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Abstract—This paper studies trajectory control of aerial vehi-
cles equipped with robotic manipulators. The proposed approach
employs free-flying multi-body dynamics modeling and backstep-
ping control to develop stabilizing control laws for a general
class of underactuated aerial systems. A simulated hexrotor
vehicle with a simple manipulator is employed to demonstrate
the proposed techniques.

I. INTRODUCTION AND RELATED WORK

Motivated by recent progress in aerial robotics this paper
considers the trajectory control of articulated flying mecha-
nisms capable of performing aerial manipulation tasks. Aerial
systems equipped with manipulator arms have a number of po-
tential applications, e.g. to pick-up and transport vital supplies
or to reach difficult-to-access locations and perform emergency
repairs. The ability to grasp and transport objects has recently
been explored using small autonomous helicopters [1, 2] oper-
ating outdoors and using multiple coordinated quadrotors [3]
to assemble indoor structures. A related problem is balancing
an inverted rigid mass [4]. Equipping aerial vehicles with
more complex multi-degree of freedom manipulators remains
challenging due their limited payload capacity and inherent
flight instability. Such issues are currently being explored in
the context of the Mobile Manipulating Unmanned Aerial
Vehicle (MM-UAV) project [5, 6, 7] and are also of interest
in the recently established Airobots project [8] and (Aerial
Robotics Cooperative Assembly System) ARCAS project [9].
A related problem studied previously deals with the dynamics
of helicopters with external slung loads (e.g. [10]).

Motivated by these developments this work proposes a gen-
eral nonlinear control strategy for aerial vehicles equipped with
one or more articulated manipulators. A standard model sim-
plification is to ignore rotational cross-coupling of lift forces
and regard it as uncertainty during control [11, 12, 13]. Under
such assumption our proposed methodology is applicable to
any helicopter-type or any other multi-rotor-type vehicle. The
paper develops a general trajectory control methodology with
stability guarantees applicable to deterministic multi-body
systems modeled as a tree-structure and controlled with lift and
torque forces generated by propellers, and torques generated
by the manipulator joint motors. While related to existing work
on free-flying multi-body systems [14, 15, 16] the problem we
consider poses a number of additional challenges arising from
underactuation, gravity, and coupling between internal shape
dynamics and overall system motion.

Standard methods for underactuated systems based on par-
tial feedback linearization and strong inertial coupling [17]
are not applicable, i.e. practically speaking there is no strong
coupling between the uncontrolled accelerations in position
space and the remaining degrees of freedom. On the other
hand, it has been shown that controlling the position and the
angle around the translation force input axis of a helicopter-
like vehicle (modeled as single rigid body) is a choice that does
not result in unstable zero dynamics [11]. Choosing these co-
ordinates as outputs then renders the system differentially flat
and feedback linearizable and appropriate virtual controls are
found using dynamic decoupling [18] (or equivalently known
as dynamic extension [19]). Such an approach is employed to
control a number of quadrotor vehicles [20, 21, 22]. A number
of methods have been recently proposed for controlling aerial
vehicles using backstepping for better efficiency and distur-
bance rejection [13, 20, 23, 24, 25, 26, 27, 28]. A limitation
of standard methods based on local coordinates is that the
resulting controller is not globally valid and can result in
singularities and unstable behavior, e.g. during inverted flight
maneuvers. A method for tracking on manifolds [12] was
proposed to overcome these limitations and achieve almost
globally stable behavior. In addition, alternative methods for
tracking on manifolds have been proposed [29, 30] that result
in simpler control laws but rely on stronger assumptions such
as boundedness on the maximum position error. Many of these
methods have also been implemented successfully on a number
of real vehicles.

The specific contributions of this work are to: 1) provide
a general multi-body aerial vehicle modeling framework, 2)
specify a coordinate change that enables tracking control with
provable stability, 3) employ a coordinate-free formulation
which avoids singularities, 4) give guidelines for implement-
ing tasks that require simultaneous tracking of the system
center-of-mass and the manipulator tip position. The proposed
method currently does not account for uncertainty and control
input bounds saturation which are critical for applications on
real vehicles.

II. SYSTEM DYNAMICS

The aerial vehicle is modeled as a mechanical system
consisting of n � 1 interconnected rigid bodies arranged in
a tree structure. The configuration of body #i is denoted by
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Fig. 1. a) simulated model of hex-rotor vehicle, b) a prototype robot with
3-dof manipulator in development, c) diagram of a typical multi-body aerial
system, d) an imaginary scenario where aerial agility could play a key role.
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where xi P R3 denotes the position of its center of mass and
and Ri P SOp3q denotes its orientation. Its body-fixed angular
and linear velocities are denoted by ωi P R3 and vi P R3. The
pose inertia tensor of each body is denoted by the diagonal
matrix Ii defined by

Ii �
�

Ji 0
0 miI3,



where Ji is the rotational inertia tensor, mi is the mass of
body#i, and I3 denotes the 3x3 identity matrix. Each body
is subject to potential energy, e.g. due to gravity, defined by
the function V : SEp3q Ñ R. Assume that the base body #0
is subject to forces from propellers that result in body-fixed
torque τ P R3 and lift force u ¡ 0 aligned with the constant
body-fixed vertical axis e � p0, 0, 1q P R3.

The system has n joints described by parameters r P M ,
where M � Rn is the shape space. Following standard
notation [31], denote the relative transformation between the
base body#0 and body#i by g0i :M Ñ SEp3q, i.e.

gi � g0g0iprq.

We assume that all joints are controlled using torque inputs
denoted by τr P Rm.

A. Standard equations of motion in coordinates

The system dynamics can be written in standard form
(e.g. [31]) according to

Mpqq:q � Cpq, 9qq 9q � gpqq � Bpqqu, (1)

where q are chosen coordinates describing e.g. the pose of the
base body and all joints. While it is not difficult to express the
dynamics in the form (1), for control purposes we will employ
a slightly different formulation following previous methods for
control on manifolds [12, 32] that avoid issues with rotational
coordinates. In addition, we will employ a change of variables
resulting in a simplified form for (1).

A typical choice of coordinates convenient for obtaining the
dynamics is to employ the base body #0 as a reference. The
Lagrangian of the system can then be written according to

L0pq0, ξ0q �
1

2
ξT0 M0prqξ0 �

ņ

i�0

mia
T
g xi, (2)

where q0 � pR0,x0, rq, ξ0 � pω0,v0, 9rq, the positions
x1, ...,xn are regarded as functions of q0, and ag denotes
acceleration due to gravity. The mass matrix M0 is defined by
(e.g. see [31, 16])

M0prq �

��� I0 �
ņ

i�1

ATi IiAi
°n
i�1A

T
i IiJi°n

i�1 J
T
i IiAi

°n
i�1 J

T
i IiJi

��� (3)

using the adjoint notation Ai :� Adg�1
0i prq

, and Jacobian Ji :�
g�1
0i prqBrg0iprq.

B. Center-of-mass Coordinate Change

One can show that the equations of motion using coordi-
nates q0 and the Lagrangian L0 (2) result in coupling be-
tween all degrees of freedom (see §A). Despite this coupling,
the position x0 can in practice be fully controlled only by
orienting the base body in order to properly direct the main
lift vector eu. This is a non-trivial task since the reference
body is subject to additional rotational and translational forces
arising from the joint motions. We thus transform the system
by change of coordinates that diagonalize the mass matrix
with respect to the position. The rotation angle around the
lift direction e and the transformed position coordinates thus
become differentially flat outputs of the articulated multi-body
system.

Let the matrices J, C,Mω 9r,Mv 9r,M 9r 9r be defined by parti-
tioning the mass matrix (3) according to

M0prq �

�� J CT Mω 9r

C mI3 Mv 9r

MT
ω 9r MT

v 9r M
9r 9r

�� , (4)

where the total mass m is defined by m �
°n
i�0mi. Our goal

is to isolate the position dynamics which can be accomplished
through diagonalization with respect to the v0-coordinates.
This is equivalent to choosing new velocities ξ � pω,v, rq
where

ω � ω0, (5)
v � v0 � pMv 9r 9r � Cωq {m, (6)



which correspond to the new configuration q � pR,x, rq,
where

R � R0, (7)

x �
ņ

i�0

mixi. (8)

It is clear that the new position x is simply the instantaneous
center of mass of the whole system. Note that we have used
the redundant notation R � R0 and ω � ω0 only to maintain
consistency across all coordinates.

Proposition 1. The equations of motion in coordinates pq, ξq
take the form:

9R � Rω, (9)
m:x � mag �Reu, (10)�
ω
9r

�
�Mprq�1

�
µ
ν

�
, (11)�

9µ
9ν

�
�

�
µ� ω

1
2ξ
T
BMprqξ

�
�

�
τ � CTeu{m
τr �MT

v 9reu{m

�
, (12)

where ξ � pω, 9rq and the mass matrix Mprq is

M �

�
J� CTC{m Mω 9r � CTMv 9r{m

MT
ω 9r �MT

v 9rC{m M
9r 9r �MT

v 9rMv 9r{m

�
. (13)

Note that the main body and joint dynamics (12) were
obtained in a form which leaves the body torques τ and joint
torques τr decoupled. The rotational coupling is instead at the
momentum level through the Legendre transform (11) which
will be useful for the proposed passivity-based control design.

III. TRAJECTORY TRACKING

The tracking problem can be specified in a number of ways
depending on the given task and available degrees of freedom.
The manipulator end effector(s) frame is given by gt P SEp3q
defined by

gt � g0g0tprq, (14)

where g0t :M Ñ SEp3q is the local workspace transformation.
One way to formulate the tracking task is using a subset
or all of the end-effector desired pose gtd. For instance, if
dimpMq � 2 typically all six degrees of freedom of gtd can be
satisfied subject to workspace constraints since there are four
additional degrees of freedom that in principle can be satisfied
using the aerial vehicle controls pu, τ q P R4. Alternatively, it
might be advantageous to specify a desired center of mass
xd and desired joint angles rd and track them directly. In
either case, tracking gtd can be accomplished by tracking
corresponding pxd, Rd, rdq, where Rd should satisfy some
additional conditions related to the system underactuation.

In particular, employing the notation of [12], in the context
of helicopter backstepping, the desired rotation Rd is chosen
to satisfy

Rde � α{ud, ud � }α}, (15)

where

α � m:xd � kxpx� xdq � kvp 9x� 9xdq �mag.

This condition leaves one additional degree of freedom in
Rd that can be specified by the user. Note that there could
be multiple manipulators tracking their respective desired tip
positions.

A. General Rotation Error

Errors in rotation are encoded using a retraction map ϑ :
R3 Ñ SOp3q, i.e. a smooth map around the origin such that
ϑp0q � I , where I is the identity. In the following definitions
the “hat” notation p� : R3 Ñ sop3q defined by

pω �

�� 0 �w3 w3

w3 0 �w1

�w2 w1 0

�� , (16)

and its inverse q� :Ñ sop3q Ñ R3 are employed.

Definition III.1. The map Bϑ : SOp3q Ñ LpR3,R3q is such
that, for a given R P SOp3q, the following holds

R � I � pρBϑpRT q,
where ρ � ϑ�1pRq P R3. There are three retraction map
choices:

1) The exponential map ϑ � exp and its inverse ϑ�1 � log
are defined by:

exppρq �

#
I3, ρ � 0

I3�
sin }ρ}
}ρ}

pρ� 1�cos }ρ}
}ρ}2

pρ2, ρ � 0
(17)

logpRq �

"
0, θ � 0
θ

2 sin θ

�
R�RT

�q, θ � 0
(18)

BexppRq �

#
I3, ρ � 0
sin }ρ}
}ρ} I3 �

1�cos }ρ}
}ρ}2

pρ, ρ � 0
, (19)

where θ � arccos tracepRq�1
2 .

2) The Cayley map ϑ � cay and its inverse ϑ�1 � cay�1

are defined by:

caypρq � I3 �
4

4� }ρ}2

�pρ� pρ2
2



. (20)

cay�1pRq � �2
�
pI3 �Rq�1pI3 �Rq

�q (21)

BcaypRq �
4

4� }ρ}2

�
I3 �

pρ
2



. (22)

3) Higher-order Rodriguez’s parameters ϑ � rod2 and
ϑ�1 � rod�1

2 (described in e.g. [33]).

The exponential and Cayley maps can represent rotation
errors up to π radians. This range can be extended to 2π using
the modified Rodriguez’s parameters and to even larger ranges
using higher-order Cayley mappings. In our implementation
we employ ϑ � cay since it has the simplest form, without
any trigonometric functions or singularities at the origin.



B. Tracking errors

The control law is based on the error terms

ex � x� xd, eu � u� ud,

eω � ω �RTRdωd, eR � ϑ�1pRTdRq.

Additionally, define the modified terms re
9u P R, reω P R3 by

re
9u � 9eu �

1

ku
eTRT 9ex, (23)

reω � eω � 1

kR

�
Bϑ
�
RTdR

�
eud

�
�RT 9ex. (24)

These terms are key in obtaining a stable controller despite
the non-trivial system underactuation.

C. Control Law

Proposition 2. The control inputs pu, τ , τrq given by

:u � �kueu � k
9ure 9u � :ud �

1

ku

�
:eTxRe� 9eTxRpω � eq

�
,�

τ
τr

�
�

�
�kRR

TRdeR � kωreω � µ� ω � CTeu{m

�krer � k
9r 9er �

1
2ξ
T
BMprqξ �MT

v 9reu{m

�

� 9b�
1

2
9Mprq

� reω
9er

�
,

where

b�Mprq

�
RTRd

�
ωd �

1
kR
BϑpR

T
dRqeud �RT 9ex

	
9rd

�
(25)

asymptotically track a given desired trajectory
pxdptq, Rdptq, rdptqq.

Proof: see Appendix §C

D. Relation to other work.

Our approach for treating the error in rotation without
resorting to coordinates such as Euler angles follows the
development in [12]. For greater generality, we provide a
general mapping with alternative choices for encoding this
error. In particular, the Cayley map and its higher-order
versions provide a simple alternative approach that leads to
even further expansion of the region of asymptotic stability.

IV. APPLICATION: HEXROTOR WITH A SIMPLE
MANIPULATOR

The hexrotor shown in Figure 1 has three pairs of propellers
fixed onto three spokes at 120 degrees. A two-link manipulator
with a low-cost gripper is suspended from the vehicle and can
extend forward between the two forward-facing spokes. Such
an arrangement enables the manipulator tip to extend beyond
the vehicle perimeter which enables interesting reaching ma-
neuvers.

Ignoring the gripper motor, the manipulator has two degrees
of freedom, i.e. r � pr1, r2q. The forward kinematics are given

by

g01prq �

����
c1 0 s1 � l1

2 s1
0 1 0 0

�s1 0 c1 � l1
2 c1

0 0 0 1

���
, (26)

g02prq �

����
c12 0 s12 � l2

2 s12 � l1s1
0 1 0 0

�s12 0 c12 � l2
2 c12 � l1c1

0 0 0 1

���
, (27)

g0tprq �

����
c12 0 s12 �l2s12 � l1s1
0 1 0 0

�s12 0 c12 �l2c12 � l1c1
0 0 0 1

���
, (28)

using the shorthand notation ci :� cos ri, si :� sin ri for
i � 1, 2 and c12 :� cospr1 � r2q, s12 :� sinpr1 � r2q.

We assume that a desired trajectory is specified using a
desired center of mass xdptq P R3 and manipulator tip position
ydptq P R3. Let Ix : SEp3q Ñ R3 and IR : SEp3q Ñ SOp3q
extract the position and orientation of a given pose. The
required orientation Rd and joint angles rd to track yd are
chosen to satisfy

yd � Ix pg0pxd, Rdqg0tprdqq . (29)

The rotation Rd is chosen during closed-loop tracking so that
Rde � α. This leaves an extra degree of freedom in Rd, i.e.
rotating the frame around the α axis. A desired yd can be
exactly achieved by setting

c3 �
α

}α}
(30)

c2 �
c3 � pyd � xdq

}c3 � pyd � xdq}
(31)

Rd � r�c2 � c3 | � c2 | c3s (32)

The required angles r1, and r2 are found through the relation-
ship

Ix pg0tprqq � RTd pyd � xdq, (33)

where only the first and third elements of the vectors on both
sides are non-zero. The relation (33) is solved in closed form
using standard inverse kinematics techniques. There are a total
of four solutions pRd, rdq for any given pxd,ydq since (30)
gives two choices and (33) results in a quadratic equation with
two roots.

Figures 2 and 3 show the simulated controller behavior dur-
ing an aggressive reaching maneuver. The vehicle is required
to track a path pxdptq,ydptqq that extends the manipulator
outside of the vehicle propeller range in order to reach a
desired final point.

V. CONCLUSION

This paper studies trajectory tracking of articulated aerial
systems. The developed controller employed existing results in
free-flying multi-body system modeling, backstepping control
of underactuated systems, and control on manifolds. The key



Fig. 2. Several frames along the simulated hexrotor trajectory reaching a
desired point in workspace.
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żd

0 1 2
0

2

4

sec.

m

 

 x
xd

0 1 2
0

1

2

sec.

 

 y

yd

0 1 2
−0.2

0

0.2

sec.

 

 z
zd

0 1 2
−2

0

2

sec.

N
m

 

 

τx

0 1 2
−2

0

2

sec.

 

 

τy

0 1 2
−2

0

2

sec.

 

 

τz

0 1 2
11

12

13

sec.

N

 

 

ucommanded

0 1 2
−2

0

2

sec.

 

 

r1
r1d

0 1 2
−4

−2

0

sec.

 

 

r2
r2d

0 1 2
0

5

10

sec.

 

 

V

0 1 2
−2

0

2

sec.

 

 

τr1

0 1 2
−1

−0.5

0

sec.

 

 τr2

Fig. 3. History of the states, control inputs, and Lyapunov function V of
the scenario shown in Fig. 2

contribution is to transform the system into a suitable form
that enables dynamic extension and energy-based control,
avoiding the use of rotational coordinates, proving stability
for the coupled closed-loop system. Key issues that need
to addressed is the sensitivity of the resulting controller to
unmodeled disturbances in view of their effect on the higher-
order derivatives present in the control law. Furthermore,
bounds on the actuators need to be formally considered since
aerial manipulation tasks would require inputs close to the
vehicle operational envelope. Resolving these two issues is
critical for rendering the proposed methods useful for practical
applications.

APPENDIX

A. Dynamics of a free-floating multi-body vehicle

The variational principle used to obtain the dynamics is

δ

»
L0pq0, ξ0qdt�

»
xf0, δq0y � 0, (34)

where f0 � pR0τ , R0eu, τrq. The resulting equations of
motion are obtained by taking variations δξ0 � pδω0, δv0, δrq
and δq0 � pδR0, δx0, δrq which are constrained by δω �
9η � ω � η and δv � �η � v �RT d

dtδx, for η � pRT δRqq.
Using the momenta µ0 � Bω0

L0, p0 � Bv0L0 and ν � B
9rL

the resulting dynamics can be expressed as:��ω0

v0
9r

�� �M0prq
�1

�� µ0

p0
ν0

�� (35)

�� 9µ0

9p0
9ν0

�� �

��µ0�ω0 � p0�v0
p0�ω0

1
2ξ0

T BM0prqξ0

���

��RT0 BR0V
RT0 Bx0

V
BrV

���

�� τeu
τr

�� .
(36)

The system evolution is then fully determined by adding the
reconstruction equations 9R0 � R0ω0 and 9x0 � R0v0.

B. Proof of Proposition 1

It can be verified that a Lagrangian

Lpq, ξq �
1

2
mvTv �

1

2
ξ
T
Mprqξ �maTg x (37)

satisfies the relationship L0pq0, ξ0q � Lpq, ξq. The variational
principle

δ

»
Lpq, ξqdt�

»
xf , δqydt � 0, (38)

can then be used to obtain the dynamics, where

xf , δqy �xReu, δxy

� xτ�CTeu{m,RT δRy�xτr�M
T
v 9reu{m, δry.

The position dynamics is decoupled and results in the
standard form (10). The relation (11) is the Legendre transform
from momenta µ � BωL and ν � B

9rL to velocities. The
momenta evolution (12) is then derived by taking variations
pδR, δrq under the standard (e.g. [34]) rigid-body constraint
δω � 9η � ω � η where η � pRT δRqq.
C. Proof of Proposition 2

Define the Lyapunov function

V �
kx
2
}ex}

2 �
kR
2
}eR}

2 �
kr
2
}er}

2 �
ku
2
e2u

�
m

2
} 9ex}

2 �
1

2

� reω
9er

�T
Mprq

� reω
9er

�
�

1

2
re2

9u.

(39)



Differentiating, and using the properties of the retraction
map (e.g. [32])

9V �kxe
T
x 9ex � kR

�
RTRdeR

�T
eω � kre

T
r 9er � kueu 9eu

�m 9eTx p:x� :xdq

�

� reω
9er

�T ��
9µ
9ν

�
� 9b�

1

2
9Mprq

� reω
9er

�

� re

9u
d

dt
re

9u.

(40)

Using the fact that

RTα � RTRdeud �
�
I � xeRBϑpRTdRq� eud,

we have

kke
T
x 9ex �m 9eTx p:x� :xdq �

� �kv} 9ex}
2 � pRT 9exq

T peu�RTαq

� �kv} 9ex}
2 � pRT 9exq

T
�
eue� eR �BϑpR

T
dRqeud

�
,

(41)

Then, after substituting (41) and the angular and joint dynam-
ics (12)

9V �� kv} 9ex}
2 � kR

�
RTRdeR

�T reω � kre
T
r 9er � kueu 9eu

�

�reω
9er

�T�� µ� ω � τ � CTeu{m
1
2ξ
T
BMprqξ � τr �MT

v 9reu{m

�

� 9b�
1

2
9Mprq

� reω
9er

�

� re

9u

�
:u� :ud �

d

dt

1

ku
9eTxRe



.

(42)

Finally, after substituting the control pτ , u, τrq,

9V �� kv} 9ex}
2 � kω}reω}2 � k

9r} 9er}
2 � k

9upre 9uq
2. (43)

Since 9V ¤ 0 with equality only when the extended error
state is zero, by Barbalat’s lemma the system is asymptotically
stable.
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