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Abstract— This paper considers pick-and-place tasks using
aerial vehicles equipped with manipulators. The main focus is
on the development and experimental validation of a nonlinear
model-predictive control methodology to exploit the multi-body
system dynamics and achieve optimized performance. At the
core of the approach lies a sequential Newton method for
unconstrained optimal control and a high-frequency low-level
controller tracking the generated optimal reference trajectories.
A low cost quadrotor prototype with a simple manipulator
extending more than twice the radius of the vehicle is designed
and integrated with an on-board vision system for object
tracking. Experimental results show the effectiveness of model-
predictive control to motivate the future use of real-time optimal
control in place of standard ad-hoc gain scheduling techniques.

I. INTRODUCTION

This work develops a nonlinear model-predictive control
(NMPC) approach to enable agile pick-and-place capabili-
ties for aerial vehicles equipped with manipulators. Aerial
manipulation using vertical take-off and landing (VTOL)
vehicles is a relatively new research area with a potential
for various novel applications such as coordinated assembly,
construction, and repair of structures at high altitudes, or op-
erating in difficult-to-access, remote, or hazardous locations
to e.g. install sensors or obtain samples. Autonomous control
of such system is challenging primarily due to disturbances
from interactions with the environment, due to additional
dynamics caused by a moving manipulator, and due to
difficulties associated with dexterous manipulation.

Initial work related to aerial manipulation included slung
load transportation with helicopters [6], [20], grasping with
novel adaptive end-effectors [27], [26], construction using
teams of quadcopters [18], or pole balancing tasks [7]. More
recently, there has been a focus on autonomous construction
and environment interaction, with initial demonstrations in
laboratory settings. The Aerial Robotics Cooperative Assem-
bly System (ARCAS) project [2], [12], [8], Mobile Manip-
ulating Unmanned Aerial Vehicle project [25], [16], [17]
and Airobots project [1], [31] have demonstrated complex
manipulation and assembly tasks using multiple degrees of
freedom manipulators. Other important developed capabil-
ities include telemanipulation [22], [11] or avian-inspired
agile grasping [30]. In addition to control-related challenges,
accurate pose estimation of objects is of central impor-
tance and has been considered through image-based visual
servoing [29] and marker-based pose computation [2], [7].
Real-time recognition and aerial manipulation of arbitrary
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Fig. 1. a) a prototype quadrotor with manipulator, b) schematic model, c)
a computed optimal trajectory viewed in Robot Operating System (ROS).

unengineered objects in natural settings remains largely an
open problem.

Control strategies for aerial manipulation can be divided
into coupled which consider the full multi-body system
model [19], [14], [24], and decoupled based on separate
controllers for the base body and manipulator [28]. The
key difference is that the decoupled approach treats external
forces from the arm or environment as disturbances to be
compensated by the vehicle.

In this paper, we propose an optimal control algorithm
for generating reference trajectories to pick an object using
aerial vehicle. Experimental verification has been performed
using a minimalist low-cost system based on a two-degree
of freedom manipulator with a simple gripper. The task is
made challenging by using a monocular camera to recognize
and track the target object. To facilitate recognition, objects



are engineered with LED markers correspoding to known
features. A detailed nonlinear model is employed by the
optimal control framework to capture the interaction between
the arm and quadcopter. Currently due to computational
limitations, NMPC operates at 10Hz and is not used for real-
time control. Hence a high frequency nonlinear controller
is coupled with the optimal control framework to track the
reference trajectories.

The paper is organized as follows. The dynamical multi-
body system modeling and numerical optimal control ap-
proach are described in §II and §III, respectively. Then we
proceed to describe the experiments conducted to validate
the optimal controller in §IV. Finally we provide the results
of the experiments conducted and discuss future work in §V.

II. SYSTEM MODELING

The aerial robot is modeled as a free-flying multi-body
system consisting of n + 1 interconnected rigid bodies
arranged in a tree structure. The configuration of body #i is
denoted by gi ∈ SE(3) and defined as

gi =

(
Ri pi
0 1

)
, g−1i =

(
RT

i −RT
i pi

0 1

)
.

where pi ∈ R3 denotes the position of its center of mass
and and Ri ∈ SO(3) denotes its orientation. Its body-fixed
angular and linear velocities are denoted by ωi ∈ R3 and
νi ∈ R3. The pose inertia tensor of each body is denoted by
the diagonal matrix Ii defined by

Ii =

(
Ji 0
0 miI3,

)
where Ji is the rotational inertia tensor, mi is its mass,
and In denotes the n-x-n identity matrix. The system has n
joints described by parameters r ∈ Rn. Following standard
notation [23], the relative transformation between the base
body#0 and body#i is denoted by g0i : Rn → SE(3), i.e.

gi = g0g0i(r).

The control inputs u ∈ U ⊂ Rm=n+4 denote the four rotor
speeds squared and the n joint torques. More specifically,
ui = Ω2

i for i = 1, . . . , 4 where Ωi is the rotor speed of
the i-th rotor, and u4+i denotes the i-th joint torque, for
i = 1, . . . , n.

The configuration of the system is thus given by q ,
(g, r) ∈ Q , SE(3) × Rn, where g ∈ SE(3) is a chosen
reference frame moving with the robot. In this work we take
the base body as a moving reference, i.e. g ≡ g0. The velocity
of the system is given by v , (V, ṙ) ∈ R6+n, where V ∈ R6

denotes the body-fixed velocity of the moving frame g and
ṙ ∈ Rn denotes the joint angle velocities. The base velocity
satisfies V̂ = g−1ġ where the “hat” operator V̂ for a given
V = (ω, ν) is defined by

V̂ =

[
ω̂ ν

01×3 0

]
, ω̂ =

 0 −w3 w3

w3 0 −w1

−w2 w1 0

 . (1)

With these definitions, the full state of the system is x ,
(q, v) ∈ X , Q× R6+n.

Continuous Equations of Motion: The coordinates for
our setting are q = (g, r) where the pose g ∈ SE(3) and r
represents joint parameters. For optimal control purposes, it
is necessary to avoid Euler angle singularities and, in addi-
tion, it is advantageous to avoid unit quaternion constraints.
To achieve this, the dynamics is defined directly on state
space X as:

ġ = gV̂ (2)
M(r)v̇ + b(q, v) = Bu, (3)

where the mass matrix M(r), bias term b(q, v), and constant
control matrix B are computed analogously to standard
methods such as the articulated composite body algorithm [5]
or using spatial operator theory [10]. With our coordinate-
free approach the mass matrix in fact only depends on the
shape variables r rather than on q and for tree-structured
systems can be computed readily according to

M(r) =

 I0 +
n∑

i=1

AT
i IiAi

∑n
i=1A

T
i IiJi∑n

i=1 J
T
i IiAi

∑n
i=1 J

T
i IiJi

 (4)

using the adjoint notation Ai := Adg−1
0i (r), and Jacobian

Ji :=
∑n

j=1[g−10i (r)∂rjg0i(r)]
∨,where g0i(r) is the relative

transformation from the base body to body #i and Ii is the
inertia tensor of body #i [23].

The bias term b(q, v) encodes all Coriolis, centripetal,
gravity, and external forces. Finally, for a quadrotor model
the constant control matrix B has the form

B =



0 −lkt 0 lkt
−lkt 0 lkt 0
km −km km −km
0 0 0 0
0 0 0 0
kt kt kt kt

06×`

0`×6 I`×`


,

where l, kt, km are known constants. This can be easily
extended to other multi-rotor configurations.

Discrete Dynamics: For computational purposes we
employ discrete-time state trajectories x0:N , {x0, . . . , xN}
at equally spaced times t0, . . . , tN ≡ tf with time step
∆t =

tf−t0
N . The discrete state at index k approximates the

continuous state at time tk = t0 + k∆t, i.e. xk ≈ x(tk) and
is defined by xk = (gk, rk, Vk,∆rk), where ∆rk denotes the
joint velocities at k-th stage. A simple discrete-time version
of the continuous dynamics (2)–(3) is then employed:

gk+1 = gk cay (∆tVk+1) , (5)
rk+1 = rk + ∆t∆rk+1, (6)

M(rk)
vk+1 − vk

∆t
+ b(qk, vk) = Buk. (7)

This is a first-order semi-implicit method since one first
updates the velocity vk+1 using the dynamics (7) and then
updates the configuration using the kinematics (5)–(6). The
method requires small time-steps to ensure stability (∆t ≤



100ms is sufficient for the aerial systems considered), higher-
order methods are also possible [15], [13].

Note that the base pose update (5) is performed using the
Cayley map cay : R6 → SE(3) defined (see e.g. [15]) by

cay(V ) =

[
I3+ 4

4+‖ω‖2

(
ω̂+ ω̂2

2

)
2

4+‖ω‖2 (2I3+ω̂) ν

0 1

]
, (8)

instead of the more standard exponential map on SE(3) [23],
[4] since it is an accurate and efficient approximation, i.e.
cay(V ) = exp(V ) + O(‖V ‖3), it preserves the group
structure, and has particularly simple to compute derivatives.
Its inverse is denoted by cay−1 : SE(3)→ R6 and is defined
for a given g = (R, p), with R 6= −I , by

cay−1(g) =

[
[−2(I +R)−1(I −R)]∨

(I +R)−1p

]
.

III. MODEL PREDICTIVE CONTROL

To achieve agile pick-and-place motions we employ
model-predictive control to optimize future trajectories over
the interval [t0, tf ] where t0 is the current time and tf is a
specified moving horizon. A typical horizon tf − t0 for the
considered aerial maneuvers is between 2 and 5 seconds. Two
methods for unconstrained optimal control are considered
in view of their capacity for near real-time performance:
a simple Gauss-Newton shooting method and a Stagewise
Newton sweep method.

A. Optimal Control Formulation

The NMPC problem can be generally formulated as the
minimization of:

J(x0:N , u0:N−1) , LN (xN ) +

N−1∑
k=0

Lk(xk, uk), (9)

subject to: xk+1 = fk(xk, ui), uk ∈ U (10)

where fk encodes the integrator (5)–(7) and U defines
the admissible control set. The stage-wise cost penalizes
deviation from a desired nominal state xd and controls ud
and is given by

Lk(xk, uk) =
1

2
‖xk − xd‖2Qk

+
1

2
‖uk − ud‖2Rk

, (11)

while the terminal cost is defined by

LN (xN ) =
1

2
‖xN − xf‖2Qf

, (12)

where Qk ≥ 0, Qf > 0, Rk > 0 are appropriately chosen
diagonal matrices to tune the vehicle behavior while reaching
a desired final state xf . In the aerial robot application
the matrix Qk contains non-zero terms corresponding to a
desired velocity only.

B. Overloading ± operator on the group SE(3)

Numerical optimal control is based on vector calculus
which is not directly applicable to states x = (g, r, v)
containing matrix elements g ∈ SE(3). Hence, we use vector
operators with analogous “retract” and “lift” operators on
SE(3).

The lift operator on SE(3) is equivalent to operator minus
(·)− (·) : SE(3)× SE(3)→ R6

gb − ga = V ⇐⇒ cay−1(g−1a gb) = V,

gb − ga , cay−1(g−1a gb) = V ∈ R6, (13)

or practically speaking the differences between two poses
approximately equals the constant body-fixed velocity V
with which ga moves to align with gb after one unit of time.
The retract operator on SE(3) is equivalent to plus or minus
(·)± (·) : SE(3)× R6 → SE(3) according to

ga ± V , gacay(±V ) = gb ∈ SE(3), (14)

i.e. adding/subtracting a vector V to/from the matrix ga is
interpreted as shifting ga using a unit-time transformation
with constant body-fixed velocity V . These operations are
literally overloaded in our C++ implementation when one
attempts to subtract two SE(3) matrices, or add/subtract a
vector V to/from a matrix ga. With these definitions, the
errors xi− xd and xN − xf appearing in the costs (11),(12)
are defined using the lift operator (13) so that, e.g. the latter
with xf = (gf , rf , vf ) should be understood as

xN − xf ≡

 cay−1(g−1f gN )

rN − rf
vN − vf

 .
C. Gauss-Newton shooting method

One of the simplest, often overlooked, but surprisingly ef-
fective methods for solving the optimal control problem (9)–
(10) is a shooting method exploiting the least-squares nature
of the costs (11)–(12). It is formulated by parametrizing the
discrete control trajectory u0:N−1 using a vector ξ ∈ R`≤Nm,
encoded through the functions uk = φk(ξ) for each k =
0, . . . , N − 1. For instance, ξ could contain the knots of
a B-spline from which each uk is extracted. The simplest
parametrization is to simply set ξ = u0:N−1. Using the
dynamics each state can be expressed as a function of ξ
which is encoded through the functions xk = ψk(ξ) for k =
0, . . . , N . The cost is then expressed as J(ξ) = 1

2h(ξ)Th(ξ),
where h : R` → RN(m+n+6) is given by

h(ξ) =



√
R0 (φ0(ξ)− ud)√
Q1 (ψ1(ξ)− xd)√
R1 (φ1(ξ)− ud)

...√
QN−1 (ψN−1(ξ)− xd)√
RN−1 (φN−1(ξ)− ud)√
Qf (ψN (ξ)− xf )


.

Since Ri > 0 the Jacobian ∂h(ξ) is guaranteed to be full rank
and one can apply a Gauss-Newton iterative method directly
to update ξ → ξ+δξ where δξ = −(∂gT∂g)−1∂gT g. In ad-
dition, the Jacobian has a lower-triangular structure that can
be exploited in the Cholesky GN solution. The complexity of
this method is still O(`3) which is only acceptable for small
`, e.g. ` ≤ 100 in order to achieve real-time performance.
The key advantage of the GN approach is its simplicity and



robustness by employing standard regularization and line-
search techniques [3].

A more efficient method with complexity O(N(n + m))
that exploits the recursive optimal control problem structure
is presented next.

D. Stagewise Newton and Differential Dynamic Program-
ming

The second optimal control method used in this work is
based on a coordinate-free recursive NMPC formulation [13],
[15] for optimization on state spaces with Lie group structure
such as SE(3). The particular method we employ is Stagewise
Newton (SN) [3] which is also closely related to Differential
dynamic programming (DDP) [9].

Stagewise methods explicitly require the linearization of
the cost and of the dynamics. On non-Euclidean manifolds
X such linearization is achieved using trivialized variations
and gradients [13]. In particular, for the class of systems
considered in this work, the linearized discrete dynamics
takes the form

dxk+1 = Akdxk +Bkδuk, (15)

with dxk , (dgk, δrk, δvk) where dg , (g−1δg)∨ ≡
((RT δR)∨, RT δp) ∈ R6 is the trivialized variation on
SE(3). Similarly, the trivialized gradient dgL ∈ R6 of a
function L : SE(3)→ R is defined by

dgL , ∇V

∣∣∣
V=0

L(g cay(V )), (16)

for some V ∈ R6. With these definitions, any standard
iterative optimization method such as SQP, SN, or DDP can
be applied by replacing the standard gradients ∇gL, ∇2

gL
and variations δg, with the trivialized gradients dgL, d2gL
and trivialized variations dg.

Finite-difference linearization of the dynamics.: Since
the resulting multi-body dynamics (5)–(7) has a complex
nonlinear form, we employ finite differences for computing
the Jacobians Ak and Bk. The default choice is central
differences:

Ai
k ≈

f(xk + εei, uk)− f(xk − εei, uk)

2ε
,

Bj
k ≈

f(xk, uk + εej)− f(xk, uk − εej)
2ε

,

for i = 1, . . . , n + 6, and j = 1, . . . ,m, where each
ei is a standard basis unit vector with only one non-zero
element at its i-th component. We again emphasize that the
+ and − signs above should be interpreted as the overloaded
operators (13),(14) whenever elements of SE(3) are involved.

Closed-form cost gradients.: The trivialized gradient
and Hessian of Li are straightforward to compute and only
require an extra term to account for the Cayley map. They
are given by:

dLk =

[
dcay−1(−∆k) 0

0 I

]T
Qk(xk − xd), (17)

d2Lk≈
[

dcay−1(−∆k) 0
0 I

]T
Qk

[
dcay−1(−∆k) 0

0 I

]
, (18)

where ∆k = cay−1(g−1d gk) for each k = 0, . . . , N − 1.
Equivalent expressions also hold for the gradients of LN ,
with gd replaced by gf , and Qk with Qf . Note that for
simplicity the Hessian was approximated by ignoring the
second derivative of cay. The trivialized Cayley derivative
denoted by dcay(V ) for some V = (ω, ν) ∈ R6 is defined
(see e.g. [15]) as

dcay(V )=

[
2

4+‖ω‖2 (2I3 + ω̂) 03
1

4+‖ω‖2 ν̂(2I3 + ω̂) I3+ 1
4+‖ω‖2 (2ω̂+ω̂2)

]
,

(19)

it is invertible and its inverse has the simple form

dcay−1(V ) =

[
I3 − 1

2 ω̂ + 1
4ωω

T 03
− 1

2

(
I3 − 1

2 ω̂
)
ν̂ I3 − 1

2 ω̂

]
. (20)

The linearized dynamics (15), cost gradients (17) and Hes-
sians (18) can now be used as the ingredients of a standard
Stagewise Newton algorithm [3] as detailed in [13].

IV. EXPERIMENTAL SETUP

In this section the hardware and software architecture
required for running the manipulation experiments is out-
lined. Later, the experiments conducted and the NMPC based
reference trajectory approach are described.

Fig. 2. a) Experimental arena showing the object to grab (black bottle)
and led markers b) Led markers as seen from onboard camera

A. Hardware

Our prototype platform is based on the 3DRobotics quad-
copter capable of lifting a payload of 1Kg, the Pixhawk
autopilot board [21] for low-level attitude and thrust control,
and the Odroid XU+E bare board computer for running var-
ious control algorithms. The NaturalPoint OptiTrack Motion
Capture System has been used for estimating the attitude and
position of the quadcopter in the world frame. A lightweight
camera (PointGrey Firefly model) is installed onboard for
providing the relative position of the target object in the
reference frame of the quadcopter. A custom manufactured
lightweight arm along with a 3D printed gripper has been
installed on the quadcopter to grasp the object.

B. Experimental Scenario

The experimental scenario in Figure 2 shows the object of
interest and LED markers which are used by the onboard
camera to detect and track the object. The experiment
requires the quadcopter to detect the marker, fly to a specified
location in front of it, and retrieve the object placed on a
stand. This is a challenging task, since the quadcopter has



to extend the arm farther beyond it’s enverlope to grab the
target object.

Fig. 3. Optimal control trajectory followed by the quadcopter. The solid
line represents the desired trajectory and dashed line represents the actual
trajectory followed

C. NMPC-based reference trajectory generation

In this approach, we compute a reference trajectory for the
combined system of the quadcopter and arm using Stagewise
Newton method described in § III-D. The optimal controller
is used in open-loop to compute a reference trajectory for
the quadcopter and the arm. The object position is frozen
once the quadcopter starts executing the reference trajectory.
The computed trajectory contains the full state (position,
orientation and body fixed velocities) of the quadcopter,
full state of the arm (joint positions and velocities) and
the controls needed to achieve them. The desired position
and velocity of the quadcopter is fed into the feedback
linearization based controller and the desired joint angles and
velocities for the arm are achieved through the PID controller
on the servo motors. The quadcopter is able to track the
trajectory closely as shown in Figure 3. The optimal control
approach allows for faster actuation of the arm without losing
accuracy. Since both the arm and the quadcopter execute their
respective trajectories simultaneously, the object is retrieved
in a shorter time interval.

V. RESULTS AND DISCUSSION

The series of pictures in Figure 4 show the quadcopter
flying to the marker and retrieving the object. The upper
half represents the approach to grasp the object and the lower
half shows the retrieval of the object (See attached video for
more detail). The average time for retrieval using manual
reference trajectories (Fig[5]) is around 15 seconds. Using
NMPC-based trajectory tracking reduces the time taken to
grasp the object to 5 seconds. This confirms that using
optimal reference trajectories is superior to manual reference
trajectories.

The tip positions for various starting positions converging
to the target location (red cuboid) have been plotted in
Figure 5. Since the non-optimal manual reference trajectory
does not account for the dynamics of the arm, the tip
positions are not smooth and take longer time to converge
to the grasping location. On the other hand, the tip position
for the case using optimal control (denoted by black dashed

line) is smoother and still converges with the same accuracy.
Following the optimal control based reference trajectory has
enabled us to actuate both the quadcopter and the arm
simultaneously to grasp the object quickly.

Fig. 5. Comparison of end-effector tip position trajectories for PID and
MPC starting from from different initial positions marked with black dots.

There are many challenges faced during the manipula-
tion tasks described above. The quadcopter position can
be estimated based on the pose of the markers from the
onboard camera. But this estimate turned out to be noisy
and is dependent on the distance between the camera and
markers. Thus a motion capture system is used to provide a
reliable estimate of the quadcopter state. Since we are using
a feedback linearization based controller for the quadcopter,
we are not using optimal control to its full capacity of
directly commanding the quadcopter motors. This explains
the slight discrepancies between the actual and the desired
quadcopter trajectories shown in Figure 3.

Future work will focus on improving the optimal control
algorithm to achieve a real-time performance. By running
a fast optimal control algorithm, we expect to bypass the
feedback linearizing control and directly use the optimal
controller to send the low-level motor commands. To enable
markerless object grasping in an outdoor environment, we
will rely on robust feature based object recognition and
tracking. Combining real-time optimal control with arbitrary
feature-based object recognition and tracking will be the
subject of future work.
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