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Abstract— This paper is concerned with optimal trajectory
generation for robotic multi-body systems. The focus is on
discrete optimal control methods which operate intrinsically in
the state space system manifold and do not require coordinate
charts or projections. This is accomplished by defining both
the dynamics and the optimal control solution as sequences of
vector fields mapping to curves on the Lie group through re-
traction maps, and defining variations and differentiation with
respect to such vector fields. As a result, standard trajectory
optimization methods can be easily extended to the Lie group
setting without loss of efficiency. The methods are illustrated
with three numerical examples: a quadrotor, an aerial vehicle
with manipulators, and a simple nonholonomic system.

I. INTRODUCTION

This paper considers the optimal control of robotic vehi-
cles modeled as multi-body systems subject to holonomic
or nonholonomic constraints. Such systems are typically
described by their pose g and joint angles r, where g is
typically an element of the Euclidean motion group SEp2q or
SEp3q. The configuration space Q as well as the state space
X of such systems can be regarded as Lie groups which
enables the development of coordinate-invariant algorithms.
The paper adopts this point of view to develop practical
optimal control methods for any general Lie group with focus
on efficient implementation. Differential-geometric and Lie
group structure are naturally present in multi-body dynamics
simulation and a number of methods have been developed
to take advantage of it [1], [2], [3], [4]. On the other hand,
optimal control methods for Lie groups have been mostly
limited to theoretical developments seeking analytical solu-
tions e.g. by exploiting symmetries [5], [6] and reduction [7],
[8] with application mostly limited to single rigid bodies [9]
or specific systems. Several recent methods focusing on the
discrete [10], [11] and continuous [12] setting were aimed at
providing general numerical optimal control formulation for
any Lie group. This paper builds upon these works to provide
a practical optimal control approach leading to efficient
algorithms for general systems. In particular, we first specify
three general ways to formulate the dynamics intrinsically by
regarding Q and X as general Lie groups equipped with
retraction maps for evolving the system intrinsically. We
then specify differential Lie group operators which enable
the application of standard optimal control methods such as
sequential quadratic programming, stage-wise Newton, and
differential dynamic programming, to complex dynamics.
Finally, the developed algorithms are illustrated with three
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numerical examples: a quadrotor, an aerial robot with two
manipulator arms, and a car-like robot, which are performing
non-trivial optimized maneuvers.

II. THE LIE GROUP SETTING

The configuration space Q as a Lie group: The con-
figuration space of robotic multi-body systems is defined as
Q“GˆM , where G denotes the Euclidean group which is
G“SEp2q in the planar or G“SEp3q in the 3-D case, and
the vector space M ĂR` denotes the joint space assuming
there are ` joints. A given configuration q PQ denotes the
system posture, i.e. its overall pose as well as its shape.
Since Q is a direct product of a Lie group G and vector
space M then Q is a Lie group itself, also referred to as a
trivial fiber bundle (i.e. there is a fiber G attached at each
base point r PM ). The configuration space dimension is
denoted by m“dimpQq, where m“6` ` when G“SEp3q
or m“3` ` when G“SEp2q.

The fundamental property of Lie groups is that each
tangent vector on the manifold can be generated by trans-
lating a unique tangent vector at the identity using the
group operation. More formally, each vector 9q PTqQ at
configuration q PQ corresponds to a unique vector ξ PRm
through 9q“ qpξ where the “hat” operator p̈:RmÑq identifies
ξ with a Lie algebra element matrix pξ Pq. Here q denotes the
Lie algebra and ePQ denotes the group identity [13]. The
“vee” map p¨q_ :TeQÑRm is defined as the inverse of p̈, so
that p pξ q_“ ξ.

Nonholonomic Constraints and Reduced Velocities:
We consider multi-body systems that can be subject to
nonholonomic constraints, e.g. from rolling, sliding, or from
conservation laws. Assume that there are kăm constraints
specified by the vectors wipqq PRm through the equalities

wTi pqqξ“0, i“1, . . . , k,

which can be combined in matrix form using W pqq“
rw1pqq, ¨ ¨ ¨ , wkpqqs as W pqqT ξ“0. One can associate null
space basis vectors g1pqq, ..., gm´kpqq PRn such that

wipqq
T gjpqq“0,@i“1, . . . , k, j“1, . . . ,m´ k

or in matrix form, using Spqq“rg1pqq, ¨ ¨ ¨ , gm´kpqqs, as
WT pqqSpqq“0. The constraints can be directly satisfied by
replacing the body-fixed velocities ξ with reduced or pseudo-
velocities v PRm´k which satisfy ξ“Spqqv and hence the
configuration evolves according to

9q“ q rSpqqvsp.

Note that in the absence of velocity constraints we simply
have S“ I and ξ“v.



Continuous Equations of Motion: The continuous equa-
tions of motion describing the dynamics for robotic systems
(assuming G“SEp3q for generality) are then expressed as

9q“ q ¨ rSpqqvsp, : kinematics (1)
Mpqq 9v ` bpq, vq“Bpqqu, : dynamics (2)

where q“pg, rq PQ“SEp3q ˆ R` and v“pV, 9rq PR6``.
The group multiplication q1q2 and tangent operation q ¨pv are
defined, respectively, by

q1q2“pg1g2, r1 ` r2q, q ¨ pv“pgpV , 9rq,

with the hat operator p̈:R6``Ñ sep3q ˆ R` in this case is
pv“ppV , 9rq, where pV for a given V “pω, νq is defined by

pV “

„

pω ν
01̂ 3 0



, pω“

»

–

0 ´w3 w3

w3 0 ´w1

´w2 w1 0

fi

fl . (3)

For holonomic systems the mass matrix Mpqq, bias terms
bpq, vq and control matrix Bpqq employed in (1)–(2) are
computed using standard methods such as the articulated
composite body algorithm [14] or the more general spatial
operator theory [15]. With our coordinate choice the mass
matrix in fact only depends on r rather than q and for tree-
structured systems can be computed readily according to

M 1prq“

»

—

–

I0 `
n
ÿ

i“1

ATi IiAi
řn
i“1A

T
i IiJi

řn
i“1 J

T
i IiAi

řn
i“1 J

T
i IiJi

fi

ffi

fl

(4)

using the adjoint notation Ai :“Adg´1
0i prq

, and Jacobian
Ji :“

řn
j“1rg

´1
0i prqBrjg0iprqs

_,where g0iprq is the relative
transformation from the base body to body #i and Ii is the
inertia tensor of body #i [16]. In the nonholonomic case,
the terms are computed according to

Mpqq“ST pqqM 1pqqSpqq, Bpqq“ST pqqB1pqq,

bpq, vq“ST pqqM 1pqq 9Spqqv ` ST pqqb1pq, Spqqvq,
(5)

where M 1pqq, b1pq, vq, and B1pqq denote the mass matrix,
bias term, and control matrix, computed in the standard
unconstrained setting.

The state-space X as a Lie group: With these defi-
nitions, the state space of the system is denoted by X“
Qˆ Rm´k and its dimension is

dimpXq“2m´ k”n

The algorithms developed in this work perform optimization
over state trajectories x : r0, T sÑX . This motivates us to
regard X as an abstract n-dimensional Lie group to enable
a straightforward extension of existing optimal control algo-
rithms to X based on a set of general Lie group operations
that will be defined.

III. GEOMETRIC INTEGRATION ON LIE GROUPS

Let xPX denote the state of the system. When X is a
coordinate vector space the equations of motion have the
standard state-space form 9x“fpt, x, uq and can be integrated
numerically according to

xk`1“xk ` fk, (6)

where fk encodes the update of a one-step method (explicit
or implicit). For instance, the simplest Euler update gives
fk“hfptk, xk, ukq where h is the time-step. In contrast,
when X is a manifold, it is more convenient to define

9x“x ¨ fpt, x, uq, (7)

which can be regarded as generalized version of the equa-
tions of motion (1)–(2). The Lie algebra element fpt, x, uq P
TeX is interpreted as the “body-fixed” state velocity and
the product x f denotes the tangent group action of x on
f , which for our purposes is typically just a body-fixed to
spatial rotation. Since x is not a vector, an integrator such
as (6) is not directly applicable. Instead, the time-update
xkÑxx`1 is performed by evolving a geodesic motion on X,
i.e. as a curve with constant velocity which equals precisely
fk PTeX . In practice, the geodesic flow along fk is computed
either exactly or approximately using a retraction map

ϕ :RnÑX

which serves as an approximation of the standard exponential
map on X .

Geometric Lie group integrators [17], [18], [19] are special
integrators which often use the map ϕ to expresses changes
in the group in terms of elements in its Lie algebra. The well-
known exponential map was the first such map proposed
for integration purposes in [20]. Retaining the Lie group
structure and motion invariants under discretization has,
since then, been proven to be not only a nice mathematical
property, but also key to improved numerics, as they capture
the right dynamics (even in long-time integration) and exhibit
increased accuracy [21].

The resulting geometric integrator can be generally ex-
pressed as

xk`1“xk ϕpfkq, (8)

where fk can be constructed either explicitly from xk, uk or
could also be an implicit function of xk`1 as well. Examples
of each case will be provided in §IV.

Retraction Maps: In this work we will employ two
types of retractions, the exponential map and the Cayley
map. While these maps apply to a large class of Lie groups
(see [10] for general definitions), for our purposes we will be
concerned with retractions for the Lie groups Q“GˆR` and
X“GˆRn´d, where d“dimpGq. To construct ϕ :RmÑQ
and ϕ :RnÑX .

The exponential map for Euclidean groups is stan-
dard [22], hence we focus on the Cayley map cay :RmÑG
defined by

caypV q“
´

I ´ pV {2
¯´1 ´

I ` pV {2
¯

.



For a given state state x“pg, r, vq PX and algebra element
η“pV,∆r,∆vq PRn the retraction is defined by

xϕpηq”pg caypV q, r `∆r, v `∆vq .

In particular, for G“SEp3q the Cayley map cay :R6Ñ

SEp3q (see [10]) is

caypω, νq“

«

I3`
4

4`}ω}2

´

pω` pω2

2

¯

2
4̀ }ω}2 p2I3`pωq ν

0 1

ff

. (9)

while its inverse cay´1 :SEp3qÑR6 is defined for a given
g“pR, pq, with R‰´I , by

cay´1pgq“

„

r´2pI `Rq´1pI ´Rqs_

pI `Rq´1p



. (10)

IV. DISCRETE EQUATIONS OF MOTION

We consider three general ways for discretizing the equa-
tions of motion for numerical optimal control purposes.

Semi-implicit First-order Integrator: One of the sim-
plest first-order geometric integration methods is obtained
through an Euler discretization of the dynamics:

qk`1“ qkϕ phSpqkqvk`1qq , (11)

Mpqkq
vk`1 ´ vk

h
` bpqk, vkq“Bpqkquk, . (12)

This method is implicit since one first updates the velocity
using the dynamics (12) and then updates the configuration
using the kinematics (11). The method is not recommended
for highly nonlinear systems or for systems that are naturally
unstable.

Implicit Second-order Integrator: An integrator with
improved numerical stability can be obtained through a
symmetric trapezoidal discretization of the dynamics and
takes the form

qk`1“ qkϕ

ˆ

h

2
rSpqkq ` Spqk`1qs vk`1

˙

, (13)

Mpqkq
vk`1 ´ vk

h
`

1

2
rbpqk, vkq ` bpqk, vk`1qs“Bpqkquk.

(14)

The method is implicit and requires a gradient-based algo-
rithm during integration. The basic requirement is that the
gradient of the equality constraint (14) with respect to vk`1

is invertible. This condition can be satisfied through a proper
choice of the time-step h assuming that the matrix Mpqkq is
full rank. For further discussion see e.g. [23].

Implicit Second-order Integrator with variable step-
size: Finally, it is possible to gain significant computational
efficiency by employing variable time steps, i.e. by taking
larger h during steady-state motions and smaller h during
maneuvering. This can be accomplished by modifying the
equations (11)– (12) according to

qk`1“ qkϕ

ˆ

hk`1

2
rSpqkq ` Spqk`1qs vk`1

˙

(15)

Mpqkqrvk`1´vks`
1

2
rhkbpqk, vkq`hk`1bpqk, vk`1qs

“hk` 1
2
Bpqkquk,

(16)

where

hk`1“ tk`1 ´ tk, hk` 1
2
“
hk ` hk`1

2
.

V. VARIATIONS OF FUNCTIONS ON LIE GROUPS

Developing optimal control algorithms on the Lie group X
is based on taking variations δxPTxX along a given trajec-
tory. In our setting the elements δx cannot be represented as
vectors and cannot be directly handled by standard numerical
methods. We will instead employ left-trivialized variations

sδx“px´1δxq_ PRn

which have a minimal vector representation. Furthermore,
the numerical solution to our optimal control problem will
be performed through directional (or Lie) derivative along
such reduced variations.

Definition 5.1: The left-trivialized gradient s∇xfpxq P
Rmˆn of a function f :XÑRm, where X is an n-
dimensional Lie group equipped with a retraction map ϕ :
RnÑX , is defined by

s∇xfpxq“∇ξ

ˇ

ˇ

ˇ

ξ“0
fpxϕpξqq

or in coordinates using the standard basis te1, . . . , enu of Rn
by

s∇xfpxq“

„

Bf

Bs

ˇ

ˇ

ˇ

s“0
pxϕpse1qq, ¨ ¨ ¨ ,

Bf

Bs

ˇ

ˇ

ˇ

s“0
pxϕpsenqq

T

.

The Taylor series expansion of scalar-valued function Lpxq
can now be written compactly according to

L pxϕpdqq“Lpxq ` s∇LpxqT d` 1

2
dT s∇2Lpxqd` op}d}2q,

where the Hessian s∇2L is computed by applying the trivial-
ized gradient twice which provides sufficient accuracy for ob-
taining quadratic convergence in Newton-type methods [24],
[22]. Note that this is only one among several ways to com-
pute second-order terms and corresponds to the ’0’-Cartan-
Shouten connection (connection defining zero-acceleration
geodesics on manifolds). A more detailed discussion of the
geometric importance of this choice is given in [12] in the
context of continuous trajectory optimization on Lie groups.

Definition 5.2: The Jacobian dϕ :RnÑRnˆn of a retrac-
tion map ϕ :RnÑX is such that, for any ξ, η PRn,

rdϕpξq ¨ ηsp“Dξϕpξq ¨ pη ¨ ϕp´ξq,

or in coordinates

dϕpξq“
„ˆ

Bϕ

Bξ1
pξq ¨ ϕp´ξq

˙_

, ¨ ¨ ¨ ,

ˆ

Bϕ

Bξn
pξq̈ϕp´ξq

˙_

.

In particular for the case x“pg, r, vq where g PSEp3q is
updated using the Cayley map we have

dϕpV,∆r,∆vq“

»

–

dcaypV q
I

I

fi

fl ,



where I denotes the identity map. The Cayley tangents for
a given V “pω, νq PR6 have the simple form [10]

dcaypω, νq“

«

2
4`}ω}2 p2I3`pωq 03

1
4`}ω}2 pνp2I3`pωq I3`

1
4̀ }ω}2 p2pω`pω2q

ff

. (17)

It can be shown that the Jacobian is invertible with inverse

dcay´1
pω, νq“

„

I3 ´
1
2 pω `

1
4ωω

T 03
´ 1

2

`

I3 ´
1
2 pω

˘

pν I3 ´
1
2 pω



. (18)

These Jacobians will be used in the linearization of the
dynamics required for trajectory optimization.

VI. DISCRETE OPTIMAL CONTROL

The general problem is formulated in terms of dis-
crete trajectories x0:N fi tx0, ..., xNu and controls u0:N´1fi

tu0, ..., uN´1u as:

minimize Jpx0:N , u0:N´1q“

N´1
ÿ

k“0

Lkpxk, ukq ` LN pxN q,

subject to: Fkpxk`1, xk, ukq“0, k“0, . . . , N´1,

Gkpxk, ukqď0, GN pxN qď0, k“0, . . . , N´1,

where Lk are stage-wise costs and LN is the terminal
cost. The function Fk encodes the discrete dynamics and
Gk encodes any additional constraints including control
bounds and path constraints. In particular, the function Fk
could encode any numerical one-step scheme defined as a
Lie group update of the form xk`1“xkϕpfkpxk, ukqq. For
instance, in the semi-implicit case (11)-(12) we have

fkpx, uq“h

„

Spqqpv ` haq
a



, where

a“Mpqq´1 r´bpq, vq `Bpqqus ,

while in the fully implicit case it will encode an iterative
gradient-based solution.

Linearization

The variational solution of the problem will required lin-
earization of the dynamics based on the differential calculus
developed in §V. It is possible to perform linearization
numerically through the dynamics xk`1“xk ϕpfkpxk, ukqq
where the function fk might or might not be available
analytically. Such a black-box linearization takes the form

sδxk`1“Ak ¨ sδxk `Bk ¨ δu,

with state and control matrices Ak and Bk are defined by

Ak“Adϕp´fkq`dϕp´fkq¨s∇xfk, Bk“dϕp´fkq¨∇ufk.

The derivatives of f can be computed analytically or numer-
ically. When dealing with an implicit formulation directly
the linearization is given by

Ak“p sD1Fkq
´1p sD2Fkq, Bk“p sD1Fkq

´1pD3Fkq, (19)

where sD1F px, y, zq” s∇xF .

VII. NUMERICAL SOLUTION METHODS

We distinguish two types of numerical methods for solving
the optimal control problems. The first is based on standard
nonlinear programming with a specific implementation to
take advantage of problem sparsity. The second is based on
recursive or stage-wise second-order approach exploiting the
iterative nature of the dynamical constraints. The key point in
both methods is to perform the optimization through reduced
variations (expressed as Lie algebra vectors sδxPRn) rather
than directly optimizing the states xPX , e.g. using a single
coordinate chart fixed a-priori.

Sparse Nonlinear Programming

Denote the optimization parameter by y“
px1:N , u0:N´1q PX

N ˆ RNc and its variation by
sδy“psδx1:N , δu0:N´1q PRNpn`cq. The dynamics constraints
are encoded through the equality

F pyq“

»

—

–

F0px1, x0, u0q
...

FN´1pxN , xN´1, uN´1q

fi

ffi

fl

“0,

while all inequality constraints are similarly combined in
a function Gpyqă0. Nonlinear programming problems are
typically formulated by adjoining the constraint to the cost
Jpyq using the Lagrangian

Lpy, λq“Jpyq ´ λTCpyq ´ µTGpyq (20)

and solving the quadratic programming subproblem:

min
sδy

s∇JpyqT sδy ` 1

2
sδyT s∇yyLpy, λqsδy,

subject to: Cpyq ` s∇CpyqT sδy“0,

Gpyq ` s∇GpyqT sδyě0,

(21)

iteratively by computing the direction sδy which is then used
to update the next iterate y1 either according to x1k“x

1
k ϕp

sδxq
or using the updated controls u10:N´1 to update x10:N using
the nonlinear dynamics.

Stage-wise Newton and Differential Dynamic Programming

Instead of formulating an Npn ` cq-dimensional mono-
lithic program such as (21) it is possible to explicitly factor
out the trajectory constraints in a recursive manner and solve
N smaller problems of dimension n` c. Stage-wise Newton
(SN) method [26] and differential dynamic programming
(DDP) [27], [28] are the two standard methods for this
purpose. The pure SN method [26] sequentially optimizes a
second-order model of the Hamiltonian Hkpxk, uk, λk`1q“

Lkpxk, ukq ` λ
T
k`1fkpxk, ukq while DDP sequentially opti-

mizes a local model of the Hamilton-Jacobi-Bellman value
function Vkpxk, ukq defined recursively by

V ˚k pxkq“ min
ukPtu|Gkpxk,uqď0u

!

V ˚k`1pxkϕpfkpxk, ukqqq̀ Lkpxk, ukq
loooooooooooooooooooooomoooooooooooooooooooooon

Vkpxk,ukq

)

.



At each iteration, such sweep methods adjust the control
according to u1k“uk ` δuk with

δuk“´ pRk`B
T
k Pk`1Bkq

´1

¨ ppMk`B
T
k PkAkq

sδxk`∇uLk`B
T
k λkq,

where the matrix Pk and multiplier λk are defined recur-
sively, starting with PN “QN and λN “ s∇xLN , by

Pk“A
T
k Pk`1Ak `Qk ´ pB

T
k Pk`1Ak `Mkq

T

¨ pRk `B
T
k Pk`1Bkq

´1pBTk Pk`1Ak `Mkq,

λk“s∇xLk `A
T
k λk`1 ´A

T
k Pk`1Bk

¨ pRk `B
T
k Pk`1Bkq

´1p∇uLk `B
T
k λk`1q,

with variations sδxk“ϕ´1px´1
k x1kq where the new state x1k is

updated using the dynamics x1k“x
1
i´1ϕpfk´1px

1
i´1, u

1
i´1qq.

The terms Qk, Rk,Mk form the Hessian, i.e. for stage-wise
Newton we have Qkfi s∇2

xH , Rkfi∇2
uH , Mkfi∇u

s∇xH
and for DDP the term Hk is replaced by Vk. In particular,
to guarantee local quadratic convergence it is required that
Rk `B

T
k Pk`1Bką0. Standard regularization and step-size

selection (e.g. using Armijo rule) are applied to ensure that
the resulting controls u10:N´1 yield a sufficient decrease in
the cost.

In summary, the components necessary to apply stage-
wise methods to systems on Lie groups are: 1) left-trivialized
gradients ∇̄, 2) linearization which includes the retraction
Jacobians dϕ, 3) the retraction and its inverse during sweep
method updates.

The Gauss-Newton case: Convergence conditions are
greatly relaxed when the stage-wise costs Lk are in a separa-
ble least-squares form Lkpx, uq“

1
2

`

}qkpxq}
2 ` }rkpuq}

2
˘

,
where qkpxq and rkpuq are given nonlinear functions such
that Qkfi s∇qTk s∇qkě0 (positive semidefinite) and Rkfi
∇rTk∇rką0 (positive definite). Using these matrices instead
of the complete second order terms corresponds to a Gauss-
Newton (GN) approximation to the optimal solution and
reduces the computation to a standard time-varying LQR Ri-
catti iteration, which converges under standard controllability
conditions.

The Gauss-Newton approach is a common approximation,
and has been previously suggested under the name iterative
LQR (iLQR) by [29] with evidence that efficiency can be
gained while still computing accurate solutions. Iterative
LQR methods have since been applied to general trajectory
optimization methods for complex systems such as humanoid
robots interacting with a physical world [30]. In a similar
context, DDP methods have also been applied to stochastic
control problems in robotics [31], [32], [33]. Note that iLQR
is appropriate only when the cost is based on residuals that
can be truly minimized to small values, otherwise second-
order convergence would be lost.

The state-deviation cost: Many practical problems in-
volve computing costs penalizing deviation from a desired
state or desired reference path. For instance, assume that the
terminal cost is designed to achieve a desired state xf . It can

be generally defined by

LN pxq“
1

2
}ϕ´1px´1

f xq}2Qf
,

where xf is a desired final state and Qf ě0 is a given matrix.
The gradient is computed according to

s∇xLN pxq“pdϕ´1p´∆qqTQf∆ (22)

where ∆fiϕ´1px´1
f xq while the Gauss-Newton approxima-

tion to the Hessian takes the form

s∇2
xLN pxq«QN fi pdϕ´1p´∆qqTQfdϕ´1p´∆q. (23)

Quadratic control constraints: An important part of
the optimal control formulation are control constraints. In
addition to linear box bounds, quadratic bounds of the form

Gkpx, uq“u
TCku´ 1ď0, (24)

for a given matrix Cką0 are straightforward to handle.
When an update u1“u ` δu violates the constraint, one
simply sets u1“u ` βδu instead, where β is the solution
of the quadratic equation

β2δuTCkδu` 2βδuTCku` u
TCku´ 1“0

that corresponds to the intersection of u ` βδu and the
ellipsoid (24).

VIII. NUMERICAL EXAMPLES

The optimal control methods are applied to three systems,
a quadrotor, a car-like robot, and an aerial vehicle with two
manipulator arms.

x0

xg
x0

xg

zero-velocity state

90o pitch

vertical motion

Fig. 1. Optimized quadrotor trajectories: a 10 meter long trajectory (left),
and a vertical motion ending at 90o pitch (right).

Quadrotor: It is useful to illustrate the method with
the simple case of a single-rigid body system, i.e. Q“
G“SEp3q, such as a quadrotor (Figure (1)). The body is
described by its rotation R, position p, body-fixed angular
velocity ω and linear velocity ν. The state x“pq, vq consists
of configuration and velocity given, respectively, by

q”g“

„

R p
01̂ 3 1



, v”V “pω, vq.



There are no velocity constraints so trivially S“ I6 and the
dynamics is defined using the standard terms:

Mpqq“

„

J 0
0 mI3



, bpq, vq“

„

ω ˆ Jω
mω ˆ ν



,

Bpqq“

»

—

—

—

—

—

—

–

0 ´lkt 0 lkt
´lkt 0 lkt 0
km ´km km ´km
0 0 0 0
0 0 0 0
kt kt kt kt

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where J denotes the inertia tensor and m is the mass,
and kt, km, l are constants. There are four control inputs
corresponding to the squared magnitude of propeller rotor
speeds. For given x“pq, vq and η“pV, aq, the retraction is

xϕpηq“pqcaypV q, v ` aq ,

while its inverse becomes

ϕ´1px´1
1 x2q“

`

cay´1pq´1
1 q2q, v2 ´ v1

˘

.

The cost function is constructed using

Lkpx, uq“
1

2
vTQvv `

1

2
uTRuu,

LN pxq“
1

2
}ϕ´1px´1

f xq}2Qf
,

Gkpx, uq“u´ umax,

where Qvě0 is a constant matrix penalizing high veloc-
ity, Ruą0 is a constant matrix penalizing control, Qf “
diagpQqf , Qvf qě0 is a constant matrix penalizing deviation
from a desired final state xf “pqf , vf q. The inequality con-
straint encode control bounds.

To implement either SQP, SN, or DDP the state gradi-
ents (22) and (23) are computed according to

s∇xLkpx, uq“

„

0
Qvv



, s∇2
xLkpx, uq“diagp0, Qvq,

s∇xLN pxq“

„

pdcay´1p´∆qqq
TQqf ∆q

Qvf pvN´vf q



,

s∇2
xLN pxq«

„

pdcay´1p´∆qqq
TQqf dcay´1p´∆qq 0
0 Qvf



,

where ∆qfi cay´1pq´1
f qq with the Cayley map and its

derivatives given by (9), (10), (18).
Airbot: Motivated by recent progress in aerial robotics

we consider trajectory generation of an articulated fly-
ing mechanisms capable of performing aerial manipulation
tasks [34], [35], [36], [37], [38]. The vehicle is termed
“airbot” in the comparison table. It is modeled using the
holonomic multi-body model with inertia matrix computed
according to (4). The aerial robot shown in Figure 2 has
three pairs of propellers fixed onto three spokes at 120
degrees. Two three-link manipulators are suspended from
the vehicle and can extend forward and sideways. Such an
arrangement enables the manipulator tips to extend beyond
the vehicle perimeter which enables interesting reaching and
grabbing maneuvers. The setup is similar to the quadrotor
with additional cost terms achieving desired joint angles. No
contact forces were simulated.

x0

xg

x0

xg

dynamically grab object

90o pitch

turn upside-down
and grab object

hex-rotor with manipulators

Fig. 2. Optimized aerial manipulating robot trajectories.

x0

xg

x0

xg

Fig. 3. Optimized car trajectories: a 10 meter long trajectory (left), and a
parallel motion maneuver (right).

Simple car: Consider a simple planar second-order
model with Q“SEp2q ˆ R1 and configuration q“pg, φq
where g PSEp2q is the pose and φ denotes the steering angle.
A basic rear-wheel-drive no-sideslip wheeled vehicle model
is obtained using the velocities v“pν, 9φq where ν is the
forward body-fixed velocity and φ is the steering rate using

Spqq“

»

—

—

–

1 0
0 0

tanφ{` 0
0 1

fi

ffi

ffi

fl

,

where ` is the distance between the front and rear wheel
axles. While the real system could have very complicated
dynamics it is common for control purposes to either ignore
the dynamics [39], [40] or use the simple dynamic extension

9ν“u1, 9φ“u2.

For the purpose of illustrating optimal control algorithms we
employ such simplified dynamics. Similar cost function to
the quadrotor model was used with bounds on the controls.

The following table summarizes the required computa-
tional times per iteration, number of iterations til reasonable
convergence, and the number of time-steps N employed. The
quadrotor and car model have the ability to run in real time
and converge in less than a few milliseconds. The multi-body
system model requires finer resolution since it has unstable
dynamics and currently requires a few seconds to converge.

System CPU time / iter. total iter. time-steps N
Quadrotor 500 us 20 64
Airbot 159 ms 50 256
Car 89 us 20 64

IX. CONCLUSIONS

This paper developed optimal control methods for systems
evolving on Lie groups. By specifying general Lie differen-



tial operations it was possible to apply existing methods such
as stage-wise Newton and differential dynamic programming
intrinsically on the Lie group manifold. Several examples
illustrate the algorithm operation and its computational effi-
ciency.
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