
Adaptive Path Planning in a Dynamic Environment using a Receding Horizon
Probabilistic Roadmap: Experimental Demonstration

Thomas A. Frewen, Harshad Sane, Marin Kobilarov, Sanjay Bajekal, Konda R. Chevva

We demonstrate the application of a receding-horizon motion-planning method based on probabilistic
roadmaps (PRM) that uses sampling from motion primitive maneuver-automata, for the problem of
adaptive path planning in the case of a partially unknown obstacle field. Specifically, we consider tra-
jectories followed by a helicopter equipped with finite-range obstacle sensors in unknown or partially
unknown terrain. We provide a functional summary of our planning approach and an overview of the
algorithmic architecture. The planner functionality has been demonstrated through several software-
in-loop (SIL) scenarios including adaptation to newly discovered obstacles and vehicle deviation from
planned paths. This paper presents experimental results from flight tests with an electric helicopter
showing in-flight path adaptation to simulated obstacles.

Introduction

Consider a robotic vehicle navigating an obstacle-rich ter-
rain with the objective to reach a prescribed goal subject to
an optimality criterion e.g. in minimum time or distance
traveled. The vehicle is subject to constraints arising from
its underactuated dynamics, actuator bounds, and obstacles
in the environment. Furthermore, the vehicle has partial
information about its surroundings and is equipped with a
sensor measuring the relative positions of obstacles in its
field of view. This motion planning problem, although be-
ing practically very relevant, has no closed-form analytical
solution (Refs. 1,2) since both the dynamics and constraints
are nonlinear. The survey paper (Ref. 2) provides excel-
lent background on the complexity of this problem and the
lack of solutions with guarantees on completeness or op-
timality. Gradient-based and potential-field methods have
had marginal success with this problem, however, they are
strongly influenced by a good starting guess as existence
of problem constraints yield many local minima and limit
completeness. In addition, special differentiation (Ref. 3)
is required to guarantee convergence due to the non-smooth
nature of the constraints. The straightforward solution is to
discretize the vehicle state space and perform discrete graph
search. Such a technique is limited to very simple problems
due to the exponential size of the search space (state di-
mension × trajectory epochs) also known as the curse of
dimensionality.

This paper proposes an approach based on a re-
cent methodology in the robotics community, known
as sampling-based motion planning which includes the

T. Frewen, H. Sane (sanehs@utrc.utc.com), S. Bajekal and
K. Chevva are with United Technologies Research Center,
East Hartford, CT. M. Kobilarov is with California Insti-
tute of Technology. Submission to 2011 AHS Specialists’
Meeting on Unmanned Rotorcraft, Phoenix, AZ.

rapidly-exploring random tree (RRT) (Ref. 4) and the prob-
abilistic roadmap (PRM) (Ref. 5). In our framework sam-
ples are drawn from the vehicle’s continuous configuration
space, and are connected through sequences of precom-
puted motion primitives (Ref. 6) that satisfy vehicle dy-
namics and constraints. These form a maneuver automa-
ton that encodes vehicle dynamics in the form of trim states
and inter-trim transition maneuvers, that may be stored for
real-time sampling during planning. The strength of our ap-
proach lies in its ability to handle dynamic constraints and
global planning in a unified framework, while respecting
vehicle dynamics.

Construction of a fully connected dense PRM roadmap
is conducted offline, while local modification of the exist-
ing roadmap is performed during real-time execution. In
essence, the offline stage encodes the reachability space of
the vehicle given prior knowledge about the environment.
A dense PRM could be efficiently searched using classical
graph search algorithms such as A* (Ref. 7) to provide an
initial solution. New sensor information is subsequently re-
flected in online roadmap updates of graph nodes and edges
and replanning is accomplished using dynamic A* (D*).

In order to adapt to tracking errors and dynamic envi-
ronment, we implement a receding horizon (RHC) strat-
egy for PRM update and search that incorporates common
RHC concepts such as planning horizon, sensing horizon,
and cost-to-go, where cost-to-go is derived directly from
the current roadmap. In contrast to traditional RHC ap-
proaches, this provides a consistent and unified way of rep-
resenting planning horizon cost (reactive plan) and cost-
to-go (global plan). The maneuver automaton, using lo-
cally optimal motion primitives, is consistently used in the
roadmap in conjunction with standard graph replanning and
search methods. Uniform sampling and full reachability
guarantee that an optimal solution can be asymptotically
found.

Fig. 1. Maxi Joker Electric rotorcraft demonstration unit.

The paper is organized as follows. We first formulate the
general adaptive path planning problem for a vehicle with
dynamic constraints and an obstacle sensor. The probabilis-
tic roadmap formulation and the computation of helicopter
primitives are then described. Our recursive PRM approach
for adaptation to newly discovered obstacles or deviations
from a planned path is described. Next, we characterize
the performance (feasibility, computational cost, objective
cost) through multiple Monte Carlo simulations. Software-
in-loop (SIL) studies explore the relationship between num-
ber of samples, environment clutter, and path optimality.
Next, we discuss the SIL and experimental implementation
of the proposed algorithms for the purposes of demonstra-
tion on a Maxi-Joker-3 electric helicopter (Fig. 1). Lastly,
we present results from SIL and experimental flight tests
that illustrate the capabilities of the recursive PRM algo-
rithm. We conclude the paper by discussing opportunities
for improvements and future work.

Planning Problem Formulation

Consider a vehicle with state x∈X controlled using actuator
inputs u ∈U , where X is the state space and U denotes the
set of controls. The vehicle’s dynamics are described by the
function f : X×U → T X defined by

ẋ = f (x,u) : vehicle dynamics model. (1)

In addition, the vehicle is subject to constraints arising from
actuator bounds and obstacles in the environment. These
constraints are expressed through the m inequalities

Fi(x(t),u(t))≥ 0 : constraints, (2)

for i = 1, ...,m.

The goal is to compute the optimal controls u∗ and final
time T ∗ driving the system from its initial state x(0) to a
given goal region Xg ⊂ X , i.e.

(u∗,T ∗) = argmin
u,T

∫ T

0
C(x(t),u(t))dt,

subject to ẋ(t) = f (x(t),u(t)),

Fi(x(t),u(t))≥ 0, i = 1, ...,m.

x(T) ∈ Xg

(3)

where C : X×U→R is a given cost function, e.g. fuel con-
sumption, time to destination, or threat exposure. A typical
cost function includes a time component and a control effort
component, i.e. C(x,u) = 1+λ‖u‖2,λ ≥ 0.

Obstacle Constraints The vehicle operates in a
workspace that contains a number of obstacles de-
noted by O1, ...,Ono with which the vehicle must not
collide. Typically, the vehicle state can be defined by
(q,v) consisting of its configuration q ∈ C and velocity
v ∈ Rnv (Ref. 8). Assume that the vehicle is occupying
a region A (q,v), and let prox(A1,A2) be the Euclidean
distance between two sets A1,2 that is negative in the case
of intersection. Obstacle avoidance constraints in (2) can
be written as

F1(q(t)) = min
i

prox(A (q(t)),Oi), for all t ∈ [0,T]. (4)

Obstacle representation and proximity checking is a compu-
tationally intensive procedure with a variety of documented
approaches (Refs. 4, 9). For simplicity in this paper we
assume a 2.5D digital elevation map (DEM) representa-
tion and use standard packages (Proximity Query Package
(Ref. 10)) to compute the proximity function prox.

Sensing We assume that the vehicle is equipped with a
finite-range obstacle sensor measuring the relative positions
of obstacles, producing a set of points lying on the surface
of obstacles. The sensor parameters include sensor range,
scan-rate, and field of view. In this paper, we assume an
idealized on-board simultaneous localization and mapping
(SLAM) algorithm for map updates. The terrain, repre-
sented using the 2.5D DEM is updated at a prescribed rate
based on the new occupancy data.

Planning with Probabilistic Roadmaps

We propose a motion planning method that combines PRM
(Refs. 4, 5, 8) for global planning with maneuver automata
for incorporation of vehicle dynamics (Ref. 6). This solu-
tion approach generates feasible trajectories that satisfy the
given dynamics (1) and general constraints (2). A maneu-
ver automaton encodes vehicle dynamics in the form of trim
states and inter-trim transition maneuvers that are stored for
real-time sampling during planning. The vehicle maneuvers
can be pre-computed either through nonlinear trajectory op-
timization (Ref. 11) or by recording the closed-loop trajec-
tories of a simulated or real vehicle. A typical PRM path
consisting of a sequence of maneuvers and trims is shown
in Fig. 3.a. The general framework is suitable for systems
such as aerial, underwater or ground robots if one ignores
the pose-dependent external forces (wind, drag, friction).

PRM Algorithm

Fig. 2 provides an algorithmic overview of our approach for
a roadmap G = (V,E) defined by its vertices V and edges
E. A key issue in the construction of a PRM is how to con-
nect samples s; in Fig. 2 connections are made both into and
from each state sample s with selection of closest neighbors

according to proximity function. In our framework sam-
ples are connected through sequences of locally optimized
motion primitives. The primitives are computed offline and
organized in a library for lookup during motion planning.
Combining this strategy with heuristic graph search renders
the overall approach suitable for real-time applications.

Algorithm: Construct-Roadmap
Input:

s0: initial state
sg: goal state
n: number of nodes in the roadmap
kin : number of incoming closest neighbors to each sample
kout : number of outgoing closest neighbors to each sample

Output:
roadmap G = (V,E)

1. V ←{s0}
2. E← /0

3. while |V |< n do
4. ss← Sample(S,G);
5. V ←V ∪{ss}
6. for all s ∈V do
7. Ns← kin closest neighbors to s according to Dist
8. for all s′ ∈ Ns do
9. if edge = Connect(s′,s) 6= NIL then

10. E← E ∪{edge}
11. Ns← kout closest neighbors from s according to Dist
12. for all s′ ∈ Ns do
13. if edge = Connect(s,s′) 6= NIL then
14. E← E ∪{edge}

Fig. 2. Algorithm to construct a motion planning roadmap–a
graph-based approximation of the reachable state space suit-
able for efficient path planning.

Sampling In recent years considerable attention has been
given to augmenting basic sampling-based motion plan-
ners (e.g. see (Ref. 5)) with strategies for accelerating
the search. In particular, biased sampling has been em-
ployed to exploit either domain-specific knowledge such
as obstacle boundaries or to monitor performance based on
connectivity (Ref. 12). Such heuristic strategies are effec-
tive when combined with regular (e.g. uniform) sampling
in order to retain the required probabilistic completeness
(Ref. 13) - complex problems can only be solved effec-
tively through a proper balance of exploration and exploita-
tion (Refs. 14, 15). Note that in this work we employ uni-
form sampling in order to guarantee complete exploration
of the state space. In general, the issue of optimal sampling
is complex and considered an open problem.

Probabilistic Completeness Sampling-based methods are
well established techniques for handling (through approxi-

mation) motion planning problems in constrained environ-
ments (Ref. 4). Since requiring algorithmic completeness
in such settings is computationally intractable, a relaxed
notion of completeness, termed probabilistic completeness
has been adopted (see for example (Ref. 16)) - if a solution
exists the probability that the algorithm will fail to find it ap-
proaches zero as the number of roadmap samples n grows
to infinity. In addition to being probabilistically complete,
our approach employs branch-and-bound and pruning tech-
niques to speed convergence towards an optimum.

Helicopter Vehicle Model and Maneuver Automata

Helicopter Model For the purposes of building PRM ma-
neuver primitive library, we use a simplified helicopter
model where the vehicle is represented by a single underac-
tuated rigid body with position r ∈ R3 and orientation ma-
trix R ∈ SO(3). Its body-fixed angular and linear velocities
are denoted by ω ∈ R3 and v ∈ R3, respectively. The vehi-
cle has mass m and principal moments of rotational inertia
J1,J2,J3 forming the inertia tensor J= diag(J1,J2,J3).

a) b)
Fig. 3. Computed optimal sequence of 4 maneuvers and 3 trim
motions in a simple environment (left). An optimal trajectory
in a more complex urban environment (right) requires more
sophisticated sampling and pruning of a dynamic PRM.

The helicopter is controlled through a collective uc (lift
produced by the main rotor) and a side-thrust uψ (force
produced by the rear rotor), while the direction of the lift
is controlled by tilting the main rotor forward or back-
ward through a pitch γp and sideways through a roll γr.
The four control inputs then consist of the two forces
u = (uc,uψ) and the two shape variables γ = (γp,γr). The
state space of the vehicle is X = SE(3)×R6 ×R2 with
x = ((R, p),(ω,v),γ).

The equations of motion are[
Ṙ
ṗ

]
=

[
R ω̂

R v

]
, (5)[

J ω̇

mv̇

]
=

[
Jω×ω

mv×ω +RT (0,0,−mg)

]
+F(γ)u, (6)

where the map ·̂ : R3→ so(3) is defined by

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
while the control matrix is defined as

F(γ) =


dr sinγr 0

dr sinγp cosγr 0
0 dt

sinγp cosγr 0
−sinγr −1

cosγp cosγr 0

 ,

where dr,dt are distances from the center of mass to the
main and tail rotor thrust vectors.

Helicopter Primitives The local motion planning method
is based on sequencing precomputed motion primitives
which satisfy the dynamics (5)–(6). The sequence consists
of trim primitives corresponding to motions with constant
body-fixed velocity and of maneuvers used to transition be-
tween trims.

Trim conditions. Trim motions correspond to helices, cir-
cles, or straight lines in position space. Such curves are
traced using velocity components (ω ′z,v

′
x,v
′
y,v
′
z) which are

related to the body-fixed velocities v and ω through

ω = RT
(φ ,θ ,0)ω

′, v = RT
(φ ,θ ,0)v

′, (7)

where R(φ ,θ ,ψ) denotes the rotation corresponding to roll φ ,
pitch θ , and yaw ψ and where v′ = (v′x,v

′
y,v
′
z) and ω ′ =

(0,0,ω ′z).
An invariant trajectory has a constant body-fixed veloc-

ity. Therefore, in order to determine the invariance condi-
tions for given ω ′ and v′ one sets v̇ = 0 and ω̇ = 0 in (6)
and substitutes (7) into (6). Assuming two identical inertia
components J2 = J3 and v′z = 0 a closed-form solution can
be found directly as

θ = 0, uy = 0, γp = 0, γr = 0,
φ = arctan(−w′zv

′
x/g),

uc = m(gcosφ −w′zv
′
x sinφ).

(8)

Assume that the helicopter is at configuration
(R(φ0,θ0,ψ0), p0) and is about the execute a trim mo-
tion with velocity (ω ′z,v

′
x,v
′
y,v
′
z). Its state after t seconds

will evolve according to

x(t) = (ω,v,R(φ0,θ0,ψ(t)), p(t),γ), (9)

where the constant ω,v,θ ,φ ,γ are computed using (7)
and (8). The yaw and position evolve according to

ψ(t) = ψ0 + tω ′z, p(t) = p0 +

 cosψ0∆px− sinψ0∆py
sinψ0∆px + cosψ0∆py

tv′z

 ,

where

∆px =

{
(v′x sin tω ′z− v′y(1− cos tω ′z))/ω ′z, if ωz 6= 0
tv′x, otherwise,

∆py =

{
(v′x(1− cos tω ′z)+ v′y sin tω ′z)/ω ′z, if ωz 6= 0
tv′y, otherwise.

In this paper we consider v′z = 0 which yields planar
trims but as will be explained next maneuvers evolve in the
complete 3-D position space.

Maneuvers. Maneuvers are computed to connect two
trimmed states. Let the map π : X → X subtract
out the invariant coordinates from a given state, i.e.
π((ω,v,R(φ ,θ ,ψ), p,γ)) = (ω,v,R(φ ,θ ,0),0,γ) . Then given
two trims, the first one ending with state x1 and the second
one starting with state x2, we compute a maneuver trajec-
tory x using the following optimization procedure:

Compute: T ; x : [0,T]→ X ; u : [0,T]→U

minimizing: J(x,u,T) =
∫ T

0
(1+λ‖u(t)‖2)dt,λ > 0

subject to: π(x(0)) = x1,π(x(T)) = x2,

dynamics eq. (5),(6) for all t ∈ [0,T].

In our case, the continuous optimal control formulation
was computationally solved through the discrete mechanics
methodology (Refs. 11,17) which is particularly suitable for
systems with nonlinear state spaces and symmetries. The
computations were performed offline and optimal maneu-
vers solutions were assembled in a library for lookup during
run-time. With trims and maneuvers organized in a library
a motion plan in the absence of obstacles can be computed
in closed form through inverse kinematics (Ref. 6) of a min-
imal number of primitives.

Recursive PRM Algorithm

The proposed algorithm can naturally handle unmapped ob-
stacles and recover from trajectory tracking failures. This is
accomplished by removing obstructed edges in the roadmap
or adding new edges from the current state and performing
efficient graph replanning. Fig. 4 sketches a prototypical
planning scenario in which the vehicle must plan an op-
timal route from an initial state x0 to a goal region X f in
an obstacle-rich environment with only partial prior knowl-
edge of the environment. Fig. 4 a) shows initial roadmap
construction based on the prior environment information
(e.g. obstacles O1,2,3). Trajectory regeneration is utilized
to plan around locally sensed, unknown obstacles obstruct-
ing the vehicle’s initial path (O4 in Fig. 4 b) ; imperfect
vehicle tracking (Fig. 4 c) of the planned path is addressed
by the insertion of new roadmap nodes matching the cur-
rent vehicle state(Fig. 4 d); node insertion is activated when

the error resulting from sensing and actuation noise, and
environmental disturbances exceeds vehicle tracking capa-
bilities.

x0
O1

O2

O3

W

initial vehicle state

Xg

goal region

obstacle

roadmap

sensor
obstacle

optimal path x∗

O1

O2

O3

W

Xg

x(t1)

O4

new obstacle detected

replanned optimal path

vehicle follows path

new edge added

a) b)

O1

O2

O3

W

Xg

O4
actual state x(t2)

planned state xref(t2)

tracking error

vehicle deviates from path

O1

O2

O3

W

Xg

O4

rejoining the roadmap

updated optimal path

c) d)
Fig. 4. A sketch of a typical planning scenario where a vehicle
replans when new obstacles are discovered or vehicle deviates
from prescribed planned path. Recomputing a new trajectory
in all cases is performed efficiently using D∗ search.

Figure 5 shows simulation of helicopter flight with finite
range sensor, where graph edges are updated as new obsta-
cles are discovered, and, if required, new roadmap samples
(corresponding to trim primitives) are added and connected
within the planning horizon. In either case, dynamic obsta-
cles and obstacle map changes are handled automatically
through fast replanning in the graph structure.

The PRM performance with respect to the number of
roadmap nodes and the environment difficulty has been as-
sessed in simulation. In order to limit the scope of this pa-
per, we only present analysis of the algorithm computation
time (Fig. 6). In general, initial offline construction takes
several seconds while replanning during execution required
less than a second and can be accomplished in real-time.
Optimality of computed solutions improves with increasing
number of nodes.

Further details of our PRM algorithm analysis will be the
subject of future work; the results of these simulation stud-
ies were used to guide the selection of algorithm parameters
used in the experimental validation described next.

Simulation and Experimental Setup

Software-in-Loop (SIL) Implementation

Functional Layout and SIL Operation The SIL layout
depicted in Fig. 7 combines a flight dynamics and controls

a) b)

c) d)
Fig. 5. Example of receding horizon map updating and dy-
namic replanning with a finite range sensor (blue semicircle).

50 100 150 200 250 300 350 400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

of nodes

offline construction

setup start/goal

planning

C
P

U
 t

im
e

 (
s
e

c
o

n
d

s
)

CPU computation time: 10 Monte Carlo runs

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

offline construction

setup start/goal

planning

environment difficulty (# of dangers)

C
P

U
 t
im

e
 (

s
e
c
o
n
d
s
)

CPU computation time: 10 Monte Carlo runs

a) b)
Fig. 6. Monte Carlo runs on a simulated city terrain (Fig. 3.b)
showing computation time as a function of a) number of
roadmap nodes ; b) environmental difficulty.

simulator in closed-loop with path-planner, with the inten-
tion to incorporate as many aspects of actual flight test as
possible. Consequently, as opposed to the model described
in the previous section, the helicopter simulator is a detailed
closed-loop helicopter model that includes aerodynamics,
actuator models, implemented flight controller and asso-
ciated modes, software interfaces and communication de-
lays. The path planner initially creates an “offline” roadmap
based on the vehicle start state (communicated by the sim-
ulator) and a selected goal state. Once the offline roadmap
is complete the planner switches to “online” mode and tra-
jectory commands are sent to the simulator based on the
current best planned path. The actual vehicle state, returned
by the simulator, is fed back to the planner in order to adapt
and update the best planned path at regular intervals (re-
planning frequency). The path planner has multiple threads
at different time-scales that allow for separate handling of
roadmap updates and trajectory commands to vehicle sim-

ulator. Synchronized access by each thread to shared re-
sources is ensured so that deadlocks are avoided.

Fig. 7. Schematic of SIL functional layout depicting dedicated
PRM-based path planner computer connected via an ethernet
hub to a helicopter simulator (on a separate laptop). Trajec-
tory commands are communicated via UDP packets from the
path planner to the vehicle simulator; vehicle state informa-
tion is communicated by the simulator to the path planner also
through UDP.

Test Input Data Each SIL test run requires a start and goal
state for the vehicle, a terrain map, a maneuver automa-
ton characterizing the vehicle dynamics, and a number of
PRM parameters that determine the behavior of the recur-
sive PRM algorithm (e.g. the maximum number of roadmap
vertices).

Primitives A motion primitive library for this specific
vehicle is constructed based on vehicle simulation mod-
els, while experimental data is used for library validation.
The baseline maneuver automaton, for dynamics symme-
try group G = SE(2)×R, consists of 31 trim primitives
(nodes) and 961 connecting maneuvers (edges). Each trim
primitive corresponds to a different set of vehicle veloci-
ties (ωz,vx,vy) with a maximum absolute linear velocity of
10m/s and a maximum angular velocity of 30 degrees/s that
corresponds to Maxi Joker 3 electric helicopter limits (ac-
tual g-limits are higher). For comparison purposes, we also
construct a pruned version of this maneuver automaton by
removing the faster primitives (nodes, edges) containing 19
trims and the 361 maneuvers.

Obstacles and Map update The terrain is represented using
a DEM map loaded from a file. The map corresponds to the
experimental test scenario. The obstacle proximity func-
tion prox (see (4)) between the helicopter trajectory and
the terrain is computed using the Proximity Query Pack-
age (Ref. 10) that can compute closest distance between two
arbitrary meshes. The finite-range obstacle sensor param-
eters include sensor range, scan-rate, and FOV. The 2.5D
DEM map is updated at a prescribed frequency.

Trajectory Controls The planner output consists of a time-
parametrized trajectory consisting of a sequence of trims
and maneuvers. The on-board aircraft flight control system

(FCS) is designed to follow a full-state trajectory command
and typically operates at 100Hz or more. The planner-to-
FCS interface relays the trim-portions of the planned tra-
jectory alone, while relying on the FCS to generate the
stitching maneuvers in real-time. Although doing this intro-
duces discrepancy between the maneuvers in the primitive
library and the FCS-generated ones, this approach results in
a smoother flight performance.

Test Output Data For the duration of each test
run we record both the actual and commanded
vehicle states and the associated timestamps
(t,ωx,ωy,ωz,vx,vy,vz,φ ,θ ,ψ,x,y,z). For the actual
flight tests, we record video from onboard and ground
cameras.

Experimental Implementation

The PRM approach was validated through flight tests us-
ing a Maxi Joker 3 RC electric helicopter. The Maxi Joker
3 variant used in the flight tests had a flybar with a torque
tube driven tail. The helicopter has gross weight capability
of 20lb with a flight time of approximately 12 minutes. A
schematic of the experimental set-up is shown in Fig. 8).
An onboard embedded processing board hosts a trajectory
tracking controller that receives trajectory commands for
the current control horizon from the ground-based planner
via a dedicated radio datalink. The datalink also relays cur-
rent vehicle state and actuator and sensor status as feedback
to the ground-based planner for the receding horizon plan-
ner update. In the event of an emergency, a human safety
pilot can override and take over control of the vehicle via a
dedicated datalink.

Fig. 8. Schematic of the experimental setup.

The flight tests were conducted at a baseball field ap-
proximately 500 ft long and 300 ft wide. Fig. 9 shows an
aerial photo of the experimental test site with virtual obsta-
cles (organized in the form of a set of city buildings) su-
perimposed. Since the obstacles are simulated, the ranging
sensor output and obstacles locations are provided to the
planner as simulated inputs with appropriate delays, while
the vehicle executes real flight.

Fig. 9. Aerial view of the test site with virtual obstacles super-
imposed

Results

SIL Tests

Our first set of SIL tests were performed using an obsta-
cle map with city buildings (Fig. 10 a) with the path plan-
ner having complete a priori knowledge of the environ-
ment. These tests allowed for separate assessment of path
planning, using the selected functional architecture with the
simulator, unencumbered by the recursive planner routines
required when the environment is only partially known and
a finite range sensor is used. Our second set of tests, de-
scribed further below, probes the latter scenario for differ-
ent obstacle maps - the planner is provided a partial obsta-
cle map (with numerous buildings from the actual environ-
ment map omitted) and only locally senses unknown terrain
based on the range of obstacle sensor.

For the selected scale parameters, the simulated city
building map is densely populated with buildings (Fig. 10 a)
and the planner, with complete a priori knowledge of the en-
vironment, prefers a path close to the perimeter of the map
where the free space volume is larger. (Fig. 10 b) shows the
same SIL commanded (blue) and actual (red) vehicle trajec-
tories from an overhead viewpoint. Note that the roadmap
sampling here is not closely coupled to the layout of ob-
stacles (other than samples in obstacles being rejected) and
so the likelihood of generating a “direct” path from start
to goal state through the building corridors is markedly re-
duced. The 200 roadmap samples used are drawn from a
uniform distribution. The vehicle does deviate somewhat
from the commanded planned path in Fig. 10. This is
caused in part by path planning with an idealized maneuver
set (maneuvers are not commanded) that is not entirely rep-
resentative of the maneuvers the vehicle actually performs.

Fig. 11 shows SIL results for scenario where the planner
is provided only a partial obstacle map and local sensing oc-
curs as the vehicle moves. Only 2 of the 7 obstacles, corre-
sponding to the obstacles nearest to the vehicle starting po-

a) b)
Fig. 10. Example of SIL path planning for simulated city
building obstacle map. Two perspectives of the same simula-
tion run are shown (panel (a) clearly indicates obstacle sizes
and vehicle navigation around buildings) with commanded
(red curve) and actual vehicle trajectories shown (blue line).

sition are known a priori to the planner with the remainder
sensed when they are within vehicle range and field of view.
The figure shows the sequence of map-building and replan-
ning snapshots as the helicopter successfully navigates the
entire obstacle set.

Flight-Tests

Fig. 12 shows the results of flight tests for real-time trajec-
tory planning with a virtual city building map, correspond-
ing to the SIL runs described previously; the obstacles are
now represented “virtually” by the path planner. For the
same start and goal locations as in the SIL test shown in
Fig. 10, two different paths are successfully navigated by
the vehicle. Both planned paths are valid but the variability
in the route proposed by the planner raises some interest-
ing questions with regard to the number of roadmap nodes
required, the randomness of the PRM algorithm, and the
need for appropriate metrics of path suitability other than
minimum flight time that demand further investigation.

Fig. 13 shows flight test results for scenarios where the
planner is provided with only a partial obstacle map and
local sensing occurs as the vehicle moves. The vehicle suc-
cessfully navigates from start to destination state for a sce-
nario where a single unknown obstacle obstructs the straight
line path connecting these states. As the number of obsta-
cles unknown a priori to the planner increase so does the
computational complexity associated with map updates and
route replanning. As a future step, streamlining the compu-
tational expense associated with the replanning routines in
our recursive planner is essential for real-time solution of
more complicated scenarios.

Conclusions

The strength of our robust motion planning approach using
probabilistic roadmaps lies in its ability to handle dynamic
constraints and perform global planning in a unified frame-
work respecting vehicle dynamics. The method is shown to

a) b)
Fig. 11. Example of SIL path planning for uncertain a priori
obstacle map with finite range sensor. Sequence of snapshots
showing map-building and replanning are shown, with the fi-
nal snapshot showing the entire trajectory. The blue ray-cone
represents the ranging sensor. The small helicopter icons rep-
resent the samples placed on the planning map.

a) b)
Fig. 12. Example of real path planning in a virtual obsta-
cles map with city building. Two instances of an experiment
with the same start and goal locations (as in Fig.10) are shown
(commanded (red curve) and actual vehicle trajectories shown
(blue line)).

rapidly determine a feasible flight trajectory with solution
optimality improving with increasing run-time. We have
provided algorithmic details and schematics describing the
planner logic and illustrated the applicability of this method

a) b)
Fig. 13. Example of real path planning using virtual obstacles
for partially known obstacle map with finite local sensing (cor-
responding to simulation result in Figure 11). Two instances
of an experiment with the same start and goal locations (as in
Fig.10) are shown (commanded (red curve) and actual vehicle
trajectories shown (blue line)).

to several simulated scenarios.

We also successfully flight-tested our path planning
approach in an outdoor environment with numerous vir-
tual obstacles. The onboard flight controller can be im-
proved (Ref. 18) to be more compatible with velocity-
primitive commands issued by the PRM planner. In order
to address the computational burden of map update and ob-
stacle checking, it will be necessary to explore efficient ob-
stacle representations and related algorithms. In general,
refinements and extensions to our approach in the area of
robust planning strategies, faster computation and sampling
techniques will be the subject of future development efforts
and technical publications.

Acknowledgement

The authors would like to thank Chaohong Cai, Emilio
Frazzoli, and Suresh Kannan for useful discussions and
feedback. We also thank our test pilots, Joe Acosta and
Evan Richey, for their flight test support.

References

1Canny, J. F., The Complexity of Robot Motion Planning,
MIT, Cambridge, 1988.

2Goerzen, C., Kong, Z., and Mettler, B., “A Survey
of Motion Planning Algorithms from the Perspective of
Autonomous UAV Guidance,” Journal of Intelligent and
Robotic Systems, Vol. 57, 2009, pp. 65–100.

3Clarke, F. H., Ledyaev, Y. S., Stern, R. J., and Wolenski,
P. R., Nonsmooth Analysis and Control Theory, Springer,
1998.

4LaValle, S. M., Planning Algorithms, Cambridge Uni-
versity Press, Cambridge, U.K., 2006.

5Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A.,
Burgard, W., Kavraki, L. E., and Thrun, S., Principles of
Robot Motion: Theory, Algorithms, and Implementations,
MIT Press, ISBN 0-262-03327-5, June 2005.

6Frazzoli, E., Dahleh, M. A., and Feron, E., “Maneuver-
Based Motion Planning for Nonlinear Systems with Sym-
metries,” IEEE Transactions on Robotics, Vol. 21, (6), dec
2005, pp. 1077–1091.

7Russel, S. and Norvig, P., Artificial Intelligence A mod-
ern Approach, Pearson, 2010.

8Latombe, J.-C., Robot Motion Planning, Kluwer Aca-
demic Press, 1991.

9Ericson, C., Morgan Kaufmann Publishers, Springer-
Verlag, New York, San Francisco, CA, 2005.

10Gottschalk, S., Lin, M. C., and Manocha, D., “OBBTree:
A Hierarchical Structure for Rapid Interference Detection,”
Eurographics/ACM SIGGRAPH Symposium on Computer
Animation, Vol. 30, 1996, pp. 171–180.

11Kobilarov, M., Discrete Geometric Motion Control of
Autonomous Vehicles, PhD thesis, University of Southern
California, 2008.

12Hsu, D., Sanchez-Ante, G., and Sun, Z., “Hybrid PRM
Sampling with a Cost-Sensitive Adaptive Strategy,” Proc.
IEEE Int. Conf. Robotics and Automation ICRA 2005,
2005.
doi: 10.1109/ROBOT.2005.1570712

13Bekris, K. E. and Kavraki, L. E., “Informed and Prob-
abilistically Complete Search for Motion Planning under
Differential Constraints,” First International Symposium on
Search Techniques in Artificial Intelligence and Robotics
(STAIR), July 2008.

14Powell, W., Approximate Dynamic Programming: Solv-
ing the Curses of Dimensionality, Wiley Series in Probabil-
ity and Statistics, 2007.

15Rickert, M., Brock, O., and Knoll, A., “Balancing explo-
ration and exploitation in motion planning,” Proc. IEEE Int.
Conf. Robotics and Automation ICRA 2008, 2008.
doi: 10.1109/ROBOT.2008.4543636

16Ladd, A. and Kavraki, L., “Measure theoretic analy-
sis of probabilistic path planning,” IEEE Transactions on
Robotics and Automation, Vol. 20, (2), April 2004, pp. 229–
242.
doi: 10.1109/TRA.2004.824649

17Marsden, J. and West, M., “Discrete mechanics and vari-
ational integrators,” Acta Numerica, Vol. 10, 2001, pp. 357–
514.

18Cunha, R. and Silvestre, C., “A 3D Path-Following
Velocity-Tracking Controller for Autonomous Vehicles,”
Proceedings of the 16th IFAC World Congress, Vol. 16, July
2005.

