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Abstract— The paper studies gyroscopic obstacle avoidance
for autonomous vehicles. The goal is to obtain a simple
controller that steers around obstacles and stabilizes to a desired
state. The approach is applicable under the assumption that the
obstacles are convex and that the control inputs can generate
the required steering forces. This work extends the existing
gyroscopic obstacle avoidance methodology to a 3-D workspace,
provides a basic analysis, and studies two types of simulated
vehicles: fleet of satellites and a quadcopter.

I. INTRODUCTION

This work considers obstacle avoidance for robotic vehi-
cles navigating through a 3-D obstacle workspace. We em-
ploy gyroscopic obstacle avoidance combined with standard
stabilization control laws to handle unexpected obstacles
during trajectory execution. Our approach is motivated by
the fact that gyroscopic forcing has desirable convergence
properties under certain conditions. In particular, the system
is guaranteed to avoid collisions and reach the goal as long
as the obstacle is convex and its controls are not saturated.

Obstacle avoidance is of key importance in robotics and
has a long history (see [1] and [2] for an overview). Core
methodologies include potential fields [3] and artificial nav-
igation functions [4]. Potential fields are easy to implement
and typically work well in simple problems but generally
suffer from getting stuck in a local minima and might require
careful tuning to guarantee that the vehicle reaches a goal.
While navigation function overcome these limitations by pro-
viding globally-defined convergent feedback laws, they are
generally computationally expensive to construct especially
when dealing with complicated high-dimensional obstacle
geometries. Unlike navigation functions, the dynamic win-
dow [5] is a local approach based on approximating the
reachable space locally with a set of collision-free trajec-
tories. Gyroscopic avoidance [6], employed in this work, is
another strategy based on steering away from obstacles with-
out injecting additional energy (e.g. from repulsive potential
forces) into the system. By designing the system to have
minimum energy at a given goal state, the system will then
reach that state even in presense of obstacles. One of the
limitation is that these guarantees applies only to convex
obstacles. Yet, such an approach can be extremely useful in
scenarios requiring fast reactive response during e.g. high-
speed navigation with pop-up obstacles or formation flying.

Gyroscopic avoidance is one of the simplest steering
strategies applicable to one or multiple vehicles [6], [7] that
operate in a configuration space with convex obstacles. It
is typically used to locally avoid an obstacle and arrive at

a nearby goal state. The most common situation is when
encountering unexpected obstacles while tracking a planned
reference trajectory. Such type of steering for instance was
employed in [8] for closed-loop control along a reference
trajectory computed using other means such as differential
flatness. In addition, related steering laws give rise to inter-
esting boundary following and pattern formation behaviors
in the context of interacting particles [9].

The main contribution of this work is to extend gyroscopic
avoidance to vehicles modeled as fully or under-actuated
rigid bodies operating in 3-D workspaces and to report on
numerical studies using two non-trivial robotic models.

II. PROBLEM FORMULATION

The robot is modeled as a single rigid body with position
x � px, y, zq P R3 and orientation matrix R P SOp3q. The
body-fixed angular velocity is denoted by ω P R3. The vehi-
cle has mass m and principal moments of rotational inertia
Jx, Jy, Jz forming the inertia tensor J � diagpJx, Jy, Jzq.
The state space of the vehicle is S � SEp3q � R6 with
s � ppR,xq, pω, 9xqq P S denoting the whole state of the
system.

The vehicle is actuated with control inputs u P U where
U � Rc is a bounded set. The functions τ : S � U Ñ R3

and f : S � U Ñ R3 map from these control inputs to the
resulting torques and forces acting on the body, respectively.
The external forces and torques are denoted by the functions
τext : S Ñ R3 and fext : S Ñ R3, respectively.

The equations of motion are

9R � Rpω, (1)
J 9ω � Jω � ω � τextpsq � τ ps,uq, (2)
m:x � fextpsq � fps,uq, (3)

where the map p� : R3 Ñ sop3q is defined by

pω �

�� 0 �ωz ωy
ωz 0 �ωx
�ωy ωx 0

�� . (4)

Obstacle constraints require that the vehicle must not
collide with obstacles denoted by O1, ...,Ono � R3. Assume
that the vehicle is occupying a region ApR,xq � R3, and let
proxpA1,A2q be the Euclidean distance between two sets
A1,2 that is negative in the case of intersection. Obstacle
avoidance requires that

min
i

prox pApR,xq,Oiq ¡ 0. (5)



We use a standard collision checking algorithm implemented
by Proximity Query Package (PQP) [10] to compute prox.

III. GYROSCOPIC OBSTACLE AVOIDANCE

The goal of gyroscopic steering is to modify the dynamical
system so that obstacles are avoided without violating its
stability properties. This is accomplished by adding a gyro-
scopic force term, i.e. that does not inject energy into the
system. Our development in this context can be regarded as
an extension of [6] to 3-D workspaces and to vehicles with
more realistic dynamics.

Assume that while executing a reference trajectory xr :
r0, T s Ñ R3 at time t   T the vehicle encounters an
unexpected obstacle blocking its path. Obstacle avoidance
is performed by first assigning a new desired position state
pxd, 9xdq, for instance xd � xrptgq for some t   tg ¤ T
and then steering away from the obstacle and towards xd.
This is accomplished by defining the error term

∆x � x� xd

and the control law

fd � �kx∆x� kv∆ 9x� fext � Γpsq 9x, (6)

where kx, kv ¡ 0 and Γpsq is a skew-symmetric map, i.e.
such that Γ � �ΓT .

Let dpR,xq ¡ 0 and npR,xq P R3 denote the distance
and the unit vector to the detected obstacle, respectively,
computed by the prox function. We then set

Γpsq �
kgvmax

dpR,xq
pc, (7)

for some fixed kg, vmax ¡ 0, and c P R3 is computed
according to

c �

#
0 if |β| ¥ π{2,
c1

}c1} if |β|   π{2,

c1 �
n� 9x

} 9x}
,

β � sgnparcsin }c1}q arccos
nT 9x

} 9x}
.

(8)

Here β P r�π, πs is angle between direction of collision and
direction of motion, and c plays the role of an axis around
which the velocity vector 9x rotates to avoid the obstacle.

Gyroscopic avoidance modifies the dynamics but retains
the stability properties of the system. To show that the desired
state pxd, 9xdq can be reached define the function

V �
1

2
kx}∆x}

2 �
1

2
m}∆ 9x}2 ¥ 0. (9)

Taking its derivative and substituting the dynamics (3) and
the control law (6) we obtain

9V � kx∆xT∆ 9x� ∆ 9xT pfd � fextq (10)

� �kv}∆ 9x}2 � 9xTd Γpsq 9x. (11)

If 9xd is selected so that

9xTd Γpsq 9x ¥ 0 (12)

then 9V ¤ 0 and by LaSalle’s invariance theorem the goal is
asymptotically stable. The simplest way to guarantee that
is to set 9xd � 0 whenever obstacle-avoidance is active,
i.e. when Γpsq � 0. This is equivalent to “breaking”
during obstacle avoidance. More generally, satisfying (12)
corresponds making sure that the desired velocity 9xd is
aligned with the avoidance term Γpsq 9x.

IV. FULLY-ACTUATED SYSTEMS

Consider a class of system for which the control inputs
have the form�

τ ps,uq
fps,uq

�
�

�
1 0
0 R

�
Bu,

where B is a constant matrix such that rankpBq � 6 and
tBu | u P Uu � R6 is an open set containing the origin.

In this fully-actuated case the system can stabilize to any
state specified by both position and attitude, i.e. pxd, Rdq :
r0, T s Ñ R3 � SOp3q as long as the required control
inputs are not saturated. It is easy to show that this can be
accomplished by setting the controls to

u � pBTBq�1BT
�

τd
RTfd

�
, (13)

where fd is defined in (6) and τd is a standard attitude
tracking control law. For instance, following [11] such a
control law is obtained by

τd �� skewpKR∆Rqq�Kωpω � ∆RTωdq

� ω � Jp∆RTωdq � Jp∆RT 9ωdq,
(14)

where ∆R :� RTdR, skewpAq :� pA�AT q, the operator q�
is the inverse of p� defined in (4), and KR,Kω are positive
definite matrices.

The complete algorithms is summarized below:

Algorithm 1: u � Stabilize pxd, 9xd, Rd,ωdq

current state: s � px, 9x, R,ωq
parameters: gains kx, kv,KR,Kω, kg

1 fd � �kx∆x� kv∆ 9x� fextpsq � Γpsq 9x
2 τd � � skewpKR∆Rqq�Kωpω � ∆RTωdq � ω �
Jp∆RTωdq � Jp∆RT 9ωdq,

3 u � pBTBq�1BT
�

τd
RTfd

�
,

4 return control inputs u

V. UNDER-ACTUATED SYSTEMS

We next consider a class of mechanical systems modeled
as underactuated rigid bodies. Assume that the system has
four control inputs u � pu1, ..., u4q that result in torques τ
around all three axis but only a single translational force,
denoted by u P R, along a constant body-fixed direction
e P R3. Typical applications include control of aerial or
surface vehicles. The control functions are such that u is in
an 1-1 relationship with the torques τ and forces f � Reu.
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Fig. 1. Vehicle models studied.

Tracking and stabilization for an underactuated rigid body
is a nontrivial problem. Only a subset of the degrees of
freedom can be freely specified. It has been shown that
controlling the position and the angle around the translation
force input axis e can be accomplished using feedback
linearization and backstepping [12], [13], [14]. We follow
such an approach but focus on position stabilization control
only since controlling orientation around e does not affect the
obstacle avoidance control design. The complete avoidance
and position stabilization algorithm is given below, with
details of the derivation included in Appendix .

Algorithm 2: pu, τ q � Stabilize pxd, 9xd, hq

current state: s � px, 9x, R,ωq
auxiliary state: variables pfd, c, u, 9uq
parameters: gains kx, kv, kη, kζ , kg

1 f 1
d � �kx∆x� kv∆ 9x� fextpsq � Γpsq 9x

2 9fd � pf 1
d � fdq{h

3 fd � f
1
d

4 η � Reu� fd
5 c1 � RT p�kηη � 9fd � ∆ 9xq
6 9c � pc1 � cq{h
7 c � c1

8 ζ � ω � eu� e 9u� c
9 d � �kζζ �RTη � ω � e 9u� 9c

10 τ � Jpe� d{uq � Jω � ω � τextpsq
11 :u � eTd
12 9u � 9u� h:u
13 u � u� h 9u
14 return control inputs pu, τ q

Lines (1)– (3) compute the desired force fd and approx-
imate its derivative as the difference between the newly
computed value f 1

d and the previously recorded value fd.
Lines (5)– (7) update c and 9c in a similar fashion. After
the torques τ and control derivatives :u are computed on
lines (10) and (11), respectively, the actual control u is
integrated discretely on lines (12) and (13).

Fig. 2. A conceptual nanosatellite with ten thrusters avoiding a spherical
obstacles and stabilizing at the origin.

VI. APPLICATIONS

A. Satellite reconfiguration

Consider a satellite equipped with ten thrusters illustrated
in Fig 1. The thruster allocation matrix is defined by

B �

��������
0 �h 0 h h 0 �h 0 0 0
h 0 �h 0 0 h 0 �h 0 0
a a a a �a �a �a �a 0 0
�1 0 1 0 0 1 0 �1 0 0
0 �1 0 1 �1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 �1

�������� ,

where a ¡ 0 and h ¡ 0 are the lateral and vertical offsets
of each of the side thrusters. A standard approximation of
external forces is

fextpsq � m

�� 2ωc 9z
�ω2

cy
�2ωc 9x� 3ω2

cz

�� ,
with constant ωc ¡ 0 denoting the circular orbit angular rate.
Given the time-scale considered for this simulation the effect
of such forces is negligible.

Figure 2 shows an example scenario requiring the satellite
to avoid a large obstacle to stabilize at the origin. Unlike the
quadrotor system the fully-actuated satellite exhibited good
performance in a variety of scenarios and initial conditions.

The stabilization of a group of seven satellites performing
a simulated segmented mirror assembly task is considered
next. The goal is to reconfigure from a free-flying mode
to a latched configuration without incurring any collisions.
Figure (3) shows a few snapshots of the scenario. The
algorithm exhibited good behavior and no collision happened
before the final latching.
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Fig. 3. Reconfiguration of a fleet of spacecraft forming a segmented mirror.
Each vehicle employs gyroscopic obstacle avoidance to avoid collisions with
other spacecraft and arriving stably at its latching configuration.

B. Aerial Vehicle

Consider an aerial vehicle such as a quadrotor actuated
with four rotors. Typically the control functions are expressed
according to

τ ps,uq �

�� lktpu
2
4 � u22q

lktpu
2
3 � u21q

kmpu
2
1 � u22 � u23 � u24q

�� , (15)

fps,uq � R

�� 0
0

ktpu
2
1 � u22 � u23 � u24q

�� , (16)

where u1, .., u4 are the rotor speeds used as inputs and
l, kt, km are constants. In terms of the notation employed
in §V we have

u � ktpu
2
1 � u22 � u23 � u24q.

The external force is fext � p0, 0,�9.81mq. Figure 4 shows
an example scenario in which the quadcopter detects an
obstacle when approaching within one meter and applies
gyroscopic avoidance. The vehicle can safely avoid the
cylinder by bending its path just enough to avoid the obstacle
at low speeds. Short oscillatory behavior was observed while
passing the obstacle most likely due to on-off triggering of
obstacle avoidance.

VII. CONCLUSION

This paper studied obstacle avoidance for vehicles oper-
ating in 3-D workspaces. Our focus was on steering control
laws based on gyroscopic forcing which do not alter the
stability properties of the closed-loop system. Our study
indicates that such steering laws lead to natural behaviors and
good performance in both fully and underactuated systems.

cylindrical obstacle

goal state xg

start state

Fig. 4. Gyroscopic avoidance with a quadrotor that suddenly detects and
avoids an obstacle and stabilizes at the goal position xg .

The main challenges that still need to be addressed lie in
incorporating control bounds. This is a critical but non-trivial
problem since due to non-trivial dynamics the exact collision
states currently cannot be computed in closed-form. Studying
control bounds and their effect on avoidance guarantees, as
well as incorporating sensing constraints would be topics for
future work.

APPENDIX

The controller is constructed through backstepping and
satisfying nonlinear stability conditions at each step. Using
the notation

∆x :� x� xd.

define the Lyapunov function, for some kx, kv ¡ 0,

V0 �
1

2
kx}∆x}

2 �
1

2
m}∆ 9xd}

2 ¥ 0. (17)



Differentiating and substituting the dynamics (3) gives

9V0 � kxp∆xq
T∆ 9x� p∆ 9xqT pfextpsq �Reu�m:xdq

(18)

Defining the desired force fd by

fd � m:xd � kx∆x� kv∆ 9x� fextpsq � Γpsq 9x, (19)

the relationship (18) is equivalent to

9V0 � �kv}∆ 9x}2 � p∆ 9xqT pReu� fd � Γpsq 9xq. (20)

We assume that 9xd is chosen so that 9xTd Γpsq 9x ¥ 0. Let
η � Reu� fd and define the Lyapunov function

V1 � V0 �
1

2
}η}2 ¥ 0. (21)

Under the assumption that the following holds, for some
kη ¡ 0,

9η � �kηη � ∆ 9x, (22)

V1 would be a proper Lyapunov function since

9V1 � 9V0 � η
T p�kηη � ∆ 9xq � �kv}∆ 9x}2 � kη}η}

2 ¤ 0.
(23)

Using (1) the relationship (22) is equivalent to requiring that

ω � eu� e 9u � c, (24)

where c P R3 is defined by

c � RT p�kηη � 9fd � ∆ 9xq. (25)

Let ζ � ω� eu� e 9u� c and define the Lyapunov function

V2 � V1 �
1

2
}ζ}2 ¥ 0. (26)

Assuming that the following holds, for some kζ ¡ 0,

9ζ � �kζζ �RTη, (27)

then V2 would be a Lyapunov function since
9V2 � 9V1 � η

TRζ � ζT 9ζ

� �kv}∆ 9x}2 � kη}η}
2 � kζ}ζ}

2 ¤ 0.
(28)

The relationship (27) is equivalent to the condition

9ω � eu� e:u � d, (29)

where

d � �kζζ �RTη � ω � e 9u� 9c. (30)

Condition (29) can be satisfied by setting

:u � eTd, 9ω � e� d{u. (31)

Thus, using (2) the torque inputs are set to

τ � Jpe� d{uq � Jω � ω � τextpsq (32)

in order to render the system asymptotically stable. To
summarize, the backstepping procedure was applied until
the virtual input :u and the actual torques τ were computed
to satisfy the asymptotic stability requirements of the full
system expressed by the Lyapunov function (26) and its
negative definite derivative (28). The actual input u will in
practice be computed by integrating :u.
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