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Abstract

This paper is concerned with the solvability of implicit time-stepping methods for simulating the
dynamics of multi-body systems. The standard approach is to select a time-step based on desired level
of accuracy and computational efficiency of integration. Implicit methods impose an additional but
often overlooked requirement that the resulting nonlinear root-finding problem is solvable and has a
unique solution. Motivated by empirically observed integrator failures when using large time-steps this
work develops bounds on the chosen time-step which guarantee convergence of the root-finding problem
solved with Newton’s method. Second-order geometric variational integrators are used as a basis for
the numerical scheme due to their favorable numerical behavior. In addition to developing solvability
conditions for systems described by local coordinates, this work initiates a similar discussion for Lie
group integrators which are a favored choice for floating-base systems such as robotic vehicles or molecular
structures.

1 Introduction

This work considers the solvability of implicit low-order numerical integrators for multi-body systems with
respect to the choice of integration time-step. Our main focus is on geometric variational integrators [1,
15], i.e. integrators which by construction preserve the following physical invariants of the continuous
system: symmetries due to conservation laws and associated momentum evolution, configuration space
structure such as arising in freely rotating rigid bodies, symplectic phase-space structure. Integrators
that respect such variational properties exhibit improved numerics and remedy many practical issues in
physically based simulation and animation [2]. In addition, they provide good energy conservation over
exponentially long simulation times for non-dissipative systems. When non-conservative forces are present,
symplectic structure preservation results in a much-improved treatment of damping that is essentially
independent of time step [3]. Our focus on such integrators is also motivated by their successful application
to multibody systems [4, 5, 6, 7, 8, 9, 10].

Variational integrators could therefore be used as a basis for developing computationally efficient
algorithms by choosing large time-steps while still retaining desired accuracy. A standard approach is to
select the time-step to achieve a desired local or global integration error (e.g. see [11, 12, 13] in the context
of variational integrators and [14] for the general setting of implicit method). But there is also another
key condition that must be satisfied, i.e. the algorithmic solvability of the resulting integrator. This is a
key issue since almost all variational time-stepping methods for nonlinear systems are implicit and require
the solution of potentially complex nonlinear equations. To the author’s knowledge, the issue of implicit
integrator solvability and its connection to time-step selection has not received enough attention despite
the wide use of error-based adaptive time-step selection methods. This turns out to be in fact a central
issue for gaining efficiency since, as we show, the success of the numerical root-finding method depends
on enforcing strict bounds on the chosen time-step. To illustrate this point, consider Figure 1 showing
the integration of a simple three-link multi-body system using a symplectic forward Euler method [15].
Based on this empirical evidence there is a clear threshold of the chosen time-step h somewhere in the
range h P p0.125, 0.5q seconds above which the integrator always fails due to divergence of the employed
Newton’s method. This upper bound could become much lower and thus impose stricter time-step limits
as the system increases in complexity.

The main goal if this paper is therefore to obtain formal bounds on the chosen time-steps h to guarantee
solvability of the implicit integrator update. Presently, we obtain such bounds for multi-body systems
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evolving in a generalized coordinate space Q � Rn (as described in Section 4) that are not subject to
unilateral constraints, e.g. from intermittent contacts or collisions. The second goal of the paper is to
extend those methods to geometric Lie group integrators for floating-base systems with configuration space
Q � SEp3q � Rm, where m � n � 6 denotes the number of internal degrees of freedom from movable
joints (Section 5). A number of methods have been developed to take advantage of the differential-
geometric and Lie group structure naturally present in multi-body dynamics for numerical integration
purposes [16, 17, 18, 19]. For our purposes, we are interested in a coordinate-invariant treatment of
evolution in the Euclidean group SEp3q to avoid singularities and associated time-step restrictions as
well chart switching necessary with coordinates such as Euler angles. The resulting algorithms exhibit
surprisingly accurate numerical behavior even at large time-steps. The convergence properties developed
for coordinate spaces do not directly apply to Lie groups and need to be considered in a more extensive
study. Initial observations for the simplest case of a single rigid body and encouraging results related to
time-step regularity conditions are presented in Section 3.

2 Background on variational Integrators

A mechanical integrator advances a dynamical system forward in time. Such numerical algorithms are
typically constructed by directly discretizing the differential equations that describe the trajectory of
the system, resulting in an update rule to compute the next state in time. In contrast, variational
integrators [1] are based on the idea that the update rule for a discrete mechanical system (i.e., the time
stepping scheme) should be derived directly from a variational principle rather than from the resulting
differential equations. This concept of using a unifying principle from which the equations of motion
follow (typically through the calculus of variations [20]) has been favored for decades in physics. Chief
among the variational principles of mechanics is Lagrange D’Alembert’s principle which states that the
path qptq (with endpoint qpt0q and qpt1q) taken by a mechanical system subject to forces fptq satisfies
the virtual work principle δ

³t1
t0
Lpq, 9qqdt� ³t1

t0
fptqδqptq � 0, i.e., the state variables pq, 9qq evolve such that

any variation of the time integral of the Lagrangian L of the system (equal to the kinetic minus potential
energy) must result from the work done by the force f .

Practically speaking, variational integrators based on Lagrange D’Alembert’s principle first approxi-
mate the time integral of the continuous Lagrangian and the integral of forces by a quadrature rule. This
is accomplished using a “discrete Lagrangian,” which is a function of two consecutive states qk and qk�1

(corresponding to time tk and tk�1, respectively):

Ldpqk, qk�1q �
» tk�1

tk

Lpqptq, 9qptqqdt.

and “discrete forces” fd according to

f�d pqk, qk�1, uk, uk�1qδqk � f�d pqk, qk�1, uk, uk�1qδqk�1 �
» tk�1

tk

fpqptq, 9qptq, uptqqδqptq,

where the function fpq, 9q, uq defines generalized forces including control inputs u acting on the system
and the discrete left and right forces f�d and f�d , respectively, approximate the virtual work on the left
(resp. right) section of the interval rtk, tk�1s. A discrete variational principle can now be formulated over
the whole path tq0, ..., qNu and control inputs tu0, . . . , uNu defined by the successive position at times
tk � kh. This discrete principle requires that

δ
N�1̧

k�0

Ldpqk, qk�1q �
N�1̧

k�0

rf�d pqk, qk�1, uk, uk�1qδqk � f�d pqk, qk�1, uk, uk�1qδqk�1s � 0, (1)

where variations are taken with respect to each position qk along the path. Thus, if we use Di to denote
the partial derivative w.r.t the ith variable, we must have

D2Ldpqk�1, qkq �D1Ldpqk, qk�1q � f�d pqk�1, qk, uk�1, ukq � f�d pqk, qk�1, uk, uk�1q � 0 (2)

for every three consecutive positions qk�1, qk, qk�1 of the mechanical system. The relationship (2) is
known as the discrete Euler-Lagrange (DEL) equation and defines an integration scheme which computes
qk�1 using the two previous positions qk and qk�1 and given forces uk�1, uk, uk�1.
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Figure 1: Simulation of a conservative three-link system at three different time-steps. The simulation is qualitatively correct
for all time steps below h � 0.125 seconds but suddenly breaks down at higher time-steps. It turns out that this is caused either
by crossing singular points of the implicit integrator Jacobian or by divergence of the employed Newton’s method. This work
seeks a priori conditions based on the dynamical model to find bounds on h avoiding such problems.
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Simple Example. Consider a system with continuous, typical Lagrangian of the form Lpq, 9qq �
1
2
9qTM 9q�V pqq (V being a potential function) and subject to control forces only, i.e. fpq, 9q, uq � u. Define

the discrete Lagrangian using the trapezoidal rule

Ldpqk, qk�1q� h

2

�
L
�
qk,

qk�1 � qk
h

	
� L

�
qk�1,

qk�1 � qk
h

	�
.

with discrete forces defined by

f�d pqk, qk�1, uk, uk�1q � h

2
uk, f�d pqk, qk�1, uk, uk�1q � h

2
uk�1

The resulting update equation is:

M
qk�1 � 2qk � qk�1

h2
� uk �∇V pqkq,

which is a discrete analog of Newton’s law M :q � u � ∇V pqq. This example can be easily generalized
to systems with configuration-dependent mass matrix Mpqq or to systems with constraints leading to
variants of the update equation.

3 Geometric integrators for the rigid body

We first consider geometric integrators for a single rigid body as one of the simplest mechanical system
with nonlinear dynamics. The goal is to illustrate two typical geometric integrators and discuss regularity
conditions required for their solvability. These results will then be generalized to multi-body systems.

The standard continuous equations of motion of a controlled rigid body is given by (see e.g. [21])

9R � Rω̂ (3)

J 9ω � Jω � ω � u, (4)

where R P SOp3q is the rotation matrix, ω P R3 is the angular velocity, J is the 3x3 inertia tensor and u are
the given control inputs. While it is possible to express the body rotation using coordinates such as Euler
angles a more numerically convenient approach is to perform numerical integration on the configuration
manifold directly. For instance, the simplest first-order Euler method on SOp3q would take the form

Rk�1 � Rk expphωk�1q, (5)

ωk�1 � ωk � hJ�1pJωk � ωk � ukq, (6)

where exp : R3 Ñ SOp3q is the exponential map defined by

exppωq �
#
I, ω � 0

I � sin }ω}
}ω}

pω � 1�cos }ω}

}ω}2
pω2, ω � 0

, (7)

with I denoting the identity matrix and the map p� : R3 Ñ sop3q (with sop3q begin the space of 3x3
skew-symmetric matrices) defined by

pω �
�� 0 �w3 w3

w3 0 �w1

�w2 w1 0

�� . (8)

The integrator (5)–(6) explicitly updates the next state pRk�1, ωk�1q given the current state pRk, ωkq.
The method is more accurate than a coordinate-based Euler method and does not require coordinate
chart switching [22]. Nevertheless, similarly to any other Euler method it is only first-order accurate and
has poor numerical stability which becomes especially pronounced at large time-steps h.
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3.1 Implicit second-order methods

A numerically superior integrator results from implicit second-order formulation, for instance based on
trapezoidal or midpoint collocation. As an example, a trapezoidal collocation of the dynamics (4) will
result in the semi-explicit integrator

Rk�1 � Rk expphωk�1q, (9)

Jpωk�1 � ωkq � h

2
pJωk � ωk � Jωk�1 � ωk�1q � huk, (10)

known as the trapezoidal Lie-Newmark (TLN) integrator [15, 23]. The dynamics update (10) can be
equivalently written as

Aphωk�1qT Jωk�1 �Ap�hωkqT Jωk � huk

where the matrix Apωq is defined by

Apωq � I � 1

2
pω,

and is regarded as the truncated (to first-order) right-trivialized derivative inverse [23, 24] of the exponen-
tial map, i.e. dexppwq�1 � Apωq�Op}w}2q. In contrast, a very similar method employing the untruncated
derivative is actually a variational symplectic integrator obtained using a Lie group version of the discrete
variational principle (1) known as the discrete Euler-Poincare principle (see [1, 25, 26, 23, 27]).

An example of such a symplectic Lie group integrator known for its efficiency and ease of implemen-
tation [23, 27] is defined by

Rk�1 � Rkcayphωk�1q, (11)

rdcay�1
hωk�1

sT Jωk�1 � rdcay�1
�hωk

sT Jωk � huk, (12)

where the Cayley map cay : R3 Ñ SOp3q approximates the exponential map and is defined by

caypωq � I � 4

4� }ω}2
�pω � pω2

2



, (13)

while the right-trivialized tangent inverse is defined by

rdcay�1
ω s� I � pω

2
�ωω

T

4
. (14)

One of the special properties of the symplectic integrator (11)-(12) is that it preserves the spatial mo-
mentum Jk � Jpkhq given by Jk � Rkrdcay�1

�hωk
sT Jωk in the absence of forces, i.e. when uk � 0.

Time-step selection and solvability. The numerical behavior, preservation properties, and asso-
ciated backward error analysis of these methods has been established [28, 22, 15, 23, 2]. The resulting
favorable numerical behavior permits the use of larger time-steps h while maintaining desired accuracy
and stability. But how large can h be? To answer this question we next study regularity conditions of the
most common iterative method, i.e. Newton’s method, which translate to a maximum time-step selection
rule required in order to guarantee solvability of the integrators.

3.2 Newton’s method and time-step bounds

Either the collocation or the symplectic methods require the solution of nonlinear discrete dynamics
equations, in particular equations (10) or (12), respectively. This can be formulated as the solution of
the nonlinear equations etlnpωk�1q � 0 or esymppωk�1q � 0 given by

etlnpωq �
�
I � h

2
pω� Jω � ck, (15)

where ck P R3 is given and defined by

ck � Ap�hωkqT Jωk � huk,
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Figure 2: Comparison of maximum time-steps h allowed by the trapezoidal collocation integrator and the symplectic integrator.
Both analytical upper bounds are shown as well as empirically computed upper bounds resulting in singular Jacobians (and
integrator solution failure) from 50000 Monte Carlo experiments with varying inertia J and velocity ω.

and

esymppωq �
�
I � h

2
pω � h2

4
ωωT

�
Jω � dk, (16)

where dk P R3 is given and defined by

dk � rdcay�1
�hωk

sT Jωk � huk.

While it is possible to apply a number of numerical root-finding methods including polynomial and
continuation methods, we focus on Newton-like methods since they generalize to the more complex multi-
body setting. Newton’s method solves the equation epωq � 0 using an initial guess ω which is then iterated
according to w � w�rDepwqs�1epωq, where Depωq is the Jacobian of epωq which must be invertible. The
Jacobians of the two methods are given by

Detlnpωq � J� h

2
xJω � h

2
pωJ, (17)

and

Desymppωq � J� h

2
xJω � h

2
pωJ� h

4
ωT JωI � h

2
ωωT J, (18)

and are positive definite and invertible at h � 0. We next compute the range of time-steps h for which
the Jacobians remain invertible. First note that it is not difficult to show 1 that

pωJ ¤ 1

2
}ω}pσ� � σ�qI,

where σ� and σ� are the minimum and maximum eigenvalues of J. Therefore, we have

Detlnpωq ¥
�
σ� � h

4
}ω}pσ� � σ�q

�
I,

or equivalently Detlnpωq will be always positive definite and hence invertible if the time-step is chosen
according to 0   h   h̄tlnpωq where the upper bound is defined by

h̄tlnpωq �
" 8 p i.e. time-step unrestrictedq if either κ � 1, or }ω} � 0

4
pκ�1q}ω}

otherwise,
(19)

1A ¥ B for any matrices A,B P Rn�n if and only if xTAx ¥ xTBx for all x P Rn.
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where κ � σ�
σ�

¥ 1 is the condition number of J. When κ � 1 (i.e. a spherical body) or when }ω} � 0 we

have trivially Detln � J and there are no restrictions on the time-step.
The symplectic integrator Jacobian Desymppωq satisfies

Desymppωq ¥
�
σ� � h

4
}ω}pσ� � σ�q � h2}ω}2

�
σ� � 1

4
σ�


�
I,

and will remain positive definite and invertible all time-steps 0 ¤ h   h̄symppωq where the upper bound
is defined by

h̄symppωq �
# 8 p i.e. time-step unrestrictedq if either κ ¤ 4

?
7� 7, or }ω} � 0

κ�1�
?
κ2�14κ�63

p8�2κq}ω}
otherwise.

(20)

Figure 2 illustrates these bounds by plotting the dependence of h}ω} on the condition number κ. The key
point is that the lower the condition number and the lower the velocity magnitude }ω} the higher time-
step can be chosen. Note that the symplectic integrator appears to have a wider region of convergence
and, unlike collocation, there are no restrictions on the maximum time-step for bodies with condition
number κ � 3.58 or smaller. Furthermore, empirically the number of failed solutions is a small fraction
of the singular cases for the collocation scheme. In general, though both methods are suitable for very
efficient and long-term stable integration as long as the time-step h is chosen to satisfy the respective
bounds (19) or (20).

4 Variational integrators for mechanical systems in gener-
alized coordinates

We next consider the more general setting of mechanical systems in minimal generalized coordinates, i.e.
describing the the system joint angles and pose. The equations of motion of multi-body systems can be
derived using a Lagrangian in the typical form

Lpq, 9qq� 1

2
9qTMpqq 9q�V pqq,

where Mpqq is a positive-definite mass matrix and V is a potential function. The system is also subject
to generalized forces fpq, 9q, uq in the form

fpq, 9q, uq � fxpq, 9qq �Bpqqu,

where fx encodes any internal and external forces e.g. due to damping or friction and u P Rc are the
control forces. Our focus is on second-order variational integrators obtained using the discrete Lagrangian

Ldpqk, qk�1q� h

2
rLpqk, vk�1q � Lpqk�1, vk�1qs ,

where the discrete velocity vk P Rn is defined by

vk �
qk � qk�1

h
,

and discrete forces set to

f�d pqk, qk�1, uk, uk�1q � h

2
fpqk, vk�1, ukq, f�d pqk, qk�1, uk, uk�1q � h

2
fpqk�1, vk�1, uk�1q.

This choice of discretization is based on trapezoidal quadrature approximation and as we will show results
in a simpler integrator amenable to easier analysis compared to other methods of the same order such as
midpoint quadrature (that is not to say that the midpoint rule is inferior).
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Discrete Equations of Motion. The general discrete Euler-Lagrange equations (2) when applied
to the mechanical systems result in the implicit integrator

1

2
rMpqkq �Mpqk�1qsvk�1 � 1

2
rMpqk�1q �Mpqkqsvk

� h

4

�
pIn b vTk q∇Mpqkqvk � pIn b vTk�1q∇Mpqkqvk�1

�
� h∇V pqkq

� h

2
rfpqk, vk, ukq � fpqk, vk�1, ukqs

(21)

where the tensor product notation AbB is defined (see e.g. [29]) according to

AbB �

��� a11B � � � a1nB
...

. . .
...

an1B � � � annB

���
and the matrix gradient ∇M and hence the expression pIn b vT q∇M are defined as

∇M �

����
BM
Bq1
...
BM
Bqn

���� , pIn b vT q∇M �

����
vT BM

Bq1
...

vT BM
Bqn

���� .
Equivalently, the matrix pIn b vT q∇M can be expressed in coordinates according to

rpIn b vT q∇M sij �
ņ

`�1

BM`j

Bqi v`,

where i, j � 1, . . . , n are the matrix row and column indices, respectively. The relationship (21) is
expressed more compactly as

1

2
rMpqkq �Mpqk � hvk�1qsvk�1 � 1

2
rMpqk�1q �Mpqksvk � hbkpvk, qk, vk�1q � hBpqkquk, (22)

where the discrete bias bk is defined by

bkpvk, qk, vk�1q � � 1

4

�
pIn b vTk q∇Mpqkqvk � pIn b vTk�1q∇Mpqkqvk�1

�
�∇V pqkq

� 1

2
rfxpqk, vkq � fxpqk, vk�1qs.

(23)

The integrator (22) can be regarded as the discrete analog of the continuous equations of motion in a
standard form (e.g. [30, 31])

Mpqq:q � bpq, 9qq � Bpqqu,
where the corresponding continuous bias term bpq, 9qq � Cpq, 9qq 9q � gpqq � fxpq, 9qq encodes Coriolis and
centripetal forces defined by the matrix C, gravity forces g, and other forces fx.

4.1 Implicit time-stepping using a Newton algorithm

The integrator (21) is solved in terms of the next velocity vk�1 using a numerical root-finding procedure,
typically a second-order method such as Newton’s method equipped with regularization and line-search
procedures. Our goal is to find the root of the equation ekpvk�1q � 0 corresponding to the relationship (21)
with the mapping ek : Rn Ñ Rn defined by

ekpvq � 1

2
rMpqkq �Mpqk � hvqsv � 1

2
rMpqk�1q �Mpqkqsvk � hrbkpvk, qk, vq �Bpqkquks. (24)

The Jacobian of ekpvq is

Dekpvq � 1

2
rMpqkq �Mpqk�hvqs � h

2

�
∇Mpqk�hvqT pI b vq � pI b vT q∇Mpqkq �D2f

xpqk, vq
�
, (25)
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where the matrix gradient transpose paired with the tensor product should be understood as

∇MT pI b vq �
�

BMT

Bq1
v, � � � , BM

T

Bqn
v
�
.

Note that one of the main practical advantages of using a trapezoidal variational formulation, in addition
to its numerical stability, is the relatively simple expression for the Jacobian (25). This is not the case if
the midpoint rule were used which would involve the unwieldy term ∇2M .

Newton’s algorithm starts by setting the unknown v to an initial value and iteratively updates it to
v � d where the Newton step d is defined by

d � �Dekpvq�1ekpvq.

We will restrict our analysis to this “pure” version of the algorithm which also employs the previous
velocity as an initial value, i.e. the first iteration begins with v � vk. The algorithm is summarized
below.

Algorithm 1: vk�1 Ð Newton pvk, qk, ukq

1 v Ð vk
2 choose time-step h
3 while v has not converged do

Compute d P Rn such that rDekpvqsd � �ekpvq using (24) and (25)
v Ð v � d

4 return v

We next study the convergence properties of this algorithm. This will be accomplished by assum-
ing certain regularity conditions of the dynamical model and deriving time-step bounds to guarantee
convergence.

4.2 Convergence of Newton’s method

In order to guarantee solvability of the integrator it is critical to ensure that the time-step h is chosen
small enough to ensure convergence of Algorithm (1) or in other words that the true solution can be
traced from the initial guess v � vk. This problem has been studied previously [32] for implicit time-
stepping methods under general regularity conditions. For mechanical multi-body systems these results
need to be extended since it turns out that the Jacobian Lipschitz “constant” normally employed in the
Kantorovich-type results [32] is actually a function of the time-step and the current state which requires
additional development.

To establish the formal bounds it is necessary to assume the following regularity conditions of the
dynamical model:

Assumption 1. Assume that the dynamical system model satisfies the following bounds:

m1pqqI ¤Mpqq ¤ Im2pqq (26)

}Mpqq �Mpq � wq} ¤ `0pqq}w} (27)

}∇MpqqT pIn b vq} ¤ `1pqq}v} (28)���r∇Mpq � wq �∇MpqqsT pIn b vq
��� ¤ `2pqq}v}}w} (29)

}D2f
xpq, vq} ¤ `3pqq}v} � `4pqq (30)

}D2f
xpq, vq �D2f

xpq, v � dq} ¤ r`5pqq}v} � `6pqqs}d} (31)

for some known non-negative functions m1,m2, `0, `1, . . . , `6 : Q Ñ R¥0 for any v, w, d P Rn. Further-
more, assume that there is a set U � Q and constants m̄1, m̄2, ¯̀

0, . . . , ¯̀
6 ¥ 0 such that for all q P U :

sm1 ¤ m1pqq, m2pqq ¤ m̄2, `0pqq ¤ ¯̀
0 , . . . , `6pqq ¤ ¯̀

6.

The bounds defined in (26)–(31) are used to obtain regularity conditions which are necessary to
guarantee convergence of Newton’s method. In particular, the following quantities will be computed in
order to construct a convergence proof:
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• bound on time-step h to guarantee non-singular Jacobian Dekpvq for a given v P Rn

• bound on }ekpvkq} and Jacobian inverse }Dekpvkq�1} at first Newton iteration, i.e. when v � vk

• bound on h so that Dekpvq is invertible for all all Newton iterations staring with v � vk

• Lipschitz bound on the Jacobian Dekpvq
This list constitute the steps to be taken in order to construct a Kantorovich-type proof of convergence.

4.2.1 Jacobian Regularity.

The most basic requirement for convergence is that the Jacobian Dek defined in (25) is non-singular, a
condition established as follows.

Proposition 1. Assume that the conditions (26)–(31) hold. The Jacobian Dekpvq is non-singular for
every time-step h such that 0 ¤ h   h̄pqk, vq where the upper bound is defined by

h̄pqk, vq �
a
r`3pqkq}v} � `4pqkqs2 � 8`2pqkq}v}2 sm1 � `3pqkq}v} � `4pqkq

2`2pqkq}v}2 (32)

Proof. First, note that at h � 0 we have Dekpvq � Mpqkq ¡ 0, i.e. the Jacobian is positive definite2.
Therefore, h can be increased as long as Dek remains positive definite and hence invertible. Next we add
and subtract the term ∇MT pIn b vq to Dek in (25) and since the matrix

∇MT pIn b vq � pIn b vT q∇M

is skew-symmetric it will not affect the Jacobian positivity. Hence we have

Dekpvq ¥ 1

2
rMpqkq �Mpqk � hvqs � h

2

�
∇Mpq � hvqT pIn b vq �∇MpqqT pIn b vq �D2f

xpqk, vq
�

¥ max

�
m1pqkq � h

2
}v}`0pqkq, sm1

�
� h

2

�
`2pqkqh}v}2 � `3pqkq}v} � `4pqkq

�
,

(33)

where maxp�, �q takes the maximum of either the local bound at qk or the global bound m̄1 of the mass
matrix. For simplicity, we will employ the global bound so that Dekpvq ¡ 0 when h is chosen so that

`2pqkq}v}2h2 � r`3pqkq}v} � `4pqkqsh� 2m̄1   0

which is satisfied when h   h̄pqk, vq where h̄ is the quadratic equation root defined in (32). Note that in
case when `2pqkq}v} � 0 we have the simpler form

h̄pqk, vq � 2 sm1

`3pqkq}v} � `4pqkq .

Finally, whenever the denominator is zero there are no restriction on the time-step, i.e. h̄pqk, vq � 8.

Linear Damping Forces. Note that the Jacobian regularity bound can be improved when the
velocity-dependent terms in the external forces fxpq, vq are the form �Kv for some matrix K ¡ 0. The
quadratic condition would then be

`2pqkq}v}2h2 � r`4pqkq � k1sh� 2m̄1   0,

where k1 ¡ 0 is such that k1I ¤ K with respect to the chosen norm } � }.
2any matrix (including non-symmetric) A P Rn�n is positive definite if xTAx ¡ 0 for all x P Rn such that x � 0
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4.2.2 Bounding Newton’s method iterates.

Next, we establish bounds on the error function ek and inverse Jacobian Dek evaluated at the first Newton
iteration, i.e. when v � vk. These bound will then be used in computing the the region of convergence of
Newton’s method determined by the first search step.

Applying the assumption (27) twice the following relationship holds

1

2
rMpqk � hvkq �Mpqk � hvkqsvk ¤ h`0pqkq}vk}2,

and a bound on the residual ek evaluated at v � vk can be established according to

}ekpvkq} ¤ h`0pqkq}vk}2 � h}bkpvkq �Bpqkquk}
� hL0pqk, vkq.

(34)

Similarly, the Jacobian satisfies the following bound

}Dekpvkq} ¤ sm2 � h

�s̀
1}vk} � 1

2
}D2fpqk, vkq}

�
� sm2 � hL1pqk, vkq,

(35)

while its inverse is bounded according to

}Dekpvkq�1} ¤ 1sm1 � hL1pqk, vkq . (36)

Note that similarly to (33) it is possible to obtain a tighter bound by using minrm2pqkq� h
2
}vk}`0pqkq, sm2s

in place of sm2 in (35) and (36) with minimal modification; we employ the simpler sm2 for clarity.
The first Newton iteration search step d0 P Rn is defined by

d0 � �rDekpvkqs�1ekpvkq.

A convergent Newton algorithm will then perform iterations in the vicinity of the starting value v � vk
in the sense that all iterates v will be contained in the set B0 � Bpvk � d0, }d0}q, i.e. the ball at point
vk � d0 with radius }d0}. More formally, the set Bpv, rq � Rn for a given scalar r ¡ 0 is defined as

Bpv, rq � tv � d | }d} ¤ ru.

The following property related to the magnitude of subsequent iterates can be established:

Lemma 4.1. Let assumptions (26)–(31) hold and assume that the time-step h is such that B0 � U . All
Newton iterates v P Rn are then bounded according to

}v} ¤ }vk} � 2hL0pqk, vkq
m̄1 � hL1pqk, vkq . (37)

Proof. Assuming the Jacobian Dekpvq is invertible for all v P B0, all consequent iterates v will remain
inside B0 which means that

}v} ¤ }vk � d0} � }d0}
¤ }vk} � 2}d0}
¤ }vk} � 2}Dekpvkq�1}}ekpvkq},

and (37) follows from (34) and (36).
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4.2.3 The Newton-Kantorovich Condition

So far we obtained condition (32) on h guaranteeing that the Jacobian Dek is invertible. The computed
upper bound shpqk, vq is a function of v so it is actually not possible to use this bound to guarantee
regularity for all Newton iterations a priori, i.e. before executing the algorithm, since obviously v will
change at each iteration. But since know that }v} is bounded such an a-priori condition is obtained using
the upper bound (37) by selecting h so that φkphq   0 where

φkphq � `2

�
}vk} � 2hL0

m̄1 � hL1

�2
h2 �

�
`3 �

�
}vk} � 2hL0

m̄1 � hL1



� `4

�
h� m̄1, (38)

where all functions `i and Li are evaluated at pqk, vkq. This is now a fourth-order polynomial in h and
the upper bound denoted by h̄k is set to the smallest positive root of φkphq.

Next, we establish a Lipschitz condition on the Jacobian. We have, for some d P Rn:

}Dekpv � dq �Dekpvq} ¤ 1

2
}Mpqk � hpv � dqq �Mpqk � hvq}

� h

2

���∇M pqk � hpv � dqqT pI b pv � dqq �∇Mpqk � hvqT pI b vq

� pI b dT q∇Mpqkq �D2f
xpqk, v � dq �D2f

xpqk, vq
���

¤ h

2

�s̀
0 � 2¯̀

1 � ¯̀
2}v} � `5pqkq}v} � `6pqkq

� }d}
� h rL2pqkq � L3pqkq}v}s }d}.

(39)

In order to obtain a Lipschitz bound independent of the velocity v it is necessary to employ bound (37)
on }v} which leads to

}Dekpv � dq �Dekpvq} ¤ h

�
L2pqkq � L3pqkq

�
}vk} � 2hL0pqk, vkq

m̄1 � hL1pqk, vkq

�

}d}

� hrL2m̄1 � L3}vk}m̄1s � h2 r2L0L3 � L1L2 � L1L3}vk}ssm1 � hL1
}d}

�
hL4 � h2L5

m̄1 � hL1
}d},

(40)

so that the factor in front of }d} can now be regarded as the required Lipschitz constant of the Jaco-
bian [32].

Choosing h   h̄k where h̄k is the smallest positive root of φkphq guarantees that the Jacobian is
invertible for all Newton iterations assuming the method was initialized with v � vk. This bound can
now be combined with the actual sufficient condition for convergence. As a result, a stricter bound will
be obtained that is sufficient to guarantee a successful solution.

Proposition 2. Assume that conditions (26)–(31) hold and that the time-step h is such that φkph1q   0
for all h1 P r0, hs or equivalently assume that h   h̄k. Furthermore, assume that B0 � U for all h ¤ h̄k.
Newton’s algorithm then converges super-linearly to a unique solution inside B0 if the time-step h is chosen
so that ψph1q   0 for all h1 P r0, hs where

ψphq � h3p2L0L5 � L3
1q � h2p2L0L4 � 3m̄1L

2
1q � hp2m̄2

1L1q � m̄3
1. (41)

Equivalently, convergence is ensured if the upper bound on h is set to the smallest positive root of ψphq � 0.

Proof. To ensure convergence, the Newton-Kantorovich theorem [33] requires that

hL4 � h2L5

m̄1 � hL1
}De�1

k pvkq}}d0} ¤ 1

2
, (42)

where the first term corresponds to the Jacobian Lipschitz term (40). Note that

}De�1
k pvkq}}d0} ¤ }De�1

k pvkq}2}ekpvkq}

¤ hL0pqk, vkq
rm̄1 � hL1pqk, vkqs2 ,
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using the computed bounds (34) and (36), which is then substituted into (42) to obtain ψphq   0.
Since this condition is trivially satisfied for h � 0 the upper bound is the smallest positive h for which
ψphq � 0.

5 Variational Lie Group Integrators for Multibody Systems

The integrators developed in Section 4 are based on generalized coordinates q in the Euclidean space
Rn. The configuration space Q is actually only locally isomorphic to Rn in the sense that any choice
of rotational coordinates such as Euler angles cannot globally cover the space of rotations using a single
chart. Most floating-base multi-body systems have a configuration space Q � SEp3q�Rm with q � pg, rq
where g P SEp3q is the pose of a chosen base body and r P Rm are the joint angles or shape variables.
Such representation is sufficient for tree-topology multi-body systems with m internal (i.e. from movable
joints) degrees of freedom. A more general graph-topology system with loops is modeled by selecting a
spanning tree and enforcing loop constraints using additional multiplier variables. Our goal is to develop
geometric variational integrators for such systems which evolve intrinsically on the configuration space
Q. These integrators can be regarded as an extension of the single rigid body integrators described in
Section 3 to general multi-body systems. We first focus on the standard continuous setting and then
develop the corresponding geometric structure-preserving integrators.

5.1 The Continuous Setting

The configuration of a tree-topology multi-body system is defined as q � pg, rq P SEp3q�Rm with velocity
given by v � pξ, 9rq P R6�m, where g P SEp3q is the 4x4 pose matrix describing the base body orientation
R P SOp3q and position x P R3 according to

g �
�

R x
01�3 1

�
, g�1 �

�
RT �RTx
0 1

�
.

and where ξ � pω, vq P R6 defines its body-fixed angular velocity ω P R3 and linear velocity v P R3. The
body-fixed velocity ξ is related to the configuration using the relationship [31, 21]

9g � gpξ,
where the operator p� : R6 Ñ sep3q turns velocities ξ � pv, ωq into the 4x4 matrices

pξ � � pω v
01�3 0

�
. (43)

The Lagrangian of the system is defined by

Lpg, r, ξ, 9rq � 1

2
pξ, 9rqTMprqpξ, 9rq � V pg, rq, (44)

or more compactly as Lpq, vq � 1
2
vTMprqv� V pqq, where the mass matrixM is defined by (e.g. see [31,

34])

Mprq �

��� I0 �
ņ

i�1

ATi IiAi
°n
i�1A

T
i IiJi°n

i�1 J
T
i IiAi

°n
i�1 J

T
i IiJi

��� (45)

where Ii is the 6x6 inertia matrix of body i and the adjoint notation Ai � Ad
g�1
0i prq

, and Jacobian

Ji �
°n
j�1rg�1

0i prqBrjg0iprqs_ were employed (the operator �_ is the inverse of the operator p� defined in
(43)). Here we use the standard notation g0i : Rm Ñ SEp3q to define the transformation between the
base body (with index #0) and body #i (see e.g. [31]). The adjoint map Adg is defined by the 6x6 matrix

Adg �
�

R 0pxR R

�
. (46)
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Various efficient methods exist [30, 34] to compute the Jacobians and the mass matrix recursively exploit-
ing the tree structure of the multi-body system. Finally, assume that the system is subject to generalized
forces expressed through the known function fpq, v, uq. The variational principle used to obtain the
dynamics is

δ

»
Lpg, r, ξ, 9rqdt�

»
xfpg, r, ξ, 9r, uq, pη, δrqy � 0, (47)

where the left-trivialized variation η P R6 is defined by ηptq � pgptq�1δgptqq_. The resulting equations of
motion are obtained by taking variations pδg, δrq and pδξ, δrq subject to the constraint (see e.g. [21])

δξ � 9η � adξ η,

where the adjoint operator adξ is defined by the 6x6 matrix

adξ �
� pω 0pv pω

�
.

This variational constraint stems from the kinematic constraints ξ � pg�1
9gq_ between ξ and g.

Before stating the equations of motion it is necessary to define a procedure for differentiating functions
on the Lie group SEp3q. This will be accomplished by applying a trivialized gradient as opposed to the
standard gradient on Rn as follows.

Definition 5.1. The left-trivialized gradient g�∇gV pgq P R6 of a function V : SEp3q Ñ R,

g�∇V pgq � ∇ξ
���
ξ�0

V pg exppξqq

or in coordinates using the standard basis te1, . . . , e6u of R6 by

g�∇V pgq �
�BV
Bs

���
s�0

px exppse1qq, � � � , BVBs
���
s�0

px exppse6qq
�T

.

Continuous Equations of Motion. Employing the momenta µ � BξL and p � B
9rL the resulting

dynamics can be expressed as:�
ξ
9r

�
�Mprq�1

�
µ
p

�
(48)�

9µ
9p

�
�
� padξqTµ

1
2
pIn b vT q∇Mprqv

�
�
�
g�∇gV
∇rV

�
� fpq, v, uq, (49)

The system evolution is then fully determined by adding the reconstruction equations

9g � gpξ
which corresponds to setting 9R � Rω and 9x � Rv. Note that equations (48) and (49) can be regarded as
an extension of the standard Hamiltonian form of the equations of motion (see e.g. [29]) to floating-base
systems. In order to derive the corresponding geometric integrator we next specify a methodology for
performing discrete-time updates on Lie groups, such as SEp3q, without resorting to local coordinates.

5.2 Trajectory Discretization on Lie groups

A trajectory is represented numerically using a set of N � 1 equally spaced in time points denoted
g0:N :� tg0, ..., gNu, where gk � gpkhq P G and h � T {N denotes the time-step. The section between
each pair of points gk and gk�1 is interpolated by a short curve that must lie on the manifold (Fig. 3).
The simplest way to construct such a curve is through a map τ : g Ñ G and velocity vector ξk P g such
that ξk � τ�1pg�1

k gk�1q{h. Here g � TeG denotes the Lie algebra of G. The map is defined as follows.

Definition 5.2. The retraction map τ : g Ñ G is a C2-diffeomorphism around the origin such that
τp0q � e. It is used to express small discrete changes in the group configuration through unique Lie
algebra elements. For our purposes, we consider maps such that τpξq � exppξq �Op}ξ}3q.
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Thus, if ξk were regarded as an average velocity between gk and gk�1 then τ is an approximation
(to at least second-order) to the integral flow of the dynamics. The important point, from a numerical
point of view, is that the difference g�1

k gk�1 P G, which is an element of a nonlinear space, can now be
represented uniquely by the vector ξk in order to enable unconstrained optimization in the linear space g
for optimal control purposes.

G

gk−1

gk

gk+1

ξk = τ−1(g−1
k gk+1)/hg

e

ξk

ξk−1

τ

τ

Figure 3: A trajectory (solid) on the Lie group G discretized using a sequence of arcs (dashed) represented by Lie algebra
vectors ξk P g through the retraction map τ [27].

Next, we define the following operators related to τ .

Definition 5.3. [28, 23] Given a map τ : gÑ G, its right-trivialized tangent dτ ξ : gÑ g and its inverse
dτ�1

ξ : gÑ g are such that, for a some g � τpξq P G and η P g, the following holds

Bξτpξq � η � dτ ξ �η � τpξq, (50)

Bξτ�1pgq � η � dτ�1
ξ � pη � τp�ξqq . (51)

Note that it can be shown by differentiating the expression τ�1pτpξqq � ξ that

dτ�1
ξ � dτξ � η � η,

to confirm that these linear maps are indeed the inverse of each other.

Retraction Map (τ) Choices

a) The exponential map
exp : g Ñ G, defined by exppξq � γp1q, with γ : R Ñ G is the integral curve through the identity of the
vector field associated with ξ P g (hence, with 9γp0q � ξ). The right-trivialized derivative of the map exp
and its inverse are defined as

dexpx y �
8̧

j�0

1

pj � 1q! adjx y, (52a)

dexp�1
x y �

8̧

j�0

Bj
j!

adjx y, (52b)

where Bj are the Bernoulli numbers. Typically, these expressions are truncated in order to achieve a
desired order of accuracy. The first few Bernoulli numbers are B0 � 1, B1 � �1{2, B2 � 1{6, B3 � 0
(see [15]).

b) The Cayley map cay : g Ñ G is defined by caypξq � pI�ξ{2q�1pI�ξ{2q and is valid for a general
class for quadratic groups that include the groups of interest in the paper. Based on this simple form,
the derivative maps become ([15], §IV.8.3)

dcayx y �
�
e� x

2

	�1

y
�
e� x

2

	�1

, (53a)

dcay�1
x y �

�
e� x

2

	
y
�
e� x

2

	
. (53b)

The third choice is to use canonical coordinates of the second kind (ccsk) [15] which are based on the
exponential map and are not considered in this paper. In our implementation we employ the Cayley map
the details for which are given next.

15



The Cayley map for rigid body transformations

The algorithms developed in this paper are based on the the Cayley map for SEp3q since it is often a
better alternative to the exponential for computational efficiency and ease of implementation that does
not require special numerical handling at the origin. With a slight abuse of notation, i.e. assuming the
identification g � R6, the Cayley map τ : R6 Ñ SEp3q is defined as (see [27])

τpξq �
�
I3 � 4

4�}ω}2

�pω � pω2

2

	
2

4�}ω}2
p2I3�pωq v

0 1

�
, (54)

while the matrix representation of the right-trivialized tangent inverse dτ�1
ξ : R6 Ñ R6 becomes

rdτ�1
ξ s �

�
I3 � 1

2
pω � 1

4
ωωT 03

� 1
2

�
I3 � 1

2
pω� pv I3 � 1

2
pω
�
. (55)

5.3 Discrete Variational Formulation

With a discrete trajectory in place we follow the approach taken in [35, 25, 26] in order to construct a
structure-preserving (i.e. group, momentum, and symplectic) integrator of the dynamics. We make a
simple extension to include potential and control forces through a trapezoidal quadrature approximation.
In particular, the action in (1) is approximated along each discrete segment between points pgk, rkq and
pgk�1, rk�1q through» pk�1qh

kh

Lpg, r, ξ, 9rq dt�hLdpgk, gk�1, rk, rk�1q, (56a)» pk�1qh

kh

xf, pη, δrqydt ��xf�d pgk, gk�1, rk, rk�1q, pηk, δrkqy � xf�d pgk, gk�1, rk, rk�1q, pηk�1, δrk�1qy
�
. (56b)

where the discrete variation ηk P R6 is defined by ηk � pg�1
k δgkq_. The discrete Lagrangian and forces

are defined by

Ldpgk, gk�1, rk, rk�1q� h

2
rLpgk, rk, ξk�1,∆rk�1q � Lpgk�1, rk�1, ξk�1,∆rk�1qs , (57)

f�d pgk, gk�1, rk, rk�1, uk, uk�1q � h

2
Sphξk�1qT fpgk, rk, ξk�1,∆rk�1, ukq, (58)

f�d pgk, gk�1, rk, rk�1, uk, uk�1q � h

2
Sp�hξk�1qT fpgk�1, rk�1, ξk�1,∆rk�1, uk�1q, (59)

where the discrete velocities ξk P R6 and ∆rk P Rm are defined by

ξk � τ�1pg�1
k�1gkq{h, ∆rk � prk � rk�1q{h.

The matrix Spξq is defined by

Spξq �
�

dτ�1
ξ 0

0 Im

�
(60)

and is interpreted as a Jacobian (or push-forward) map which transforms average vectors along a segment
generated by ξ to vectors defined at the beginning of the segment [2, 9]. The map τ and its tangent dτ�1

are defined in (54) and (55) and implemented through simple matrix-vector products. Finally, note that
we have the following variational constraint which may be obtained through differentiation and application
of (51),

δξk � δτ�1pg�1
k�1gkq{h � r�dτ�1

hξk
ηk�1 � dτ�1

�hξk
ηks{h, (61)

which serves as the basis for applying the variational principle on Lie groups and also the reason why
Spξq appears in (58) and (59).
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Discrete Equations of Motion. The resulting geometric integrator from applying the principle (1)
using the discrete Lagrangian (57) and forces (58) and (59) subject to the constraint (61) is:

gk�1 � gkτphξk�1q (62)

rk�1 � rk � h∆rk�1 (63)

1

2
Sphξk�1qT rMprkq �Mprk � h∆rk�1qsvk�1 � 1

2
Sp�hξkqT rMprk�1q �Mprkqsvk �

h

4

�
0

pIn b vTk�1q∇Mprkqvk�1 � pIn b vTk q∇Mprkqvk

�
� h

�
g�∇gV pqkq
∇rV pqkq

�
� h

2

�
Sphξk�1qT fpqk, vk�1, ukq � Sp�hξkqT fpqk, vk, ukq

�
.

(64)

Applying Newton’s Algorithm. The discrete equations of motion (62)–(64) are used to update the
current state pqk, vkq � pgk, rk, ξk,∆rkq to obtain the next state pqk�1, vk�1q � pgk�1, rk�1, ξk�1,∆rk�1q.
This is accomplished by first solving the dynamics (64) using a root-finding algorithm such as Newton’s
method in terms of the unknowns vk�1 � pξk�1,∆rk�1q which are then used in the explicit equations (62)–
(63) to obtain the next configuration qk�1 � pgk�1, rk�1q.

5.4 Preservation Properties

One of the main benefits of employing the variational numerical framework lies in its preservation prop-
erties, summarized as follows.

Symplectic structure. The discrete flow (64) preserves the discrete symplectic form, expressed in
coordinates as

ωL � B2Ldpqk, qk�1q
BqikBqjk�1

dqik ^ dqjk�1,

where ^ is the standard wedge product between differential forms [21]. The symplectic form is physically
related to the phase space structure. Its preservation during integration, for instance, signifies that a
volume of initial conditions would not be spuriously inflated or deflated due to numerical approximations.
Volume preservation means that the orbits of the dynamics will have a predictable character and no
artificial damping normally employed by Runge-Kutta methods is needed to stabilize the system [1].

Momentum Conservation. The discrete dynamics (64) also exactly preserves any Lagrangian sym-
metries. In particular, assume that there is a group G whose action on Q leaves the Lagrangian invariant
in the sense that

Lpq, vq � Lpexppsρqq, vq,
which implies that

Ldpqk, qk�1q � Ldpexppsρqqk, exppsρqqk�1q,
for some ρ P g, where g is the Lie algebra of G, and s is a scalar. In this case the momentum map
Jpqk, qk�1q � ρ � D1Ldpqk, qk�1q � ρQpqkq is preserved [1] where ρQ is the infinitesimal generator of the
group [21]. Practically speaking, whenever the continuous system preserves momentum, so does the
discrete. Any change in the momentum then exactly reflects the work done by non-conservative forces.
Such a momentum-symplectic scheme also exhibits long-term stable energy behavior close to the true
system energy [1].

For instance, assume that the Lagrangian of a multi-body system is invariant with respect to spatial
rotations and translations and that there are no external or control forces acting on the base body. In
this case we have G � SEp3q and the momentum map

Jpqk, qk�1q �
�
AdT

g�1
k

0m
� 1

2
Sphξk�1qT rMprkq �Mprk � h∆rk�1qsvk�1 (65)

is exactly preserved by the integrator.
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ROS-based multi-body system simulation user interface

0 sec. 2 sec. 4 sec.

Figure 4: A simple three-link chain with hinge joints simulated by the symplectic integrator and visualized using the Robot
Operating System (ROS) user interface.

Order of Accuracy. The order of accuracy of the dynamics update depends on the accuracy of the
Lagrangian approximation. Since the trapezoidal approximations (56a) and (56b) are employed then it
can be shown (see [1]) that the discrete equations (64) are at least second order accurate. The trapezoidal
rule was chosen since it provides one of the simplest second-order scheme. Higher-order methods by proper
choice of the Lagrangian, termed symplectic Runge-Kutta (see [15, 26, 23]), are possible but not considered
in this work.

Group structure. Finally, the group structure is exactly preserved since each configuration gk is
reconstructed from the previous pose gk�1 and the discrete velocity ξk using the map τ which by def-
inition maps to the group SEp3q. This avoids issues with dissipation and numerical drift associated
with reprojection used for instance in explicit methods based on matrix orthogonality constraints or
quaternions.

5.5 Numerical Example

These numerical properties are illustrated with a simple multibody system consisting of three bodies in
3-D arranged in a chain connected with hinge joints (Figure 4). The system is free-floating with the
central body taken as the base body with index #0. No control or external forces are applied in order to
verify the integrator momentum conservation properties. Figure 5 illustrates the resulting time-histories
of the velocities ω and v, joint angles r, momentum components J (corresponding to the vector (65)) and
position x. The true trajectory was constructed using an Euler step with step-size h � 0.001 sec. while
the step-size for both the symplectic method (symp) and Euler method (euler) were h � 0.1 sec. The
figures show that momentum is exactly preserved by the symplectic method. The purpose of this study
is not to preform detailed comparisons but only to validate the basic numerical features of the method.
The main point is that these results motivate a further study to extend the coordinate-based convergence
conditions (41) to Lie group methods for mechanical systems.

6 Conclusion

This paper considered numerical properties of geometric integrators for multi-body systems related to
the choice of time-step h. Such methods exhibit favorable numerical stability and accuracy but require
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Figure 5: The proposed symplectic integrators preserve the momentum map J and remain highly accurate even at large
time-step (in this example h � 0.1 sec). The key issue which remains to be answered is how high can h be chosen while retaining
the solvability of the implicit time-stepping.

the solution of a potentially complex system of nonlinear equations. We showed that the solvability of
this system can be guaranteed by ensuring that h is chosen below an upper bound h̄ determined from the
dynamical model parameters and previous state of the system. The availability of such a bound a priori is
important since it could enable predictable computation times for real-time integration or optimal control
purposes. For instance, a number of previously developed optimal control methods based on geometric
integrators [36, 37, 38, 39, 27] could benefit from a formal method for establishing the resolution of discrete
trajectories used for optimization.

Further work is necessary to provide guidelines for the practical application of the proposed bounds.
While the derived upper limits for a single rigid body are simple and straightforward to use (i.e. they de-
pend on the inertia condition number and norm of velocity), the situation with general multibody systems
is more complex. We showed that second-order geometric integrators in either generalized coordinates
and or using SEp3q matrices directly can be used as a basis for provably solvable time-stepping. Further
study is necessary to establish a procedure for computing the dynamical model functions `0, . . . , `6 based
on the type of system under consideration.

While we considered variational integrators the proposed methodology could be extended to other
energy-consistent low-order methods such as the discrete null space method [40]. A more challenging
but equally important direction is to establish time-stepping bounds for more general systems involving
intermittent contacts [41, 42, 43, 44, 45, 46, 47].
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