

The function Sample introduced in §V-A is specified as
follows. It samples a state µ in two ways: 1) based on the
utility (27); 2) uniformly in the spaceM. It selects the former
with probability PU , otherwise it selects the latter at every tree
expansion. The routine is summarized as

Sample
1) With probability PU ,
2) k∼U({0,...,N}); `∼U({1,...,L});
3) µ=argmaxµ′q(Y

`
k |X`

k;µ′), where Y `k∼q(·|X`
k;µ′)

4) otherwise
5) k=∞
6) µ∼U(M)
7) repeat Sample if hc(µ)<0
8) return η=(k,µ,...)

B. Tree Shuffling

Shuffling is the process of probabilistically selecting a
branch of the tree, detaching it from its parent and attaching
it to another branch. The first step is to choose a node ηa at
random. Then nr other existing nodes are selected from the
tree according to a “fitness” function. Each of these nodes,
denoted ηb∈T \{ηa∪η0}, are then disconnected from their
current parents ηρ

b

and connected to ηa instead, as long as
this switch lowers the resulting uncertainty cost of the subtree
attached at ηb (see Fig. 7).

The fitness density over a given set T is denoted qT :T →
[0,1] and defined by

qT (ηb)=
q̄T (ηb)∑
η∈T q̄T (η)

, where q̄T (ηb)=e
−
√

Ĵb

J∗max , (28)

where J∗max is a constant denoting the upper bound of an
acceptable optimal cost that the algorithm is expected to yield.
Sampling from the fitness function biases the selection of more
capable nodes but without completely disregarding nodes with
lower performance. This achieved by a distribution with a fat
tail as shown on Fig. 6.

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e
–
√

Ĵ
J∗
max

e
– Ĵ

J∗
max

Ĵ

q̄
T

Importance Functions

Fig. 6. Two importance density functions q̄T used to sample nodes during
shuffling (with J∗max=400). The function with “fatter” tail (defined in (28))
is the proper choice in order to guarantee exploration of the state space.

Let the subtree rooted at ηb be denoted T b⊂T . Define the
combined trajectory connecting node ηa to node ηb and node
ηb to node ηc, denoted µa→b→c, by

µa→b→c:=µa→b∪µb→c.

More precisely, a shuffle, i.e. parent switch ρb=a, occurs in
two cases (see also Fig. 7). The obvious case is when the
current optimal uncertainty cost Ĵ∗ can be improved by a
trajectory µ0→a→b→c in the modified tree. The second case
is heuristic: a switch occurs only if the cost can be lowered
on average across all nodes in the subtree. These conditions
are expressed as

if





minηc∈T b ĴN |kc(µ
0→a→b→c)<Ĵ∗

or∑
ηc∈T b

(
ĴN |kc(µ0→a→b→c)−Ĵc

)
<0





then ρb=a.

(29)

Note that Ĵc in (29) should be understood as the present cost
in the unmodified tree, i.e. Ĵc:=ĴN |kc(µ0→ρb→b→c).

O1

O2

O3

W

η0

initial target density π0

particles X
(1:L)
0

X
(1:L)
k1

X
(1:L)
k2

X
(1:L)
N

ηa

ηc

ηb

ηρ
b

O1

O2

O3

W

η0

initial target density π0

particles X
(1:L)
0

X
(1:L)
k1

X
(1:L)
k2

X
(1:L)
N

ηa
µ
a→
b

ηc

ηb

SHUFFLE

a) current tree showing a path µ0→b→c b) shuffled tree by deleting µρ
b→b and adding µa→b

Fig. 7. A tree shuffling iteration: a) a node ηa∈T has been chosen at random;
another node ηb∈T is then selected with chance inversely proportional to its
current uncertainty cost Ĵb; b) ηb is disconnected from its parent ηρ

b
and

connected to ηa after checking that the uncertainty cost of the newly formed
trajectory µ0→a→b→c either improves the global optimum J∗ or on average
improves the costs in the subtree T b (see (29)).

Computational Savings.: The step (29) requires the com-
putation of the uncertainty cost of all trajectories µ0→a→b→c

obtained from the original µ0→ρb→b→c by replacing the seg-
ment µρ

b→b with µa→b. Since all trajectories in the subtree
at ηb are affected this could be an expensive operation. In
addition, it seemingly requires that the densities (25) at node
ηa be re-propagated along the complete and potentially long

new trajectory segment µa→b→c. In the SIS framework though
it is not necessary to perform the whole propagation. In
particular, only the incremental weight update Uij along the
new segment µa→b must be computed (using (25)) and then
the weights at all subtree nodes ηc∈T b are updated directly
through the simple weight rescaling formula

W̄ij(µ
0→a→b→c)=W c

ij

W a
ij

W b
ij

Uij , (30)

where the weights W a
ij are the existing weights at node ηa,

resp. b and c. After computing the unnormalized weights (30)
the cost ĴN |kc(µ0→a→b→c) used in the shuffling (29) is
computed through (25b) and (26).

In summary, a shuffling step computes the incremental
weights update along µa→b and simply rescales the existing
weights at all affected child nodes T b. It is summarized
according to

Shuffle
1) choose ηa from T at random
2) for i=1:nr
3) sample ηb∼qT (·)
4) execute (29)
5) if Ĵc<Ĵ∗ then η∗=ηc.

The number of nodes to be tried for a parent switch, nr,
during the shuffling step, can be constant but it is more
reasonable to increase it as the tree becomes denser. Hence,
the default choice used is nr=log(dim(T)).

C. Randomized Pruning

Shuffling §VI-B dynamically rebuilds the tree by removing
and adding edges. A complementary operation can be consid-
ered, which dynamically adds and removes nodes based on
their accumulated performance.

Denote the set of leaf nodes in tree by LT ⊂T , i.e.

LT :={ηa∈T | 6∃b s.t. ρb=a}.
Nodes are removed sequentially from the “bottom” of the tree,
i.e. starting with leaf nodes. The procedure is summarized
according to

Prune
1) for i=1,...,np
2) L′=LT \{η∗,η0}
3) η∼1−qL′(·)
4) T =T \{η}

Nodes to be pruned are selected inversely proportional to
their fitness density (line 3). Empirically, as shown in §VIII,
pruning turns out be an effective strategy (again in the spirit
of importance (re)sampling) for obtaining improved solutions
quicker. Yet, the optimal choice for a number of nodes to
be pruned np at every iteration is difficult to determine. In
our tests we prune a small fraction of the total nodes n, i.e.
np=n/5.

VII. COMPUTATIONAL ASPECTS

The proposed methods are expected to find only an approxi-
mate solution as a result of the sampling-based approximation
of the target dynamics and the variance reduction techniques.
While we do not formally study the algorithm convergence
properties, it is expected that the number of iterations required

for a near-optimal solution by the purely random algorithm
described in §V is prohibitively expensive due to the size of
the search space [30]. Employing variance-reduction methods
drastically speeds up the search at the expense of loosing
algorithmic completeness. More specifically, by biasing the
search and pruning the tree heuristically we introduce an unde-
sirable probability of failing to find a near-optimal solution. An
important point that we have not considered is to quantify this
probability precisely, i.e. in terms of probably-approximately-
correct (PAC) analysis [31]. Despite these limitations, the
numerical tests presented next suggest that the proposed algo-
rithms are suitable for real-time implementation in a receding
horizon fashion, by choosing a suitably short planning hirozon.
More specifically, the current implementation requires several
seconds of computation to reach an acceptable solution. This
run-time can also be significantly lowered through paralleliza-
tion.

VIII. NUMERICAL TESTS

Numerical studies based on the simple vehicle are presented
first followed by a more complex helicopter search example.

A. Simple Vehicle

The methods are tested through multiple simulation runs in
the simulated scenario defined in §II with tree node connection
defined in §V-B. Four algorithms are developed and analyzed
in a sequence in order to compare the proposed baseline
algorithm and variance reduction techniques. The algorithms
are abbreviated according to:
• RND: baseline random expansion algorithm (§V-A)
• RND+UTIL: RND augmented with utility-based sam-

pling (§VI-A)
• RND+UTIL+SHUFFLE: with the addition of a shuffling

step (§VI-B)
• RND+UTIL+SHUFFLE+PRUNE: the final algorithm in-

cluding pruning (§VI-C)
Fig. 8 shows the resulting averaged results of the perfor-

mance of each algorithm, including a comparison with a stan-
dard RRT expansion (see [1] for more detailed results). The
simulations shows that a random search tree (RND) is more
suitable than a standard motion planning tree for obtaining
convergence to an optimal trajectory. Yet the convergence is
very slow. This is remedied by the combination of the pro-
posed variance reduction techniques. The complete algorithm
RND+UTIL+SHUFFLE+PRUNE computes a solution with an
acceptable performance within the allotted computation time
of 60 seconds.

B. A Helicopter Search Scenario

Consider a small autonomous helicopter operating in a 3-D
terrain. The vehicle is modeled as a single underactuated rigid
body with position p∈R3 and orientation R∈SO(3) where
SO(3) denotes the space of right-handed coordinate frames
described by three orthogonal vectors (i.e. by a 3x3 orthogonal
matrix with positive determinant). Its body-fixed angular and
linear velocities are denoted by ω∈R3 and v∈R3, respectively.

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

RND

RND + UTIL

RND + UTIL + SHUFFLE + PRUNE

RRT

Computation Time (seconds)

P
o
s
it
io

n
 U

n
c
e
rt

a
in

ty
 (

m
e
te

rs
)

Methods Comparisons

Fig. 8. Comparison of several tree search algorithms (averaged over 100
Monte Carlo runs). A standard RRT algorithm is not suitable for optimal
planning since it quickly converges to and remains at a low quality solution.
The algorithm RND converges asymptotically but the rate decreases with
computation time. Utility-based sampling (UTIL) speeds up convergence but
not drastically. The final complete algorithm including shuffling and pruning
provides the best performance providing an acceptable error below 25 meters
(i.e. the y-axis plots the square root of the total variance

√
Ĵ∗ which can be

interpreted as a combined error in the two position coordinates)

The vehicle has mass m and principal moments of rotational
inertia J1,J2,J3 forming the inertia tensor J=diag(J1,J2,J3).

The vehicle is controlled through a collective uc (lift pro-
duced by the main rotor) and a yaw uψ (force produced by
the rear rotor), while the direction of the lift is controlled by
tilting the main blades forward or backward through a pitch γp
and sideways through a roll γr. The state space of the vehicle
is M=SO(3)×R3×R6 with µ=((R,p),(ω,v)) and the four
control inputs are u=(uc,uψ,γp,γr).

The equations of motion are
[
Ṙ
ṗ

]
=

[
Rω̂
Rv

]
, (31)

[
Jω̇
mv̇

]
=

[
Jω×ω

mv×ω+RT (0,0,−9.81m)

]
+f(u), (32)

where the map ·̂:R3→so(3) and the control force f(u) are
defined as

ω̂=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


, f(u)=




dtsinγruc
dtsinγpcosγruc

druψ
sinγpcosγruc
−sinγruc−uψ
cosγpcosγruc



.

The local motion planning method corresponding to Con-
nect is based on sequencing of precomputed motion primitives
which satisfy the dynamics (31)–(32). This is accomplished
using a maneuver automaton [32] using a set of primitives
which abstracts away the complex dynamics and reduces the
edge creation problem to an optimization in the discrete set of
primitives and the space of translations and planar rotations
– SE(2)×R1. A trajectory consisting of a given sequence of
minimum number of primitives can then be computed instantly
in closed form through inverse kinematics. The terrain is
represented using a digital elevation map loaded from a file.
Collision checking and avoidance is performed using the

a) b)

Fig. 9. The algorithm applied to the helicopter example described in §VIII-B
showing a) the optimal helicopter trajectory; b) the constructed roadmap and
sensor footprint along a path; c) close-up view along an edge of the roadmap.

Proximity Query Package (PQP) [33] that compute closest
distance between arbitrary polyhedra and is used to implement
the function prox defined in (5).

The algorithm is tested in scenario similar to §II extended
to 3-D. The helicopter is not permitted to fly above obstacles.
Fig. 9 shows the resulting helicopter trajectory and a view of
the constructed roadmap.

IX. CONCLUSION AND FUTURE DIRECTIONS

This work deals with optimal estimation for systems with
nonlinear dynamics subject to nonconvex constraints. The
approach is based on a random enumeration of trajectories
generated from a tree which compactly approximates the
reachable space and efficiently propagates probability distri-
butions through recursion. The randomly sampled tree nodes
approach any reachable state with exponentially (in the number
iterations) high probability and therefore encode a versatile
roadmap of solution trajectories. Yet, without assuming any
special structure known a-priori, random search alone does not
result in an efficient algorithm due to the high-dimensionality
of the problem. This issue is alleviated through variance reduc-
tion techniques similar to importance sampling for stochastic
optimization and to cross-over in evolutionary algorithms.
While these methods show a marked improvement in solution
quality and run-time efficiency, no formal non-asymptotic
convergence rates have been established. A possible future
direction is to address this issue by assuming certain regularity
conditions on the models involved. A related direction is to
combine the proposed approach with the cross-entropy (CE)
optimization method [34, 35] which is designed to explic-
itly identify structure in the solution space by maintaining
and optimally adapting an importance sampling distribution.
Guiding the random tree expansion through a CE-type method
would provide a consistent exploration–exploitation approach
(for initial developments see [36]) that optimally accounts for
the sampled data during optimization.

In addition, there could be interesting connections to the
RRT∗ methodology [37] which also employs tree modification
in the context of deterministic planning. While at the time
of this work we did not consider links to RRT∗, it would

be fruitful in the future to explore the analysis introduced
in [37] to study and improve the performance of our proposed
method. It would also be useful to explore connections to
recent sampling-based methods for efficiently solving partially
observable Markov decision processes (POMDPs) [38]. In
particular, the significant speed-up achieved by adaptively
approximating the belief search space [39] and factorization
exploiting mixed observability [40] have similar flavor to
the methods proposed by this work. An interesting direction
is to combine such POMDP techniques with the proposed
random tree methods in order to efficiently handle systems
with complex dynamics and constraints.

Finally, even though formally fast convergence rates are
absent in our general setting, this work provided a simple
particle-based algorithm applicable to general types of dy-
namics and uncertainty models which is easy to implement
and performs well in practice.

REFERENCES

[1] M. Kobilarov, J. E. Marsden, and G. S. Sukhatme,
“Global estimation in constrained environments,” The
International Journal of Robotics Research, vol. 31,
no. 1, pp. 24–41, 2011.

[2] H. Khalil, Nonlinear System, 3rd edition. Prentice Hall,
1996.

[3] L. Mihaylova, T. Lefebvre, H. Bruyninckx, K. Gadeyne,
and J. D. Schutter, “A comparison of decision making
criteria and optimization methods for active robotic sens-
ing,” in Lecture Notes in Computer Science, vol. LNCS
2542, 2003, pp. 316–324.

[4] J. de Geeter, J. de Schutter, H. Bruyninckx, H. van Brus-
sel, and M. Decreton, “Tolerance-weighted L-optimal
experiment design for active sensing,” in Proc. Conf.
IEEE/RSJ Int Intelligent Robots and Systems, vol. 3,
1998, pp. 1670–1675.

[5] O. Tremois and J.-P. Le Cadre, “Optimal observer trajec-
tory in bearings-only tracking for maneuvering sources,”
IEE Proceedings -Radar, Sonar and Navigation, vol. 146,
no. 1, pp. 31–39, 1999.

[6] S. S. Singh, N. Kantas, B.-N. Vo, A. Doucet, and R. J.
Evans, “Simulation-based optimal sensor scheduling with
application to observer trajectory planning,” Automatica,
vol. 43, p. 817 830, 2007.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotic.
MIT Press, 2005.

[8] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte,
“Information-theoretic coordinated control of multiple
sensor platforms,” in Proc. IEEE International Confer-
ence on Robotics and Automation ICRA ’03, vol. 1, 14–
19 Sept. 2003, pp. 1521–1526.

[9] S. Paris and J.-P. Le Cadre, “Planning for terrain-aided
navigation,” in Proc. Fifth Int Information Fusion Conf,
vol. 2, 2002, pp. 1007–1014.

[10] R. He, S. Prentice, and N. Roy, “Planning in informa-
tion space for a quadrotor helicopter in a GPS-denied
environments,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA 2008),
Los Angeles, CA, 2008, pp. 1814–1820.

[11] C. Stachniss, G. Grisetti, and W. Burgard, “Information
gain-based exploration using Rao-Blackwellized particle
filters,” in Robotics: Science and Systems, 2005.

[12] R. Sim and N. Roy, “Global A-optimal robot exploration
in slam,” in Proc. IEEE Int. Conf. Robotics and Automa-
tion ICRA 2005, 2005, pp. 661–666.

[13] L. Mihaylova, J. D. Schutter, and H. Bruyninckx, “A
multisine approach for trajectory optimization based on
information gain,” Robotics and Autonomous Systems,
vol. 43, no. 4, pp. 231–243, 2003.

[14] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolen-
ski, Nonsmooth Analysis and Control Theory. Springer,
1998.

[15] S. M. LaValle, Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006.

[16] R. Y. Rubenstein and D. P. Kroese, Simulation and the
Monte Carlo Method. Wiley, 2008.

[17] W. Powell, Approximate Dynamic Programming: Solving
the Curses of Dimensionality. Wiley Series in Proba-
bility and Statistics, 2007.

[18] W. B. Langdon and R. Poli, Foundations of Genetic
Programming. Springer, 2001.

[19] Z. Michalewicz and M. Schoenauer, “Evolutionary algo-
rithms for constrained parameter optimization problems,”
Evol. Comput., vol. 4, pp. 1–32, March 1996. [Online].
Available: http://dx.doi.org/10.1162/evco.1996.4.1.1

[20] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski,
“Adaptive evolutionary planner/navigator for mobile
robots,” IEEE Transactions on Evolutionary Computa-
tion, vol. 1, no. 1, pp. 18–28, 1997.

[21] R. Vaidyanathan, C. Hocaoglu, T. S. Prince, and R. D.
Quinn, “Evolutionary path planning for autonomous air
vehicles using multi-resolution path representation,” in
Proc. IEEE/RSJ Int Intelligent Robots and Systems Conf,
vol. 1, 2001, pp. 69–76.

[22] C. Hocaoglu and A. C. Sanderson, “Planning multiple
paths with evolutionary speciation,” IEEE Transations
on Evolutionary Computing, vol. 5, no. 3, pp. 169–191,
2001.

[23] G. Erinc and S. Carpin, “A genetic algorithm for non-
holonomic motion planning,” in Proc. IEEE Int Robotics
and Automation Conf, 2007, pp. 1843–1849.

[24] J.-C. Latombe, Robot Motion Planning. Kluwer Aca-
demic Press, 1991.

[25] C. P. Robert and G. Casella, Monte Carlo Statistical
Methods. Springer, 2004.

[26] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential
Monte Carlo methods in practice, 2001.

[27] P. Del Moral, Feynman-Kac Formulae. Genealogical and
interacting particle systems with applications. Springer-
Verlag, 2004.

[28] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor,
W. Burgard, L. E. Kavraki, and S. Thrun, Principles of
Robot Motion: Theory, Algorithms, and Implementations.

http://dx.doi.org/10.1162/evco.1996.4.1.1

MIT Press, June 2005.
[29] B. Burns and O. Brock, “Toward optimal configuration

space sampling,” in Robotics: Science and Systems, 2005.
[30] R. Tempo, G. Calafiore, and F. Dabbene, Randomized

algorithms for analysis and control of uncertain systems.
Springer, 2004.

[31] M. Vidyasagar, “Randomized algorithms for robust
controller synthesis using statistical learning theory,”
Automatica, vol. 37, no. 10, pp. 1515–1528, Oct.
2001. [Online]. Available: http://dx.doi.org/10.1016/
S0005-1098(01)00122-4

[32] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-
based motion planning for nonlinear systems with sym-
metries,” IEEE Transactions on Robotics, vol. 21, no. 6,
pp. 1077–1091, dec 2005.

[33] S. Gottschalk, M. C. Lin, and D. Manocha, “OBB-
Tree: A hierarchical structure for rapid interference de-
tection,” Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, vol. 30, pp. 171–180, 1996.

[34] R. Y. Rubinstein and D. P. Kroese, The cross-entropy
method: a unified approach to combinatorial optimiza-
tion. Springer, 2004.

[35] F. Celeste, F. Dambreville, and J.-P. L. Cadre, “Optimal
path planning using cross-entropy method,” in 2006 9th
International Conference on Information Fusion, 2007,
pp. 1 – 8.

[36] M. Kobilarov, “Cross-entropy randomized motion plan-
ning,” in Proceedings of Robotics: Science and Systems,
Los Angeles, CA, USA, June 2011.

[37] S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” International Journal of
Robotics Research, vol. 30, no. 7, pp. 846–894, June
2011.

[38] L. P. Kaelbling, M. L. Littman, and A. R.
Cassandra, “Planning and acting in partially observable
stochastic domains,” Artificial Intelligence, vol. 101,
1998. [Online]. Available: http://people.csail.mit.edu/
lpk/papers/aij98-pomdp.pdf

[39] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP:
Efficient point-based POMDP planning by approximating
optimally reachable belief spaces,” in Proc. Robotics:
Science and Systems, 2008.

[40] S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee,
“POMDPs for robotic tasks with mixed observability,” in
Proceedings of Robotics: Science and Systems, Seattle,
USA, June 2009.

http://dx.doi.org/10.1016/S0005-1098(01)00122-4
http://dx.doi.org/10.1016/S0005-1098(01)00122-4
http://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf
http://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf

	Introduction
	Objective.

	An Example Scenario
	Problem Formulation
	Sampling-based Approximation
	Random Tree Optimization
	Tree Expansion
	Example: simple vehicle

	Variance Reduction Techniques
	Utility Sampling of Nodes
	Tree Shuffling
	Randomized Pruning

	Computational Aspects
	Numerical Tests
	Simple Vehicle
	A Helicopter Search Scenario

	Conclusion and Future Directions

