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Abstract— This paper considers trajectory tracking of ve-
hicles modeled as underactuated rigid bodies. The goal is
to obtain a simple and intuitive convergent controller that
avoids issues with tuning gains or using coordinates associated
with singularities. The main novelty lies in the derivation
of a generally applicable control law that handles external
disturbances.

I. INTRODUCTION

This paper studies trajectory tracking for mechanical sys-
tems modeled as rigid bodies with full attitude control and
one translational force input. Typical applications include
control of underactuated aerial or underwater vehicles and
nanosatellites. This is a classical problem in underactuated
mechanics and has received much attention, especially re-
cently with the popularization of aerial vehicles such as quad-
copters. Despite being a very specific problem, a plethora of
different control methods have been proposed and there does
not seem to be a consensus about the most appropriate and
generally applicable approach. The purpose of this work is to
propose a simple yet general method equipped with stability
guarantees and try to clarify its advantages and limitations
in context of existing techniques.

Tracking for an underactuated rigid body is a nontrivial
problem. First, due to underactuation only a subset of the
degrees of freedom can be freely specified. It has been
shown that controlling the position and the angle around
the translation force input axis of the vehicle is a choice
that does not result in unstable zero dynamics [1]. Choosing
these coordinates as outputs then renders the system feed-
back linearizable and appropriate virtual controls are found
using dynamic decoupling [2] (or equivalently known as
dynamic extension [3]). For the system considered in this
paper this procedure entails differentiating the equations of
motion twice and inserting integrators in front of the thrust
input. Such a feedback linearization approach has also more
recently been applied to quadrotor vehicles [4], [5], [6].
Special structure in the system can be exploited for better
efficiency (e.g. lower torque and thrust) by methods other
than feedback linearization alone. In particular, backstepping
is used to successively stabilize parts of the system enabling
more efficient feedback loop closing in stages. A number of
methods have been recently proposed for controlling aerial
vehicles using backstepping. The majority of these works
are based on local coordinate transformations and successive
coordinate-wise splitting and backstepping procedures [7],

[4], [8], [9], [10], [11], [12], [13]. A subset of these de-
velopments also note that backstepping results in improved
disturbance rejection in the presence of noise [14], [10],
[6], [12]. In addition, the effects of control bounds have
also been formally considered [15]. Backstepping method for
tracking on manifolds [16] have been proposed to deal with
coordinate singularities and achieve almost globally stable
behavior. Other related methods for tracking on manifolds
have also been developed [17], [18], [19] that result in
simpler control laws but rely on stronger assumptions. Many
of these methods have also been implemented successfully
on a number of real vehicles.

Finally, we note that the area of unmanned vehicles is
rapidly growing and many new improvements in both hard-
ware and control are possible. Most recent examples, among
many, include achieving precise control through iterative
refinement based on experiments [20] or employing variable-
pitch rotors for greater stability and control responsive-
ness [21].

The paper is organized as follows. The problem is for-
mulated in §II and the tracking control along with stability
guarantees for the nominal disturbance-free system are given
in §III and for the full system in §IV. Applications to a
simulated aerial vehicle and a simulated nanosatellite are
presented in §V.

II. PROBLEM FORMULATION

The vehicle is modeled as a single underactuated rigid
body with position p P R3 and orientation matrix R P SOp3q.
The body-fixed angular velocity is denoted by ω P R3.
The vehicle has mass m and rotational inertia tensor J.
The state space of the vehicle is S � SEp3q � R6 with
s � ppR, pq, pω, 9pqq P S denoting the whole state of the
system.

The vehicle is actuated with control torques τ P R3 and a
control force u ¡ 0 applied in a body-fixed direction defined
by the unit vector e P R3. The vehicle is subject to known
external forces and torques denoted by the functions f :
R3�R3 Ñ R3 and fω : S Ñ R3, respectively. In addition, it
is subject to disturbances δ : R3�R3 Ñ R3 and δω : S Ñ R3

which are unknown but bounded according to

}δpp, 9pq} ¤ ρpp, 9pq, }δωpsq} ¤ ρωpsq, (1)

for some known positive functions ρ and ρω . The equations



of motion are

m:p � Reu� fpp, 9pq � δpp, 9pq, (2)
9R � Rpω, (3)
J 9ω � Jω � ω � τ � fωpsq � δωps, τq, (4)

where the map p� : R3 Ñ sop3q is defined by

pω �

�
� 0 �ωz ωy

ωz 0 �ωx

�ωy ωx 0

�
� . (5)

Tracking for the nominal disturbance-free system is studied
first, after which the full model is considered.

The Tracking Problem: The goal is to track a trajectory
specified by the functions pRd, pdq : r0, T s Ñ SEp3q.
Motivated by considerations noted in earlier work employing
feedback linearization our proposed approach is concerned
with controlling only the position p and one degree of free-
dom of the orientation R, i.e. rotations around the axis e. For
clarity, our development will focus on position tracking only.
Controlling the additional rotational degree of freedom can
be accomplished in the same framework by augmenting the
Lyapunov-based design with terms encoding either desired
Euler angles [7] or rotation matrices directly [16].

III. TRACKING FOR THE NOMINAL SYSTEM

We first consider the simpler case without state-dependent
external forces and without disturbances, i.e. when

fpp, 9pq � f � agm, δpp, 9pq � 0, fωpsq � 0, δωpp, 9pq � 0,

where ag P R3 is the gravity acceleration vector. In order to
simplify the control law design, the nominal dynamics are
expressed according to

9x � Ax�Brf � gpR, uqs, (6)
9R � Rω̂, (7)

9ω � J�1 rJω � ω � τ s , (8)

where x P R6 denotes the state x � pp, 9pq, the control vector
g : SOp3q � R Ñ R3 is defined by gpR, uq � Reu, and the
matrices A and B are given by

A �

�
0 I
0 0

�
, B �

�
0
1
mI

�
. (9)

The term gpR, uq is regarded as a virtual control input for
the subsystem (6) with respect to the error

z0ptq � xptq � xdptq.

The first step is to define the desired force gd by

gdpt, xq � m:pdptq �Kz0ptq � f, (10)

where the gain matrix K satisfies the standard Lyapunov
condition

P pA�BKq � pA�BKqTP � �Q,

for some positive definite symmetric matrices P and Q. The
associated storage function

V0pt, xq �
1

2
zT0 Pz0 ¥ 0,

then evolves according to

9V0 � �
1

2
zT0 Qz0 � pBTPz0q

T pg � gdq. (11)

The next step is to define the storage function

V1pt, x,R, uq � V0 �
1

2
}z1}

2 ¥ 0,

where the error z1 is defined by

z1pt, x,R, uq � gpR, uq � gdpt, xq.

The evolution of V1 is computed according to

9V1 � 9V0 � zT1

�
9g �mp

p3q
d �K 9z0

	
(12)

Next, the desired value of 9g is defined according to

adpt, x,R, uq � mp
p3q
d �K 9z0�B

TPz0�k1z1,

for some k1 ¡ 1. After substituting ad in (12) we obtain

9V1 ¤ �
1

2
zT0 Qz0 �

k1
2
zT1 z1 � zT1 p 9g � adq.

Next, define the storage function

V2pt, x,R, u, ω, 9uq � V1 �
1

2
}z2}

2 ¥ 0, (13)

where the error z2 is defined by

z2 � 9g � ad (14)
� Rp pweu� e 9uq � ad. (15)

Taking its derivative we obtain

9V2 � 9V1 � zT2 p:g � 9adq (16)

The desired value of :g is defined by the vector

bd � 9ad � z1 � k2z2

� mp
p4q
d �KpA2x�ABg �B 9g � :xdq

�BTP 9z0 � k1 9z1 � z1 � k2z2,

(17)

for some k2 ¡ 0. After substituting (17) in (16) we obtain

9V2 ¤ �
1

2
zT0 Qz0 �

k1
2
zT1 z1 �

k2
2
zT2 z2 � zT2 p:g � bdq (18)

The relationship :g � bd can be satisfied directly by noting
that

:gpR, uq � R
�
ω̂2eu� 2ω̂ 9u� 9ω � eu� e:u

�
(19)

and will hold true if one could choose 9ω and :u to satisfy

9ω � eu� e:u � RT bd � ω̂2eu� 2ω̂ 9u. (20)

Therefore, in view of the dynamics (4), the control law

τ � Jre� pRT bd � ω̂2eu� 2ω̂ 9uq{us � Jω � ω � fωpsq,

:u � eT pRT bd � ω2eu� 2ω̂ 9uq,
(21)



results in :g � bd and hence (18) reduces to 9V2 ¤ 0 which
proves that the nominal system is asymptotically stable.

To summarize, the control law (21) was designed by
regarding the force vector gpR, uq as a virtual input to
the position dynamics and performing backstepping until
the control variables :u and τ appeared explicitly and set
to satisfy the asymptotic stability requirements of the full
system expressed by the Lyapunov function (13) and its
negative derivative (18). The actual input u will in practice
be computed by integrating :u.

Setting the controls prematurely.: Derivatives of the
control input u appear for a reason. It is tempting to use
static choice such as

u � pReqT gd, (22)

since it corresponds to projecting the available control vector
onto the desired control vector. In general, such a choice is
only possible under restrictive assumptions on the bounded-
ness of the uncontrollable terms. Instead, such complications
can be avoided by exploiting the structure of the dynamics by
regarding the terms u, 9u as additional dynamic compensation
state variables while :u becomes an input to the system.
Thus, our approach builds upon works such as [1], [7],
[16] to extend the control design in the presence of external
disturbances.

IV. DISTURBANCE ATTENUATION CONTROL

We next consider the robust control of the full system
subject to unknown disturbance forces. The system dynam-
ics (2)-(4) are equivalently expressed according to

9x � Ax�BrgpR, uq � fpxq � δpxqs (23)
9R � Rω̂ (24)

9ω � J�1 rJω � ω � τ � fωpsq � δωpsqs , (25)

employing the definitions (9). The term gpR, uq is again
regarded as a virtual control input for the subsystem (23).
Its desired value gd is chosen to minimize the error

z0ptq � xptq � xdptq.

and to suppress the disturbance δpxq, and is defined by

gdpt, xq � :pd �Kz0 � fpxq � η0pxq
BTPz0
}BTPz0}

, (26)

where η0pxq ¥ ρpxq. Similarly to §III the gain matrix K and
symmetric positive definite matrix P are chosen to satisfy the
standard Lyapunov condition

P pA�BKq � pA�BKqTP � �Q,

for some positive definite symmetric matrix Q. The storage
function

V0pt, xq �
1

2
zT0 Pz0,

then evolves according to

9V0 � �
1

2
zT0 Qz0 � pBTPz0q

T δ � η0}B
TPz0}

� pBTPz0q
T pg � gdq

¤ pBTPz0q
T pg � gdq,

(27)

where the inequality follows from the relationship

}δ} ¤ ρ ¤ η0.

The following definition will enable a compact derivation:
Definition 4.1: Let ψpx, �q be a function of xptq and other

time-dependent variables. The function ψ̄px, �q then denotes
the total time-derivative of ψ with respect to all arguments
but x, i.e.

ψ̄ � 9ψ � Bxψ � 9x.
Next, define the error

z1pt, x,R, uq � gpR, uq � gdpt, xq,

and the storage function

V1pt, x,R, uq � V0 �
1

2
}z1}

2 ¥ 0.

Taking its derivative we obtain

9V1 � 9V0 � zT1 t 9g � ḡd�Bxgd �rAx�Bpf�g�δqsu (28)

Next, a desired value of 9g is defined by the vector

adpt, x,R, uq �ḡd �BTPz0�k1z1�Bxgd �rAx�Bpf�gqs

� η1pxq
BT Bxg

T
d z1

}BT BxgTd z1}
,

for some k1 ¡ 0, η1pxq ¥ ρpxq, which is substituted in (28)
to obtain

9V1 ¤ �
1

2
zT0 Qz0 �

k1
2
zT z1 � zT1 p 9g � adq.

Next, define the error

z2 � 9g � ad,

and the storage function

V2pt, x,R, u, ω, 9uq � V1 �
1

2
}z2}

2 ¥ 0.

Taking its derivative we obtain

9V2 � 9V1 � zT2 t:g�ād�Bxad �rAx�Bpf�g�δqsu (29)

The desired value of :g is defined according to

bd �ād�z1�k2z2�Bxad �rAx�Bpf�gqs

� η2pxq
BT Bxa

T
d z2

}BT BxaTd z2}

for some k2 ¡ 0, η2pxq ¡ ρpxq, which is substituted in (29)
to obtain

9V2 ¤ �
1

2
zT0 Qz0 �

k1
2
zT1 z1 �

k2
2
zT2 z2 � zT2 p:g � bdq (30)

The last term on the right-hand side in (30) can be rendered
negative by directly setting the control variables τ and :u.
Employing the relationships (19)-(20) this is accomplished
by the control law

τ � Jre�pRT bd�ω̂
2eu�2ω̂ 9uq{us�Jω � ω�fωpsq�ν,

:u � eT pRT bd � ω2eu� 2ω̂ 9uq,
(31)
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Fig. 1. An example of quadrotor path tracking.

where ν is the disturbance rejection term defined by

ν � η3pxq
J�1êRT z2
}J�1êRT z2}

,

for some η3 ¥ ρω . The controls (31) result in 9V2 ¤ 0 which
proves that the full system is asymptotically stable.

Singularities.: Note that the control law is undefined
when the disturbance rejection denominator terms evaluate
to zero, i.e. when }BTPz0} � 0, }BT Bxg

T
d z1} � 0,

}BT Bxa
T
d z2} � 0, or }J�1êRT z2} � 0. In such cases, the

whole fraction is set to zero and the control law is applied
as usual. It is well known [22] that in practice this leads
to chattering, a behavior that can be alleviated by a slight
modification of the control law to remove singularities. While
we do not provide the details, such an extension is readily
applicable in our proposed setting.

V. APPLICATIONS

A. Quadrotor

A standard quadrotor model is employed with weight m �
0.5kg and moments of inertia J � diagp.003, .003, .005q.
The control axis is e � p0, 0, 1q and the only external force is
gravity, i.e. f � p0, 0,�9.81mq. Figure 1 shows an example
reference path and the resulting stabilizing simulated vehicle
trajectory. Figure 2 provides more details about the example.
The tracking algorithm exhibits good performance and is able
to handle a variety of initial conditions.

B. Nanosatellite

Consider a nanosatellite modeled as a rigid body with an
attitude control system (ACS) and a single thruster aligned
with the body-fixed x-axis, i.e. e � p1, 0, 0q. The moments
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Fig. 2. History of the velocities, inputs, and Lyapunov function V of the
example in Figure 1.
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Fig. 3. An example of a nanosatellite path tracking.
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Fig. 4. History of the velocities, inputs, and Lyapunov function V of the
example in Figure 3.
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Fig. 5. An example of a nanosatellite path tracking with bounded inputs.
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ẋd

0 20 40 60
−0.2

0

0.2

sec.

 

 

ẏ
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Fig. 6. History of the velocities, inputs, and Lyapunov function V of the
example in Figure 5.

of inertia of the satellite are J � diagp.03, .03, .015q. No
external forces are included in these simulations. Figure 3
shows an example reference path and the resulting stabilizing
simulated vehicle trajectory.

While the controller exhibits good performance (Figure 4)
it is immediately obvious that the resulting control inputs u
and τ are unrealistic for a small satellite such as a cubesat.
In practice, the available torque from reaction wheels and
magnetorquers is very limited, typically on the order of
10mN-meter. Thus, a more realistic application of the the
exact same controller but with bounded inputs is simulated
and shown on Figures 5 and 6. Under such tight bounds,
stability in its strict sense is no longer guaranteed which
is also evident from the bumps in the Lyapunov function
curve. Yet, the controller achieves stabilization and exhibits
a convergent overall trend.

VI. CONCLUSION

Trajectory tracking for underactuated systems has been
previously addressed through a variety of methods. The
proposed approach employs backstepping and Lyapunov

redesign to handle disturbances in a coordinate-free setting.
Empirical evidence suggests that the approach can be used
as a basis for developing methods to handle tight actuator
bounds. Future work will consider stability guarantees in
such cases.
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