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Abstract

This paper derives a numerical method for simulating multi-body mechanics using reduced discrete variational principles.
Motivated by the favorable nature of symplectic integrators for multi-body systems [1, 2, 3, 4] we construct, for the first
time, integrators defined through reduced variational principles. Then we employ the framework to compute motion
controls using discrete optimal control in shape-space to satisfy boundary conditions of the full system.

Tree/Graph Structure. Consider a mechanical system consisting of interconnected rigid bodies indexed using the set
of integers so that joint #j connect body #a; to body #b;. Without loss of generality assume that body ¢ = 0 is the
reference body, i.e. it has no incoming joints.

Rigid Body Configuration Space. The configuration of body #i is denoted by g; € SFE(3), while its body-fixed velocity
is denoted &; € se(3) and defined by &; = g; 4. In general, an element ¢ € SF(3) and its inverse are defined using a
matrix R € SO(3) and vector x € R? according to
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The velocities ¢ € se(3) are identified with body-fixed angular and linear velocities denoted w € R?® and v € R3,
respectively, through
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The algorithm is thus implemented in terms of vectors in RS rather than matrices in se¢(3). In the sequel we will use the
following shorthand notation go.x = {go, ..., gn } to denote the configurations of all bodies of the multi-body system.

The inertia tensor of the body is denoted by J; : se(3) — se(3)* and implemented as a 6x6 diagonal matrix. Each
body is subject to potential energy, e.g. due to gravity, defined by the function V' : SE(3) — R.

Joints. The system has n joints described by parameters » € M, where M C R" is the shape space. The relative
transformation between the reference body configuration g and the configuration of body#i is denoted by go; : M —
SE(3). We assume that all joints are controlled using control inputs denoted by f € R™.

Discrete Trajectory. The trajectory of a rigid body over the time interval [0, 7] is represented numerically using a set
of K + 1 equally spaced in time points denoted go.xx := {go, ..., gk }» Where g = g(kh) and h = T/K denotes the
time-step. The curve segment between each pair of points g and gy is interpolated by a short curve that must lie on
the manifold SF(3). The simplest way to construct such a curve is through the map 7 and a vector &, € se(3) such that
& = 7 1((gk) "'gr+1)/h. Such a discretization can be regarded as a discrete approximation of the continuous curve
according to
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A (rg+1 — i), fort € [kh, (k + 1)A].

Reduced Lagrangian. The dynamics will be derived using the reduced Lagrangian [5, 6,4] ¢ : G x g x TM — R
defined by
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where A : TQ — g is the mechanical connection defined by g='¢g = Q — A(r)7 and I : g — g* is the locked inertia
tensor. Regarding them as matrices they are computed according to
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using the adjoint notation A4; := Ad a5 ( and Jacobian J; := 90_1‘1 (r)0rgoi(r).
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Discrete Variational Principle. With a discrete trajectory and a Lagrangian in place we construct a structure-preserving
(i.e. group, momentum, and symplectic) integrator of the dynamics. This is accomplished by defining a discrete variational
principle through a trapezoidal quadrature approximation and, using the shorthand

lito = (1 — @)l(gr, e, 7k, ur) + l(grr1, Uk, "1, Uk), At = (1 — a)A(rg) + aA(rk41), 3)

results in the discrete equations of motion (see [4])
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where Qy, := Iy, and uy, 1= Oulyy | (pe— A ta k). The discrete Euler-Poincare equation (4) and the discrete reduced
Euler-Lagrange equation (5) are implicit equations in terms of the unknown momenta j;, and pg. In addition, once (4)-(5)
are solved the updated configurations are computed according to

The1 = Tk + hug, Ik+1 = gkT (W (e + (1 — @) A(rg) + aA(rg+1)) ug)) - (6)

Computed Example . Consider a robotic satellite equipped with a 3-dof manipulator

thruster plume  with two joints: 2-dof shoulder and 1-dof elbow. The general task is to compute a min-

% imum control effort trajectory reaching a desired state. The algorithm is implemented
Spacecraf\t‘

Target K
; and simulated as shown on left.
end
Motion Control. The reduced formulation enables a natural approach to motion con-

trol. Imagine that the free-floating manipulator must grasp a particular target in task-
space, or equivalently to move between two given zero-velocity states (go, 0, 79, 0) and
(9n,0,7n,0). The approximate solution shown above was computed by performing
nonlinear optimization of shape trajectories 7o.x and by reconstructing the full state
(9k+1, &k i1, ug) for each k using (6). The objective function includes the control
effort as well as a final cost pelanizing deviation from the given boundary conditions.

Motion optimization based on the mechanical connection is efficiently implemented using a stage-wise Newton
method [7] which has complexity linear in the number of discrete segments K. The algorithm requires first-order deriva-
tives of the equations of motion (4)-(6) and first and second-order derivatives of the given cost function.

manipulator
S

start, control

References
[1] E. Barth and B. Leimkuhler. Symplectic methods for conservative multibody systems. Fields Institute Communica-

tions, 10:25-43, 1993.

[2] Sigrid Leyendecker, Jerrold E. Marsden, and Michael Ortiz. Variational integrators for constrained dynamical sys-
tems. Zeitschrift fAijr Angewandte Mathematik und Mechanik, 88(9):677-708, 2008.

[3] E.R. Johnson and T.D Murphey. Scalable variational integrators for constrained mechanical systems in generalized
coordinates. IEEFE Transactions on Robotics, 25(6):1249 — 1261, 2009.

[4] Marin Kobilarov, Jerrold E. Marsden, and Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems
with symmetries. AIMS Journal on Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 3(1):61 — 84,
2010.

[S] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. Murray. Nonholonomic mechanical systems with symmetry.
Arch. Rational Mech. Anal., (136):21-99, 1996.

[6] James Ostrowski. Computing reduced equations for robotic systems with constraints and symmetries. /[EEE Trans-
actions on Robotics and Automation, pages 111-123, 1999.

[7] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.



