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Abstract

This paper studies trajectory control of aerial vehicles equipped with robotic manipulators.
The proposed approach employs free-flying multi-body dynamics modeling and backstepping
control to develop stabilizing control laws for a class of underactuated aerial systems. Two
control methods are developed: coordinate-based and coordinate-free which are both generally
applicable to aerial manipulation tasks. A simulated hexrotor vehicle equipped with a simple
manipulator is employed to demonstrate the proposed techniques.

1 Introduction and Related Work

Motivated by recent progress in aerial robotics this paper considers the trajectory control of articu-
lated flying mechanisms capable of performing aerial manipulation tasks. Aerial systems equipped
with manipulator arms have a number of potential applications, e.g. to pick-up and transport vi-
tal supplies or to reach difficult-to-access locations and perform emergency repairs. The ability to
grasp and transport objects has recently been explored using small autonomous helicopters [1, 2]
operating outdoors and using multiple coordinated quadrotors [3] to assemble indoor structures. A
related problem is balancing an inverted rigid mass [4]. Equipping aerial vehicles with more complex
multi-degree of freedom manipulators remains challenging due their limited payload capacity and
inherent flight instability. Such issues are currently being explored in the context of the Mobile
Manipulating Unmanned Aerial Vehicle (MM-UAV) project [5, 6, 7] and are one of the main focii in
the recently established Airobots project [8] and (Aerial Robotics Cooperative Assembly System)
ARCAS project [9]. A related problem studied previously deals with the dynamics of helicopters
with external slung loads (e.g. [10, 11]). Various aerial manipulation aspects are currently being
considered, ranging from the ability to generate dynamic maneuvers mimicking avian grasping [12],
specifically designing vehicles to exploit contact with the environment [13], or investigating haptic
teleoperation [14]. Recent work more specifically focuses on the stability control of multi degree-
of-freedom aerial manipulators using linear control techniques [15] or nonlinear variable parameter
backstepping [16].

Motivated by these developments this work proposes a general nonlinear control strategy for
aerial vehicles equipped with one or more articulated manipulators. A standard model simplification
is to ignore rotational cross-coupling of lift forces and regard it as uncertainty during control [17,
18, 19]. Under such assumption our proposed methodology is applicable to any helicopter-type or
any other multi-rotor-type vehicle. The paper develops a general trajectory control methodology
with stability guarantees applicable to deterministic multi-body systems modeled as a tree-structure
and controlled with lift and torque forces generated by propellers, and torques generated by the
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manipulator joint motors. While related to existing work on free-flying multi-body systems [20, 21,
22] the problem we consider poses a number of additional challenges arising from underactuation,
gravity, and coupling between internal shape dynamics and overall system motion.

Standard methods for underactuated systems based on partial feedback linearization and strong
inertial coupling [23] are not applicable, i.e. practically speaking there is no strong coupling between
the uncontrolled accelerations in position space and the remaining degrees of freedom. On the other
hand, it has been shown that controlling the position and the angle around the translation force
input axis of a helicopter-like vehicle (modeled as single rigid body) is a choice that does not
result in unstable zero dynamics [17]. Choosing these coordinates as outputs then renders the
system differentially flat and feedback linearizable and appropriate virtual controls are found using
dynamic decoupling [24] (or equivalently known as dynamic extension [25]). Such an approach
is employed to control a number of quadrotor vehicles [26, 27, 28]. A number of methods have
been recently proposed for controlling aerial vehicles using backstepping for better efficiency and
disturbance rejection [19, 26, 29, 30, 31, 32, 33, 34]. A limitation of standard methods based on local
coordinates is that the resulting controller is not globally valid and can result in singularities and
unstable behavior, e.g. during inverted flight maneuvers. A method for tracking on manifolds [18]
was proposed to overcome these limitations and achieve almost globally stable behavior. In addition,
alternative methods for tracking on manifolds have been proposed [35, 36] that result in simpler
control laws but rely on stronger assumptions such as a fixed upper bound on the maximum position
or velocity error. Many of these methods have also been implemented successfully on a number of
real vehicles.

The specific contributions of this work are to: 1) provide a general multi-body aerial vehicle mod-
eling framework, 2) specify a coordinate change that enables tracking control with provable stability,
3) provide a tracking control law based on standard multi-body system models with minimum as-
sumptions or simplifications, 4) provide an alternative coordinate-free geometric formulation which
avoids singularities, 4) give guidelines for implementing tasks that require simultaneous tracking of
the system center-of-mass and the manipulator tip position. The proposed method currently does
not account for uncertainty and control input bounds saturation which are critical for applications
on real vehicles.

We first briefly describe the basic system model in §2. A standard coordinate-based control
strategy based on nonlinear backstepping control is developed in §3. A coordinate-free approach
is developed in §4 which explicitly models the system as a composite free-flying rigid-body using
rotation matrices rather than Euler angles. The methods are applied to a simulated hexrotor vehicle
equipped with a manipulator and demonstrated by designing and tracking an agressive reaching
maneuver §5.

2 System Dynamics

The free-flying vehicle is modeled as a mechanical system consisting of n � 1 interconnected rigid
bodies arranged in a tree structure. The configuration of body #i is denoted by gi P SEp3q, where

gi �

�
Ri pi
0 1



, g�1

i �

�
RTi �RTi pi
0 1



.

where pi P R3 denotes the position of its center of mass and and Ri P SOp3q denotes its orientation.
Its body-fixed angular and linear velocities are denoted by ωi P R3 and vi P R3. The pose inertia
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Figure 1: a) simulated model of hex-rotor vehicle, b) a prototype robot with 3-dof manipulator in development, c)
diagram of a typical multi-body aerial system, d) an imaginary scenario where aerial agility could play a key role.

tensor of each body is denoted by the diagonal matrix Ii defined by

Ii �
�

Ji 0
0 miI3,



where Ji is the rotational inertia tensor, mi is its mass, and In denotes the n-x-n identity matrix.
Each body is subject to potential energy, e.g. due to gravity, defined by the function V : SEp3q Ñ R.
Assume that the base body #0 is subject to forces from propellers that result in body-fixed torques
τR P R3 and lift force u ¡ 0 aligned with the constant body-fixed vertical axis e3 � p0, 0, 1q.

The system has n joints described by parameters r P M , where M � Rn is the shape space.
Following standard notation [37], denote the relative transformation between the base body#0 and
body#i by g0i : M Ñ SEp3q, i.e.

gi � g0g0iprq.

We assume that all joints are controlled using torque inputs denoted by τr P Rn. Torques around
the base and at the joints are combined in the torque vector

τ � pτR, τrq P R3�n.

Note that we assume a high-level form of the lift u and torques τR applied at the base body. In
practice, they will be generated by actuators such as rotors or propellers with could be subject to
internal dynamics as well as additional aerodynamic effects. For instance, a simplified quadrotor
model is based on rotor speed inputs Ωi, for i � 1, ..., 4, so that

u � ktpΩ
2
1 � Ω2

2 � Ω2
3 � Ω2

4q,

τR �

�� lktpΩ
2
4 � Ω2

2q
lktpΩ

2
3 � Ω2

1q
kmpΩ

2
1 � Ω2

2 � Ω2
3 � Ω2

4q

�� , (1)

where l, kt, km are constant model parameters. We assume that there is a known mapping, such
as (1) in the quadrotor case, between the high-level inputs u, τR and the actual physical actuator
inputs.
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3 Tracking control using standard coordinates

The system dynamics can be expressed in standard form (e.g. [37]) according to

Mspqsq :qs � Cspqs, 9qsq 9qs �Nspqs, 9qsq � Bspqsqu, (2)

where qs P R3 � R3 �M are the system coordinates

qs � pp0, η0, rq,

with p0 P R3 denoting the position of the base body #0 and η0 � pα, β, γq P R3 its three orientation
angles. Standard algorithms exist for computing the matrix Ms as well as the so called bias terms
Cspqs, 9qsq 9qs � Nspqs, 9qsq by treating pp0, η0q as the parameters of a virtual six-dimensional joint
connecting the base frame to a fixed inertial frame [38].

Let the matrices Mpη,Mpr,Mηη,Mηr,Mrr be defined by partitioning the mass matrix (27) ac-
cording to

Ms �

�� Mpp Mpη Mpr

Mηp Mηη Mηr

Mrp Mrη Mrr

�� , (3)

so that e.g. Mηp pairs 9η and 9p in the expression for the kinetic energy 1
2 9qTM 9q. Since Ms is symmetric

we have Myx � MT
xy. In addition, it is straightforward to verify that for systems operating in air

we have Mpp � mI3 where m is the total mass of the multi-body system defined by m �
°n
i�0mi.

3.1 Center-of-mass Coordinate Change

The equations of motion (2) using standard coordinates qs result in coupling between all degrees of
freedom. For the aerial systems considered, the position p0 is controlled by orienting the base body
in order to properly direct the main lift vector e3u in a desired direction. This becomes a non-trivial
task when the manipulator is moving since the reference body is subject to additional rotational
and translational forces arising from the joint motions. To deal with this coupling we transform the
system by change of coordinates that diagonalize the mass matrix Ms with respect to the position.
The rotation angle around the lift direction e3 and the transformed position coordinates will thus
become differentially flat outputs of the articulated multi-body system.

The first step is to combine the base and joint angles into the coordinates q � pη, rq P R3 �M
so that

qs � pp0, qq.

New velocities 9p are then chosen according to

9p � 9p0 � Spqq 9q, (4)

where
Spqq �Mpppqq

�1 rMpηpqq, Mprpqqs

which correspond to the new position p P R3 given by

p �
ņ

i�0

mi

m
pi. (5)
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It is clear that the new position p is simply the instantaneous center of mass of the whole system.
With this transformation the dynamics can be written according to

m:p � fpp, 9pq �Rpηqe3u, (6)

Mpqq:q � Cpq, 9qq 9q �Npq, 9qq � Bpqqτ � SpqqT e3u, (7)

where Rpηq is the rotation matrix of the base body parametrized by the angles η and the mass
matrix Mpqq is expressed as

M � r�S IsTMsr�S Is (8)

�

�
Mηη �MηpM

�1
pp Mpη Mηr �MηpM

�1
pp Mpr

Mrη �MrpM
�1
pp Mpη Mrr �MrpM

�1
pp Mpr

�
. (9)

The term fpp, 9pq in (6) denotes all other position forces. The simplest case is to assume that the
only external force is gravity, so that f � mag is constant.

The terms C,N , and B in (7) are computed using standard methods based on the new coordi-
nates q and matrix M . The key point is that the position dynamics (6) now depends only on the
rotation Rpηq of the base body, while the remaining rotational and joint dynamics are completely
decoupled from the position p. The effect of lift forces now enters the base dynamics though through
the additional term SpqqRpηqe3u in (7).

3.2 Trajectory Tracking Control

The tracking task is typically specified by a desired posture trajectory qsdp�q given by

qsdptq � rp0dptq, ηdptq, rdptqs.

Due to underactuation it is actually not possible to independently achieve both a desired position
and arbitrary desired orientation angles. In aerial tasks we are interested in tracking position while
specifying only one rotational degree of freedom, i.e. the rotation around the body-fixed e3-axis.
Thus, a natural choice of rotational coordinates are XYZ Euler angles η � pα, β, γq giving the
rotation

Rpηq � RxpαqRypβqRzpγq, (10)

where e.g. Rx denotes rotation around the body fixed x-axis. Note that the angles can be regarded
as yaw � pitch � roll angles where the yaw is performed first. This is in contrast to the more
standard aircraft attitude convention where yaw is performed last.

For control design purposes, the given output trajectory is converted into an equivalent center-
of-mass desired trajectory given by

rpdptq, γdptq, rdptqs

which is accomplished in a straightforward manner using forward kinematics.
The center-of-mass transformation puts the system in a form suitable for building upon existing

techniques (e.g. [19]) to handle the underactuated aerial base dynamics (6) and the fully actuated
manipulator dynamics (7) using standard manipulator control [37] and constructing a unified and
provably convergent methodology.

5



In order to simplify the control law design, the nominal dynamics are expressed according to

9x � Ax�Brf � bpα, β, uqs, (11)

where x P R6 denotes the state x � pp, 9pq, the control vector b : R3 Ñ R3 is defined by

bpα, β, uq � Re3u � u

�� sinβ
� cosβ sinα
cosα cosβ

��
and the matrices A and B are given by

A �

�
0 I
0 0

�
, B �

�
0
1
mI

�
. (12)

Note that the choice of angles (10) removes dependence on the yaw angle γ from the position
dynamics which enables a more straightforward control law derivation.

We next proceed by developing a backstepping approach for performing trajectory tracking
control. The term bpα, β, uq is regarded as a virtual control input for the subsystem (11) with
respect to the error

z0ptq � xptq � xdptq.

The first step is to define the desired force bd by

bdpt, xq � m:pdptq �Kz0ptq � f, (13)

for a chosen gain matrix K � rKp,Kds and an associated storage function

V0pt, xq �
1

2
zT0 Pz0 ¥ 0, (14)

where the positive definite matrix P satisfies the standard Lyapunov condition

P pA�BKq � pA�BKqTP � �Q,

for some positive definite matrix Q. A typical choice is to employ

P �

�
Kp εmI3
εmI3 mI3

�
, Q �

�
εKp εKd

εKd Kv � εmI3

�
,

where ε ¡ 0 is chosen sufficiently small to ensure P,Q ¡ 0. The Lyapunov function then evolves
according to

9V0 � �
1

2
zT0 Qz0 � pBTPz0q

T pb� bdq. (15)

At this point it is necessary to simultaneously achieve the orientation imposed by the force direction
bd as well as the remaining coordinates γd and rd. We thus define the storage function

V1 � V0 �
1

2
}z1}

2 ¥ 0,
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where the error z1 is defined by

z1pt, x, η, r, uq �

�� bpα, β, uq � bdpt, xq
γ � γdptq
r � rdptq

�� .
The evolution of V1 is computed according to

9V1 � 9V0 � zT1

�� 9b�mp
p3q
d �K 9z0

9γ � 9γdptq
9r � 9rdptq

�� (16)

Next, define the vector Y � p9b, 9γ, 9rq and its desired value Yd (i.e. the value which renders 9V1 negative
definite) by

Ydpt, x, η, r, uq �

�� mp
p3q
d �K 9z0�B

TPz0
9γdptq
9rdptq

���K1z1,

for some positive definite diagonal matrix K1. After substituting Yd in (16) we obtain

9V1 � �
1

2
zT0 Qz0 �

1

2
zT1 K1z1 � zT1 pY � Ydq.

Next, define the storage function

V2pt, x, η, u, 9η, 9uq � V1 �
1

2
}z2}

2 ¥ 0, (17)

where the error z2 is defined by

z2 � Y � Yd. (18)

Taking its derivative we obtain

9V2 � 9V1 � zT2

�
9Y � 9Yd

	
(19)

The desired value of 9Y is defined by the vector

Zd � 9Yd � z1 �K2z2 (20)

for a chosen positive definite diagonal matrix K2. Note that the actual expression for 9Yd is obtained
by substituting the dynamics of 9x to obtain

9Yd �

�� mp
p4q
d �KpABg �B 9g � :xdq �BTP 9z0

:γdptq
:rdptq

���K1 9z1. (21)

After substituting (21) in (19) we obtain

9V2 � �
1

2
zT0 Qz0 �

1

2
zT1 K1z1 �

1

2
zT2 K2z2 � zT2 p 9Y � Zdq (22)
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The relationship 9Y � Zd, or equivalently p:b, :γ, :rq � Zd, can now be satisfied directly based on the
following relationship, obtained after straightforward algebra,

:b � D

�� :u
:α
:β

��� 2 9uC

�
9α
9β

�
� F

�� 9α2

9α 9β
9β2

�� , (23)

where

C �

�� 0 � sinβ
� cosα cosβ sinα sinβ
� sinα cosβ � cosα sinβ

�� , D �
�
b{u uC

�
,

F �

�� 0 0 � cosβ
sinα cosβ 2 cosα sinβ sinα cosβ
� cosα cosβ 2 sinα sinβ � cosα cosβ

�� .
It can be verified that as long as β � π{2 the matrix D is full rank. The requirement 9Y � Zd is
then satisfied by setting������

:u
:α
:β

:γ
:r

������ �

���� D�1

$&%Zdp1:3q � 2 9uC

�
9α
9β

�
� F

�� 9α2

9α 9β
9β2

��,.-
Zdp4:n�4q

���� :� Γ,

where Zpi:jq denotes a sub-vector with elements from index i to j, e.g. Zp2:4q � pZ2, Z3, Z4q.
In view of the dynamics (7) the desired acceleration values are achieved by setting the torques

to
τ � B�1

�
MΓp2:n�4q � C 9q �N � ST b

�
.

In summary, we have obtained conditions on the required lift vector :b which translate to condi-
tions on :u, :α, :β. These conditions, combined with those on :γ, :r, are satisfied by setting the torques τ
and lift :u so that the time-derivative of the Lyapunov function (17) becomes negative definite (22).
As we will see this corresponds to asymptotic stability of the chosen output.

Proposition 1. The control law

:u � Γp1q

τ � B�1
�
MΓp2:n�4q � C 9q �N � ST b

�
.

(24)

achieves asymptotic output tracking of the given bounded desired signals pdptq, γdptq, rdptq where
pdptq is at least four-times differentiable and has bounded derivatives while γdptq and rdptq are at
least twice-differentiable and have bounded derivatives. The following two assumptions must hold:
1.) the initial state and reference signals are such that uptq � eTRptqT pm:pptq� fq ¡ 0 for all t ¡ 0,
2.) βptq � π{2 for all t ¡ 0.

Proof. Applying the control law (24) results in

9V2 � �
1

2
zT0 Qz0 �

1

2
zT1 K1z1 �

1

2
zT2 K2z2.
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The first step is to establish boundedness of the extended state px, q, 9q, u, 9uq. Since 9V2 ¤ 0 the error
signals z0ptq, z1ptq and z2ptq are uniformly bounded. Since z0 is bounded and xdptq is bounded we
have that xptq is uniformly bounded. Thus, bd is uniformly bounded and since γd, rd, and z1 are
bounded then then b, γ, and r are uniformly bounded, and hence u is also bounded. Thus, 9x is
bounded and since 9xd is bounded we have that 9z0 is bounded. Therefore, Yd is bounded. Since z2
is bounded then Y is bounded which implies that 9u, 9η, and 9r are bounded.

Next we examine the second derivative

:V2 � �zT0 Q 9z0 � zT1 K1 9z1 � zT2 K2 9z2,

where

9z0 � 9x� 9xd, 9z1 �

�� 9b� 9bd
9γ � 9γd
9r � 9rd

�� , 9z2 � 9Y � 9Yd (25)

Since 9Yd depends linearly on 9u, 9η, 9r then it is bounded. Furthermore, applying the control law we
have that 9Y � Zd which is also bounded since z1 and z2 are bounded. Thus, 9z2 is bounded and
therefore :V is bounded. This implies that 9V is uniformly continuous function of time. Since V is
lower bounded by zero, 9V is negative semi-definite and 9V is uniformly continuous, by the Lyapunov-
like lemma [39] we have 9V Ñ 0 and hence the tracking error dynamics are locally asymptotically
stable.

Note that we only guarantee stability when the control input u never approaches zero and when
the vehicle attitude never approaches β � π{2. This proposition relies on the strong assumption that
the initial conditions and reference signals are such that the resulting dynamics will not encounter
the two singularities.

4 Coordinate-free formulation

The previous formulation is based on multi-body models which regard the base body configuration as
a virtual joint motion described by six local coordinates. A more geometric approach is to consider
the dynamics of free-flying system as a composite floating rigid body. This has two practical benefits:
first, singularity at β � π{2 will be avoided and second, the resulting mass matrix will depend only
on the joint angle coordinates r instead of q which reveals additional structure.

Let qs � pp0, R, rq and ξs � pv0, ω, 9rq denote the system configuration and velocity, respectively,
where p0 is the position of the base body, R � R0 is its orientation, v0 and ω � ω0 are its body-fixed
linear and angular velocities. Note that with a slight abuse of notation qs was redefined from §3 to
signify that it now contains a rotation matrix R rather than a specific choice of coordinates η.

The Lagrangian of the system is defined by

Lspqs, ξsq �
1

2
ξTs Msprqξs �

ņ

i�0

mia
T
g pi, (26)

where the positions p1, ..., pn are regarded as functions of qs, and ag denotes acceleration due to
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gravity. The mass matrix Ms is defined by (e.g. see [37, 22])

Msprq �

��� I0 �
ņ

i�1

ATi IiAi
°n
i�1A

T
i IiJi°n

i�1 J
T
i IiAi

°n
i�1 J

T
i IiJi

��� (27)

using the adjoint notation Ai :� Adg�1
0i prq

, and Jacobian Ji :�
°n
j�1rg

�1
0i prqBrjg0iprqs

_. Various

efficient methods exist [38] to compute the Jacobians and the mass matrix recursively exploiting
the tree structure of the multi-body system.

4.1 Center-of-mass Coordinate Change

Analogously to §3.1 the position dynamics can be factored out by diagonalizing the mass matrix
with respect to the body-fixed linear velocity v0. The first step is to combine the base and joint
angles into the coordinates q � pR, rq P SOp3q �M and ξ � pω, 9rq P R3 � Rn so that

qs � pp0, qq, ξs � pv0, ξq.

The new position velocity v is then chosen according to

v � v0 � Sprqξ, (28)

where
Spqq � Mpppqq

�1 rMpηpqq, Mprpqqs

which correspond to the new center-of-mass position p P R3, i.e by the relationship 9p � Rv.

Proposition 2. The equations of motion in coordinates pp, v, q, ξq take the form:

m:p � mag �Re3u, (29)

9R � Rpω, (30)�
ω
9r

�
� Mprq�1

�
µ
ν

�
, (31)�

9µ
9ν

�
�

�
µ� ω

1
2ξ
T BMprqξ

�
� τ � SprqT e3u, (32)

Proof. It can be verified that the Lagrangian

Lpp, q, v, ξq �
1

2
mvT v �

1

2
ξTMprqξ �maTg p (33)

satisfies the relationship Lspqs, ξsq � Lpp, q, v, ξq. In addition, the following relationship holds
between the virtual work in qs � pp0, qq coordinates and pp, qq coordinates:»

xRe3u, δp0y � xτR, ηy � xτr, δry �

»
xRe3u, δpy �

@
τ � SprqT e3u, pη, δrq

D
, (34)

with η � pRT δRq_ and where the variational relationship

RT δp0 � RT δp� Sprq
�
η
δr

�
10



was employed. The variational principle

δ

»
Lpp, q, v, ξqdt� xRe3u, δxy �

@
τ � SprqT e3u, pη, δrq

D
� 0, (35)

then holds true and determines the system dynamics. The position dynamics is decoupled and
results in the standard form (29). The relation (31) is the Legendre transform from momenta
µ � BωL and ν � B

9rL to velocities. The momenta evolution (32) is then derived by taking variations
pδR, δrq under the standard (e.g. [40]) rigid-body constraint δω � 9η � ω � η.

Note that the main body and joint dynamics (32) were obtained in a form which leaves the
torques τ decoupled. The rotational coupling is instead at the momentum level through the Legendre
transform (31).

Before deriving the control law in §4.3 it is necessary to introduce an approach for defining the
error between two given rotation matrices intrinsically.

4.2 General Rotation Error

Our approach for treating the error in rotation without resorting to coordinates such as Euler
angles follows the development in [18] and more generally [41]. For greater generality, we provide
an abstract mapping with alternative choices for encoding this error. In particular, the Cayley map
and its higher-order versions provide a simple approach that leads to even further expansion of the
region of asymptotic stability.

More specifically, rrrors in rotation are encoded using a retraction map. The following definitions
will enable us to obtain a tracking control law which avoids the singularity at β � π{2.

Definition 4.1. The retraction map ϑ : R3 Ñ SOp3q is a smooth map around the origin such that
ϑp0q � I3.

The notion of retraction is used to approximate the difference between two given rotation matri-
ces Ra and Rb using a single vector, say ∆ P R3. One can visualize the manifold SOp3q as a curved
surface with Ra represented as a point at which the tangent vector ∆ is attached. The vector can
be “retracted” or “bent” onto to the surface until its tip reaches the surface at another point. The
vector whose tip touches Rb is taken as the difference between Ra and Rb. While there can be
arbitrary retractions for our purposes we are interested in maps which approximate the exponential
map.

Next we define a matrix-value map Cϑ which abstracts away the nonlinear terms in the retraction
map. In the following definitions the “hat” notation p� : R3 Ñ sop3q defined by

pω �

�� 0 �w3 w3

w3 0 �w1

�w2 w1 0

�� , (36)

and its inverse q� :Ñ sop3q Ñ R3 are employed.

Definition 4.2. The map Cϑ : R3 Ñ LpR3,R3q is such that, for a given R P SOp3q, the following
holds

R � I � pρCϑpρq,
where ρ � ϑ�1pRq P R3.
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There are three retraction map choices that we employ:

1. The exponential map ϑ � exp and its inverse ϑ�1 � log are defined by:

exppρq �

#
I3, ρ � 0

I3�
sin }ρ}
}ρ} pρ� 1�cos }ρ}

}ρ}2
pρ2, ρ � 0

(37)

logpRq �

"
0, θ � 0
θ

2 sin θ

�
R�RT

�q, θ � 0
(38)

Cexppρq �

#
I3, ρ � 0
sin }ρ}
}ρ} I3 �

1�cos }ρ}
}ρ}2

pρ, ρ � 0
, (39)

where θ � arccos tracepRq�1
2 .

2. The Cayley map ϑ � cay and its inverse ϑ�1 � cay�1 are defined by:

caypρq � I3 �
4

4 � }ρ}2

�pρ� pρ2
2



. (40)

cay�1pRq � �2
�
pI3 �Rq�1pI3 �Rq

�q (41)

Ccaypρq �
4

4 � }ρ}2

�
I3 �

pρ
2



. (42)

3. Higher-order Rodriguez’s parameters ϑ � rod2 and ϑ�1 � rod�1
2 (described in e.g. [42]).

The exponential and Cayley maps can represent rotation errors up to π radians. This range
can be extended to 2π using the modified Rodriguez’s parameters and to even larger ranges using
higher-order Cayley mappings. In our implementation we employ ϑ � cay since it has the simplest
form, without any trigonometric functions or singularities at the origin.

4.3 Trajectory Tracking Control

Similarly to §3.2 assume that the tracking task is specified in terms of desired center-of-mass posture,
i.e. by

rpdptq, Rdptq, rdptqs

where the rotation matrix Rd must satisfy the conditions

Rde3 � bdpx, tq{ud, ud � }bd}, (43)

where recall that (13)
bdpt, xq � m:pdptq �Kz0ptq � f.

This condition leaves one additional degree of freedom in Rd that can be specified by the user. In
practice, bd{ud serves as the third column of the matrix Rd while the other two columns can be
freely chosen (subject to the standard unit orthogonality constraints), e.g. to obtain a matrix Rd
that is closest to a given reference Rref (see [18] for an example).

We start with the Lyapunov function V0 already defined in (14) which evolves according to

9V0 � �
1

2
zT0 Qz0 � pBTPz0q

T pRe3u� bdq. (44)
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Using Definition 4.2 the following relationship holds

bd � RpRTdRq
T e3ud � R rI � pρCϑp�ρqs eud,

where ρ � ϑ�1pRTdRq, which is substituted in (44) to obtain

9V0 � �
1

2
zT0 Qz0 � pu� udqe

TRTBTPz0 � ρT
�
pRTBTPz0q � pCϑp�ρqeudq

�
. (45)

Since the orientation error ρ is now part of the backstepping stage, it is time to also introduce
the remaining coordinates, i.e. the joint angles r. We thus define the storage function

V1 � V0 �
1

2
}z1}

2 ¥ 0,

where the error z1 is defined by

z1 �

�� u� ud
ρ

r � rd

��
The evolution of V1 is computed according to

9V1 � 9V0 � zT1

�� 9u� 9udptq
ω �RTRdωdptq

9r � 9rdptq

�� , (46)

where pωd � RTd
9Rd. Next, define the vector Y � p 9u, ω, 9rq and its desired value by

Ydpt, x,R, r, uq �

�� 9udptq � eTRTBTPz0
RTRdωdptq � pRTBTPz0q � rCϑp�ρqeuds

9rdptq

���K1z1,

for some positive definite diagonal matrix K1. After substituting Yd in (46) we obtain

9V1 � �
1

2
zT0 Qz0 �

1

2
zT1 K1z1 � zT1 pY � Ydq.

Next, define the storage function

V2 � V1 �
1

2
}z2}

2 ¥ 0, (47)

where the error z2 is defined by

z2 � Y � Yd. (48)

Taking its derivative we obtain

9V2 � 9V1 � zT2

�
9Y � 9Yd

	
. (49)

The desired value of 9Y is defined by the vector

Zd � 9Yd � z1 �K2z2 (50)
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for a chosen positive definite diagonal matrix K2. After substituting (50) in (49) we obtain

9V2 � �
1

2
zT0 Qz0 �

1

2
zT1 K1z1 �

1

2
zT2 K2z2 � zT2 p 9Y � Zdq (51)

The relationship 9Y � Zd, or equivalently p:u, 9ω, :rq � Zd, can now be satisfied directly using the
dynamics (32). This is accomplished by substituting the relationship�

9µ
9ν

�
� 9Mprq

�
ω
9r

�
�Mprq

�
9ω
:r

�
into the dynamics (32) and setting the torque inputs to

τ � MprqZdp2:n�4q � 9Mprqξ �

�
µ� ω

1
2ξ
T BMprqξ

�
� SprqT e3u, (52)

The complete control law is summarized as follows.

Proposition 3. The control inputs

:u � Zdp1q

τ � MprqZdp2:n�4q � 9Mprqξ �

�
µ� ω

1
2ξ
T BMprqξ

�
� SprqT e3u,

(53)

achieve asymptotic output tracking of given bounded desired signals pdptq, Rdptq, rdptq where pdptq
is at least four-times differentiable and has bounded derivatives while Rdptq and rdptq are at least
twice-differentiable and have bounded derivatives. In addition, the following two assumptions must
hold: 1.) the initial state and reference signals are such that uptq � eT3Rptq

T pm:pptq � fq ¡ 0; 2.)
the control law is not applied when the angle of the rotation RTdR is exactly π.

Proof. The proof is very similar to the coordinate-based development in Proposition 1. The key
point is the Lyapunov function V2 is positive definite while the proposed control law renders its
time-derivative (51) negative definite.

Note that the two assumptions are natural and do not impose practical limitations: 1.) when
u � 0 the vehicle looses controllability and, as expected, the vehicle enters free-fall; 2.) the rotation
RTdR has an angle exactly π almost never since the set tπu is obviously measure-zero. Since the
state is determined by an imperfect sensor and always has small variations, the ill-posedness of the
retraction maps at π is not an issue in practice.

5 Application: hexrotor with a simple manipulator

The hexrotor shown in Figure 1 has three pairs of propellers fixed onto three spokes at 120 degrees.
A two-link manipulator with a low-cost gripper is suspended from the vehicle and can extend forward
between the two forward-facing spokes. Such an arrangement enables the manipulator tip to extend
beyond the vehicle perimeter which enables interesting reaching maneuvers.
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Ignoring the gripper motor, the manipulator has two degrees of freedom, i.e. r � pr1, r2q. The
forward kinematics are given by

g01prq �

����
c1 0 s1 � l1

2 s1
0 1 0 0

�s1 0 c1 � l1
2 c1

0 0 0 1

���
, (54)

g02prq �

����
c12 0 s12 � l2

2 s12 � l1s1
0 1 0 0

�s12 0 c12 � l2
2 c12 � l1c1

0 0 0 1

���
, (55)

g0tprq �

����
c12 0 s12 �l2s12 � l1s1
0 1 0 0

�s12 0 c12 �l2c12 � l1c1
0 0 0 1

���
, (56)

using the shorthand notation ci :� cos ri, si :� sin ri for i � 1, 2 and c12 :� cospr1 � r2q, s12 :�
sinpr1 � r2q.

We assume that a desired trajectory is specified using a desired center of mass xdptq P R3 and
manipulator tip position ydptq P R3. Let Ix : SEp3q Ñ R3 and IR : SEp3q Ñ SOp3q extract the
position and orientation of a given pose. The required orientation Rd and joint angles rd to track
yd are chosen to satisfy

yd � Ix pg0pxd, Rdqg0tprdqq . (57)

The rotation Rd is chosen during closed-loop tracking so that Rde � bd. This leaves an extra degree
of freedom in Rd, i.e. rotating the frame around the bd axis. A desired yd can be exactly achieved
by setting

c3 �
bd
}bd}

(58)

c2 �
c3 � pyd � xdq

}c3 � pyd � xdq}
(59)

Rd � r�c2 � c3 | � c2 | c3s (60)

The required angles r1, and r2 are found through the relationship

Ix pg0tprqq � RTd pyd � xdq, (61)

where only the first and third elements of the vectors on both sides are non-zero. The relation (61)
is solved in closed form using standard inverse kinematics techniques. There are a total of four
solutions pRd, rdq for any given pxd, ydq since (58) gives two choices and (61) results in a quadratic
equation with two roots.

Figures 2 and 3 show the simulated controller behavior during an aggressive reaching maneuver.
The vehicle is required to track a path pxdptq, ydptqq that extends the manipulator outside of the
vehicle propeller range in order to reach a desired final point.
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Figure 2: Several frames along the simulated hexrotor trajectory reaching a desired point in workspace.
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Figure 3: History of the states, control inputs, and Lyapunov function V of the scenario shown in Fig. 2
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6 Conclusion

This paper studies trajectory tracking of articulated aerial systems. The developed controller em-
ployed existing results in free-flying multi-body system modeling, backstepping control of underac-
tuated systems, and control on manifolds. The key contribution is to transform the system into a
suitable form that enables dynamic extension and energy-based control, avoiding the use of rota-
tional coordinates, proving stability for the coupled closed-loop system. Key issues that need to
addressed is the sensitivity of the resulting controller to unmodeled disturbances in view of their
effect on the higher-order derivatives present in the control law. Furthermore, bounds on the actu-
ators need to be formally considered since aerial manipulation tasks would require inputs close to
the vehicle operational envelope. Resolving these two issues is critical for rendering the proposed
methods useful for practical applications.
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