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Abstract Computing globally efficient solutions is a major challenge in optimal con-
trol of nonlinear dynamical systems. This work proposes a method combining local
optimization and motion planning techniques based on exploiting inherent dynamical
systems structures, such as symmetries and invariant manifolds. Prior to the optimal
control, the dynamical system is analyzed for structural properties that can be used to
compute pieces of trajectories that are stored in a motion planning library. In the con-
text of mechanical systems, these motion planning candidates, termed primitives, are
given by relative equilibria induced by symmetries and motions on stable or unstable
manifolds of e.g. fixed points in the natural dynamics. The existence of controlled
relative equilibria is studied through Lagrangian mechanics and symmetry reduction
techniques. The proposed framework can be used to solve boundary value problems
by performing a search in the space of sequences of motion primitives connected us-
ing optimized maneuvers. The optimal sequence can be used as an admissible initial
guess for a post-optimization. The approach is illustrated by two numerical examples,
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the single and the double spherical pendula, which demonstrates its benefit compared
to standard local optimization techniques.

Keywords Lagrangian mechanics · Optimal control · Symmetries · Invariant
manifolds

Mathematics Subject Classification 37J15 · 49M37 · 70Q05

1 Introduction

This work combines classical methods from dynamical systems theory and recently
developed numerical optimal control methods. The underlying motivation is to over-
come one of the major limitations of current numerical control methods, namely the
restriction to local optimality for optimal control solutions. The basic idea of the pre-
sented approach is to exploit the inherent dynamical properties of the system under
consideration. These structures can be revealed by an analysis of the natural dynam-
ics on the one hand, and the system’s motion under the influence of specific controls
on the other hand.

Optimal Control of Dynamical Systems Optimal control theory goes back to the
work of Pontryagin on necessary optimality conditions in the last century, whereas
its roots are attributed to Bernoulli because of his work on the brachistochrone prob-
lem dating from more than 300 years ago (Sussmann and Willems 1997). To this
day, it is an important field of research, based on the question of how to force a
system into a desired behavior in an optimal way. A typical problem formulation
is as follows: which path of the system’s dynamical states, forced by an admissi-
ble control trajectory, minimizes a given cost functional? Here, the space of all ad-
missible state and control trajectories is infinite dimensional and additionally con-
strained by fixed boundary values and possibly further restrictions on the system’s
states or control input. Therefore, solving optimal control problems most often re-
lies on numerical means. The developed methods can be divided into two classes
(cf. Binder et al. 2001). Indirect methods apply the Pontryagin maximum principle
to obtain a system of necessary optimality conditions and then solve these bound-
ary value problems. In contrast, direct methods (cf. Betts 1998) begin with a dis-
cretization that transforms the optimal control problem to a nonlinear constrained
optimization problem. Nonlinear programming methods, such as SQP (sequential
quadratic programming, cf. e.g. Gill et al. 2000) can then be applied. However, typ-
ically, these are local solvers that cannot guarantee global optimality and require
good initial guesses. A number of global optimization methods (e.g. Neumaier 2004;
Zhigljavsky and Zilinskas 2008) have been developed to overcome these limitations.

This work develops a global approach that exploits special system structures re-
lated to dynamical symmetries. Preservation of such structures will also play a key
role in the numerical approximation methods that we will develop. This is related
to recent approaches in optimal control for mechanical systems that are structure
preserving, i.e. the discretization preserves the system structures, e.g. symmetry
or conserved quantities such as momenta, by using discrete variational mechanics
(cf. Marsden and West 2001; Ober-Blöbaum et al. 2011). The structure exploiting
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motion planning approach that we present provides state and control sequences that
can serve as an admissible sophisticated initial guess to a post-optimization, e.g. by
a local SQP method.

Applications of optimal control theory are numerous in many different areas of
research. Optimal control methods have been successfully applied to electric power
systems (Christensen et al. 1987) as well as to many different mechanical systems,
e.g. in aerodynamics (Naldi and Marconi 2011) and space mission design (Dellnitz
et al. 2009), in bio medicine, robotics (Leyendecker et al. 2009), and automotive
engineering (Gerdts 2005).

Motion Planning In the last decades, there has been a growing importance of
mechatronic systems as mechanical systems with embedded electronics and digital
control units. This has led to multidisciplinary research on mechatronic systems as
well, in particular regarding control issues. While classical control theory focuses on
stability and feedback or on open loop control, the influence of planning methods
from the field of artificial intelligence, i.e. discrete methods such as e.g. decision pro-
cesses (cf. LaValle 2006) give rise to new kinds of motion planning approach that
combine continuous and discrete methods. In this work, the term motion planning is
used in the sense of generating open loop trajectories for dynamical systems. This
will be accomplished by combining optimal control methods with discrete planning
techniques based on search trees. Motion planning by motion primitives fits into this
category of hybrid motion planning approaches. The idea is to solve the complex
control problem by constructing a finite sequence of simple motion termed motion
primitives. Frazzoli et al. (2005) explain that this approach can be deduced from the
intuitive way in which human pilots steer helicopters, that is, by recurrent simple
steering modes with short intermediate control maneuvers.

Following the idea of Frazzoli et al. (2005), we quantize the space of state and
control trajectories by representative small pieces of solution curves which can be
combined into various sequences. These motion primitives are stored in a motion
planning library. The problem is thus reduced to searching for the optimal sequence
out of all admissible sequences in the library which can be solved using global search
methods. Problems with state constraints such as obstacles in the environment can
be handled with the help of probabilistic roadmap methods (LaValle 2006; Choset
et al. 2005). Candidates for the motion primitives can be obtained by the inherent
dynamical properties of the system under consideration, such as motion along relative
equilibria (cf. Sect. 3.2) or motions on stable or unstable manifolds of the natural
dynamics (cf. Sect. 3.3).

Mechanical Systems and Symmetry The proposed motion planning approach is
general and can be applied to arbitrary dynamical systems. However, we focus on
optimal control of mechanical systems, because these systems exhibit well-studied
structural properties (cf. e.g. Abraham and Marsden 1987; Marsden and Ratiu 1999;
Bloch 2003; Bullo and Lewis 2004).

In geometric mechanics, mechanical systems are modeled by a variational ap-
proach. Hamilton’s least action principle is based on the Lagrangian of the system and
can be extended to systems underlying external forcing by the Lagrange–d’Alembert
principle. This leads to the well known forced Euler–Lagrange equations as the sys-
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tem’s equations of motion. Variational mechanics can be directly discretized using
discrete variations, e.g. for numerical simulation techniques or optimal control meth-
ods (e.g. Marsden and West 2001; Ober-Blöbaum et al. 2011). These so called geo-
metric integrators are of great interest, because they preserve properties of the contin-
uous system, such as symplecticity or conserved momenta induced by symmetry. In
addition, they exhibit long-time stable energy behavior. An optimal control method
for mechanical systems based on variational integrators is DMOC (Discrete Mechan-
ics and Optimal Control, cf. (Ober-Blöbaum et al. 2011)) which will be described in
Sect. 2.3.

In this work, we will study continuous symmetries that can be described by a Lie
group action. For physical systems, this means the invariance of the Lagrangian with
respect to translational or rotational motions. These properties are important in con-
trol, because a solution trajectory that has been designed for one specific situation,
e.g. a turn maneuver for a helicopter, is suitable in many other cases as well, because
it does not explicitly depend on the absolute position in space. More precisely, we
will call two pairs of state and control trajectories of a symmetric system equiva-
lent, if the states are related by a Lie group element and the pairs by a time shift,
i.e. a spatiotemporal symmetry equivalence. Continuous symmetries in mechanical
systems correspond to the conservation of momenta and to the existence of motions
that are solely induced by symmetry, i.e. relative equilibria (cf. Sect. 3.2). For Hamil-
tonian and Lagrangian systems, relative equilibria can be determined analytically
by symmetry reduction procedures (Marsden and Ratiu 1999; Marsden et al. 2000;
Marsden 1993). Whereas relative equilibria and symmetry reduction for Hamiltonian
systems have been comprehensively studied for several decades (see e.g. the text-
books of Marsden and Ratiu 1999; Marsden 1993 and for more recent work, e.g.
Bullo and Lewis 2007; Roberts et al. 2002), reduction procedures directly on La-
grangian systems have gained less attention (cf. Marsden and Scheurle 1993). Related
work studies symmetry properties of relative equilibria and design feedback control
laws directly based on a symmetry splitting of the state space (Simo et al. 1991;
Bloch et al. 2000). Families of relative equilibria in Hamiltonian systems can be nu-
merically computed by path following methods to study e.g. bifurcation phenomena
(Wulff and Schilder 2009).

There also exists an intensive research in mechanical (control) systems on Lie
groups, i.e. if the overall state space has Lie group structure (see e.g. Bullo and Lewis
2004 or Kobilarov and Marsden 2011). To avoid confusion, in our setting the con-
figuration manifold is an arbitrary manifold Q on which a Lie group G operates by
symmetry actions Φ : G × Q → Q. Typically the invariance is found only in some
coordinates, thus the remaining coordinates have to be left unchanged by the sym-
metry action. If the Lagrangian of a mechanical system does not explicitly depend
on a coordinate (but on the corresponding velocities), it is called cyclic. Reduction
of cyclic Lagrangian was considered by Routh (see e.g. Marsden and Ratiu 1999),
who called relative equilibria steady motions since they are the equilibrium points of
the reduced Euler–Lagrange equations. In Sect. 5.1 the simple spherical pendulum
is considered as an example of a cyclic Lagrangian system. In contrast, the double
spherical pendulum is not cyclic and therefore has to be addressed by the extended
Lagrangian reduction (see Marsden and Scheurle 1993 and Sects. 3.2 and 5.2).
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Invariant Manifolds in Natural Dynamics In the control of mechanical, electrical
or mechatronic systems, minimizing the energetic effort is often of particular impor-
tance. Thus it is obvious that trajectories of the natural, i.e. uncontrolled dynamics
that are free of cost, should be used whenever the planning scenario allows for it.
However, even the natural dynamics of nonlinear systems are typically quite compli-
cated such that an analysis, by analytical and / or numerical means, is necessary to
identify promising candidates for planning scenarios. In this work, we study the use
of trajectories on (un)stable manifolds of the natural dynamics for motion planning
purposes. The manifolds arise at invariant objects, in the simplest case an equilib-
rium or a periodic orbit. Near these critical objects, the manifolds are tangent to the
eigenspaces of the system’s linearization. Eigenvalues with zero real part give rise to
so called center manifolds. Conversely, if the spectrum is hyperbolic, i.e. it has no
eigenvalues on the imaginary axis, the stable and unstable invariant subspaces span
the entire state space. The stable manifold consists of all points that tend to the crit-
ical object under the system’s flow; points of the unstable manifold show the same
behavior in backward time (see any textbook on dynamical systems, e.g. Gucken-
heimer and Holmes 1983 or Abraham and Marsden 1987 for a focus on Hamiltonian
and Lagrangian systems). We will go into this in more detail in Sect. 3.3.

Since the studies of orbit structures in celestial mechanics performed in Con-
ley (1968), McGehee (1969), invariant manifolds have been exploited in this spirit
for a variety of space mission trajectories for the energy efficient transport between
different planets and their nearby orbits (see e.g. Gómez et al. 2004; Koon et al.
2001 among numerous others). This concept has been extended in such a way that
(un)stable manifolds of several different systems are used as partial orbits that are
concatenated by appropriately controlled maneuvers (see e.g. Koon et al. 2000 and
related work of these authors or Dellnitz et al. 2009).

Throughout the present work, all (uncontrolled) systems are assumed to be au-
tonomous, i.e. not explicitly time-dependent except for the control force that is a
function of time. However, in a non-autonomous setting, which arises e.g. when
studying fluid dynamics or ocean flow dynamics, organizing structures that are re-
lated to (un)stable manifolds, e.g. Lagrangian coherent structures, have been detected
(Haller 2001; Haller and Yuan 2000) and studied in a number of preceding works (see
e.g. Froyland and Padberg 2009 for a comparing description of computational tech-
niques).

Contributions This work extends recent results on motion planning for systems
with symmetries (Frazzoli et al. 2005) to include new kinds of motion primitive—
trajectories along stable or unstable manifolds of equilibria or periodic orbits. Thus,
the resulting solutions exploit the structure of the system dynamics to a higher de-
gree. On the theoretical side, the study of relative equilibria in geometric mechanics
is extended to mechanical systems with a special kind of control forces. This enables
us to identify candidates that satisfy the definition of trim primitives. In addition, ma-
neuvers which serve as transition in the motion library are designed using structure-
respecting optimal control that provably preserves symmetries and motion invariants.
We develop a numerical framework based on (un)stable manifolds, relative equilibria,
and optimized maneuvers and apply it to a nontrivial example, the double spherical
pendulum.
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The outline is as follows: In Sect. 2 a short introduction in optimal control formu-
lations, variational mechanics and the optimal control method DMOC is given. Next,
we analyze the inherent dynamical structures of mechanical systems that can be ex-
ploited for optimal control in Sect. 3, i.e. symmetry, relative equilibria and (un)stable
manifolds. In Sect. 4 it is explained in detail, how we perform the motion planning
with primitives. Numerical results for two examples, a simple and a double spherical
pendulum are presented in Sect. 5 which have been partly presented in a short version
of this work in Flaßkamp and Ober-Blöbaum (2012). Finally, Sect. 6 concludes by
pointing out several directions of further research.

2 Preliminaries

In this work, optimal control problems for complex nonlinear systems are studied
and solved by numerical methods. Here, we focus on systems that can be modeled
by Lagrangian mechanics. In this section, we briefly introduce the framework our
research is based upon.

2.1 Optimal Control

Consider a system with time-dependent state x(t) ∈ X controlled using time-
dependent actuator input u(t) ∈ U , where X is the state space and U denotes the
set of controls. The dynamics is described by the function f : X × U → T X defined
by

ẋ(t) = f
(
x(t), u(t)

)
, (1)

which is used to evolve the state forward in time. In addition, the system is subject
to constraints arising from actuator bounds and forbidden regions in the state space.
These constraints are expressed through the vector of inequalities

h
(
x(t), u(t)

) ≥ 0, (2)

for all t ∈ [0, tf], where tf > 0 is the final time of the trajectory. The goal is to compute
the optimal controls u∗ and time t∗f driving the system from its initial state x0 ∈ X to
a given goal region Xf ⊂ X, i.e.

(
u∗, t∗f

) = arg min
u,tf

∫ tf

0
C

(
x(t), u(t)

)
dt,

subject to ẋ(t) = f
(
x(t), u(t)

)
,

h
(
x(t), u(t)

) ≥ 0, x(0) = x0, x(tf) ∈ Xf

(3)

for all t ∈ [0, tf] and where C : X × U → R is a given cost function. A typi-
cal cost function includes a time component and a control effort component, e.g.
C(x(t), u(t)) = λ1 · 1 + λ2 · ‖u(t)‖2 where λ1,2 ≥ 0 are chosen weights and ‖ · ‖ is
the 2-norm. The problem (3) has no closed-form solution since both the dynamics (1)
and constraints (2) are nonlinear.
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There exist a number of different approaches for numerically solving optimal con-
trol problems, for a good overview we recommend Binder et al. (2001) and the refer-
ences therein. The solution methods can be divided into indirect and direct methods.
While indirect methods generate and then solve a boundary value problem accord-
ing to the necessary optimality conditions of the Pontryagin maximum principle (cf.
e.g. Binder et al. 2001), direct methods start with a discretization of the problem (3).
Thus one obtains a nonlinear optimization problem that can be addressed by appro-
priate state of the art techniques such as sequential quadratic programming (SQP, cf.
e.g. Gill et al. 2000). These methods require derivative information of the constraints
and the objective, which can be either approximated by finite differences, or pro-
vided by analytical expressions if at hand, or computed by algorithmic differentiation
(cf. Griewank and Walther 2008).

However, gradient-based optimization is not suitable unless a good starting guess
is chosen since typically there are many local minima. Thus, instead of solving (3)
numerically using a black box nonlinear programming tool such as SQP we reformu-
late the problem by exploiting any existing structure in the dynamics. This is accom-
plished by considering symmetries and invariant manifolds described in Sect. 3.

2.2 Variational Mechanics

An important class of dynamical systems that are rich in inherent structural proper-
ties are mechanical systems. The study of mechanical systems from the perspective
of differential geometry has a long history (cf. e.g. Abraham and Marsden 1987;
Marsden and Ratiu 1999; Marsden and West 2001). However, geometric mechanics
is an active field of research, in particular regarding optimal control problems (Bloch
2003; Bullo and Lewis 2004; Ober-Blöbaum et al. 2011). The following descriptions
are mainly taken from Flaßkamp and Ober-Blöbaum (2012).

Let Q be an n-dimensional configuration manifold with tangent bundle T Q and
cotangent bundle T ∗Q. Consider a mechanical system with time-dependent configu-
ration vector q(t) ∈ Q and velocity vector q̇(t) ∈ Tq(t)Q, t ∈ [0, tf], whose dynamical
behavior is described by the Lagrangian L : T Q → R. Typically, the Lagrangian L

consists of the difference of the kinetic and potential energy. In addition, there is
a force f : T Q × U → T ∗Q acting on the system. This force depends on a time-
dependent control parameter u(t) ∈ U ⊆ R

m that influences the system’s motion.
The equations of motion can be described via a variational principle. Define the ac-
tion map S : C2([0, tf],Q) → R as

S(q) =
∫ tf

0
L

(
q(t), q̇(t)

)
dt.

Then the Lagrange–d’Alembert principle seeks curves q ∈ C2([0, tf],Q) with fixed
initial value q(0) and fixed final value q(tf) satisfying

δ

∫ tf

0
L(q, q̇)dt +

∫ tf

0
f (q, q̇, u) · δq dt = 0 (4)
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for all variations δq ∈ TqC2([0, tf],Q), where the second integral in (4) is the virtual
work acting on the mechanical system via the force f . This yields the forced Euler–
Lagrange equations

∂L

∂q
(q, q̇) − d

dt

(
∂L

∂q̇
(q, q̇)

)
+ f (q, q̇, u) = 0. (5)

For the unforced Euler–Lagrange equations (f = 0), we denote the Lagrangian
vector field by XL and by FL : T Q × [0, tf] → T Q its flow. If we fix the time t ,
we write F t

L : T Q → T Q. In case there is external forcing acting on the system,
(5) implicitly defines a family of forced Lagrangian flows Fu

L for fixed curves u :
[0, tf] → U . The forced Lagrangian vector field is then denoted by Xu

L.

2.3 Discrete Mechanics and Optimal Control

To formulate the optimal control problem for controlled Lagrangian systems, we re-
place in Sect. 2.1 the state space X by the tangent bundle T Q by setting x(t) =
(q(t), q̇(t)) and replace the differential equation in the optimal control problem (3) by
the forced Euler–Lagrange equations (5). Recently, the direct optimal control method
DMOC (Discrete Mechanics and Optimal Control, Ober-Blöbaum et al. 2011) was
developed to numerically solve optimal control problems of Lagrangian systems and
thereby taking the special structure of mechanical systems into account. Using con-
cepts from discrete variational mechanics, DMOC is based on a direct discretization
of the Lagrange–d’Alembert principle of the mechanical system. The goal of dis-
crete variational mechanics is to derive discrete approximations of the solutions of
the forced Euler–Lagrange equations that inherit the same qualitative behavior as the
continuous solution.

The continuous optimal control problem is transformed into a finite dimensional
constrained optimization problem using a global discretization of the states and the
controls. The state space T Q is replaced by Q × Q and the discretization grid is
defined by Δt = {tk = kh | k = 0, . . . ,N}, Nh = tf, where N is a positive integer and
h is the step size. The path q : [0, tf] → Q is replaced by a discrete path qd : {tk}Nk=0 →
Q, where qk = qd(kh) is an approximation to q(kh) (Marsden and West 2001; Ober-
Blöbaum et al. 2011). Similarly, the control path u : [0, tf] → U is replaced by a
discrete one. To this end, a refined grid, Δt̃ , is generated via a set of control points
0 ≤ c1 < · · · < cs ≤ 1 and Δt̃ = {tk� = tk + c�h | k = 0, . . . ,N − 1;� = 1, . . . , s}.
The discrete control path is defined to be ud : Δt̃ → U . The intermediate control
samples uk = (uk1, . . . , uks) ∈ Us on [tk, tk+1] are defined to be the values of the
control parameters guiding the system from qk = qd(tk) to qk+1 = qd(tk+1), where
ukl = ud(tkl) for l ∈ {1, . . . , s}.

To construct a discrete version of the Lagrange–d’Alembert principle, a discrete
Lagrangian Ld : Q × Q → R is defined that approximates the action integral along
the curve segment between two adjacent points qk and qk+1 as

Ld(qk, qk+1) ≈
∫ (k+1)h

kh

L
(
q(t), q̇(t)

)
dt. (6)
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The discrete action is given by the sum of the discrete Lagrangian on each adjacent
pair Sd(qd) = ∑N−1

k=0 Ld(qk, qk+1). Similarly, the virtual work can be approximated
via

N−1∑

k=0

f −
d (qk, qk+1, uk) · δqk + f +

d (qk, qk+1, uk) · δqk+1

≈
∫ tf

0
f

(
q(t), q̇(t), u(t)

) · δq(t)dt (7)

with the left and right discrete forces f ±
d (qk, qk+1, uk) := f ±

k . Based on these dis-
crete objects, the discrete Lagrange–d’Alembert principle seeks discrete curves of
points {qk}Nk=0 satisfying

δSd +
N−1∑

k=0

f −
k · δqk + f +

k · δqk+1 = 0 (8)

for all variations δqk vanishing at the endpoints. With δq0 = δqN = 0, (8) is equiva-
lent to the discrete forced Euler–Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) + f −
k + f +

k−1 = 0 (9)

for each k = 1, . . . ,N − 1, where Di denotes the derivative w.r.t. the ith argument.
For given control values uk , (9) provides a time stepping scheme for the simula-
tion of the mechanical system which is called a variational integrator (cf. Mars-
den and West 2001). Since these integrators, derived in a variational way, are struc-
ture preserving, important properties of the continuous system are preserved (or
change consistently with the applied forces), such as symplecticity or momentum
maps induced by symmetries. In addition, they have an excellent long-time energy
behavior. However, rather than solving initial value problems, an optimal control
problem has to be solved, which involves the minimization of a cost functional
J (x,u) = ∫ tf

0 C(x(t), u(t))dt . Thus, in the same manner, an approximation of the
cost functional generates the discrete cost functions Cd and Jd, respectively. The re-
sulting nonlinear restricted optimization problem reads

min
qd,ud

Jd(qd, ud) = min
qd,ud

N−1∑

k=0

Cd(qk, qk+1, uk) (10)

subject to the discrete forced Euler–Lagrange equations (9) and optionally discretized
boundary and (in-)equality constraints for states and / or controls. Thus, the discrete
forced Euler–Lagrange equations serve as equality constraints for the optimization
problem which can be solved by standard optimization methods like SQP.

The approximation order of the optimal control scheme depends on the quadra-
ture rule used to approximate the relevant integrals in (6) and (7). In general, one
uses polynomial approximations to the trajectories and numerical quadrature to ap-
proximate the integrals. Then the order of the discrete Lagrangian and the discrete
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forces is given by the order of the quadrature rule in use (e.g. second order using a
midpoint rule approximation and assuming constant control parameters on each time
interval with l = 1 and c1 = 1

2 ).
In Ober-Blöbaum et al. (2011), a detailed analysis of DMOC resulting from

this discrete variational approach is given. The optimization scheme is symplectic-
momentum consistent, i.e. the symplectic structure and the momentum maps corre-
sponding to symmetry groups are consistent with the control forces for the discrete
solution independent on the step size h. Thus, the use of DMOC leads to a reasonable
approximation to the continuous solution, also for large step sizes, i.e. a small num-
ber of discretization points. In this work, DMOC will be used to compute the short
controlled maneuvers mentioned above as well for a post-optimization of the found
sequence. DMOC maneuvers combined with trims have been successfully used be-
fore in Kobilarov (2008) to build up a motion planning library for the optimal control
of an autonomous helicopter.

3 Structures in Mechanical Systems

The structure of mechanical systems is now studied in more detail. Each of the listed
properties below can be advantageously used in the motion planning approach for
optimal control problems. While symmetry exploiting methods in motion planning
using trim primitives has been already proposed in Frazzoli et al. (2005), the in-
corporation of trajectories on (un)stable manifolds in this framework came up quite
recently (Flaßkamp et al. 2010; Flaßkamp and Ober-Blöbaum 2012), motivated by
successful applications of (un)stable manifolds in space mission design (e.g. Serban
et al. 2002).

3.1 Symmetry

Symmetries are present in a variety of mechanical systems and have been exten-
sively studied and analyzed during the last years. In this section the general setting
of symmetries in mechanical systems is introduced. We mainly follow the concept of
Marsden and West (2001). For a detailed formulation and analysis of symmetries in
unforced Lagrangian systems we also refer to Marsden (1994), Marsden and Ratiu
(1999), Bloch (2003), Marsden and Scheurle (1993).

Assume a Lie group G with Lie algebra g acts on the configuration manifold Q by
a left-action Φ : G × Q → Q. For each g ∈ G we denote by Φg : Q → Q the diffeo-
morphism defined by Φg := Φ(g, ·). Let ΦT Q : G × T Q → T Q for (q, v) ∈ T Q be

the tangent lift of the action given by Φ
T Q
g (q, v) = T (Φg) · (q, v). The symmetry of

the unforced mechanical system corresponds to the invariance of the Lagrangian un-
der the group action, i.e. L ◦ Φ

T Q
g = L for all g ∈ G. One also says: the group action

is a symmetry of the Lagrangian. The presence of a symmetry leads to the notion of
equivalent trajectories in the following way.

Definition 3.1 (Equivalence of trajectories) Two trajectories π1 : t ∈ [ti,1, tf,1] �→
(q1(t), q̇1(t), u1(t)) and π2 : t ∈ [ti,2, tf,2] �→ (q2(t), q̇2(t), u2(t)) of (5) are equiva-
lent, if we have
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(i) tf,1 − ti,1 = tf,2 − ti,2 and
(ii) there exist a g ∈ G and a T ∈ R, such that (q1, q̇1)(t) = Φ

T Q
g ((q2, q̇2)(t − T ))

and u1(t) = u2(t − T ) ∀t ∈ [ti,1, tf,1].

Thus, equivalent trajectories can be constructed by a group action and a time shift
only. All equivalent trajectories can be summed up in an equivalent class. By a slight
abuse of notation, we call the equivalent class, but also its representative, a motion
primitive (cf. Frazzoli et al. 2005). The number of candidates for the motion planning
library can be immensely reduced by exploiting the system’s invariance. Only one
representative has to be stored and can then be used in different regions of the state
space by a transformation of the lifted action.

Invariance and Lagrangian Flows Since G leaves the set of solutions of the vari-
ational principle invariant, the group action commutes with the Lagrangian flow FL

(Marsden et al. 1998). Furthermore, the invariance of the Lagrangian leads to the
preservation of specific quantities by the Lagrangian flow.

For ξ ∈ g, let Φξ : R×Q → Q be the R-action given by Φξ(t, q) = Φ(exp(tξ), q).
The infinitesimal generator defined as ξQ(q) = d

dt
|t=0Φ(exp(tξ), q) is a vector field

on Q while Φ(exp(tξ), ·) : Q → Q is the corresponding flow on Q.
Assume that L(q, v) = T (q, v) − V (q), where V (q) is a G-invariant poten-

tial. G acts by isometries on the kinetic energy term, which can be written as
T (q, v) = 1

2vTM(q)v = 1
2 〈〈v, v〉〉 with mass matrix M and 〈〈·, ·〉〉 its induced inner

product. The Lagrangian momentum map for a G-invariant Lagrangian L is defined
by 〈J (q, v), ξ 〉 = 〈 ∂L

∂q̇
(q, v), ξQ(q)〉 = 〈〈v, ξQ(q)〉〉. Here, 〈·, ·〉 denotes the natural

pairing between elements of TqQ and its dual T ∗
q Q.

The symmetry of Lagrangian systems leads to preservation of the associated mo-
mentum map as stated by Noether’s theorem (see e.g. Marsden and West 2001).

Theorem 3.2 (Noether’s Theorem) Let L : T Q → R be invariant under the lift of
the action Φ : G × Q → Q as defined above, then the corresponding Lagrangian
momentum map J : T Q → g∗ is a conserved quantity for the flow, i.e. J ◦F t

L = J for
all times t .

In general, arbitrary forcing would destroy the symmetry of Lagrangian systems
since it breaks the conservation of the momentum map. However, as the forced
Noether’s theorem states, forcing that is orthogonal to the group action preserves
symmetry (Marsden and West 2001; Ober-Blöbaum et al. 2011).

Theorem 3.3 (Forced Noether’s Theorem) Let the Lagrangian L and the symmetry
action Φ be as in Theorem 3.2. Consider a force fL : T Q × U → T ∗Q such that
〈fL(q, q̇, u), ξQ(q)〉 = 0 for all (q, q̇) ∈ T Q, u(t) ∈ U ∀t and all ξ ∈ g. Then the
Lagrangian momentum map J : T Q → g∗ is preserved by the forced Lagrangian
flow, i.e. J ◦ (F u

L )t = J for all t .
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3.2 Relative Equilibria and Trim Primitives

The presence of symmetry gives rise to the existence of a special kind of trajectories,
i.e. motions that are solely generated by the symmetry action. These group orbits are
therefore called relative equilibria.

Definition 3.4 (Relative equilibrium) A point xe = (qe, ve) ∈ T Q is called a relative
equilibrium, if XL(xe) ∈ Txe(G ·xe), i.e. the Lagrangian vector field XL at xe points in
the direction of the group orbit G ·xe = {x = (q, v)|(q, v) = Φ

T Q
g (qe, ve) for g ∈ G}.

Finding relative equilibria is closely related to reduction processes, since relative
equilibria correspond to fixed points of reduced equations of motion (Marsden 1993).
Roughly speaking, the conservation of momentum maps (as stated by Noether’s the-
orem) can be used to reduce the system’s dynamic equations by constraining them
to a fixed momentum value. In the following we give a brief overview of Lagrangian
reduction techniques.

Lagrangian Reduction The symmetry reduction method for Lagrangian systems is
called the Lagrangian reduction method and can be seen as the counterpart of the
common symplectic reduction method or energy-momentum method for Hamiltonian
systems. Lagrangian reduction (cf. Marsden and Scheurle 1993) is a generalization
of the classical Routh reduction (see e.g. Bloch 2003) for cyclic variables. In the fol-
lowing, we recall some results of Marsden and Scheurle (1993) that equip us with
a method to compute relative equilibria for mechanical systems and that can be ex-
tended to Lagrangian systems with forcing.

For each q ∈ Q the locked inertia tensor I : g → g∗ is defined by 〈I(q)η, ζ 〉 =
〈〈ηQ(q), ζQ(q)〉〉 with ηQ, ζQ being the infinitesimal generators to η, ζ ∈ g. It can be
interpreted as the inertia tensor of a system which moves only in the direction of the
infinitesimal generators of the symmetry action, as e.g. a multi-body system that has
been locked to a rigid structure. The corresponding angular velocity is then given by
α(q, v) = I(q)−1J (q, v), called the mechanical connection. For each μ ∈ g∗, it leads
to the definition of a one form on Q, denoted by αμ with 〈αμ(q), v〉 = 〈μ,α(q, v)〉.
The amended potential is defined by Vμ(q) = V (q) + 1

2 〈μ, I(q)−1μ〉 (cf. Mars-
den and Scheurle 1993) and plays an important role in reduction processes. For a
given value μ ∈ g∗ of the momentum map, the Routhian Rμ : T Q → R is defined
as Rμ(q, v) = L(q, v) − 〈α(q, v),μ〉. Fixing the level set of the momentum map,
i.e. J (q, q̇) = μ it can be shown (see Marsden and Scheurle 1993 for the variational
derivation) that the original Euler–Lagrange equations are equivalent to the Euler–
Lagrange equations of the Routhian Rμ with an additional gyroscopic forcing term,
reading

d

dt

∂Rμ

∂q̇
− ∂Rμ

∂q
= q̇Tβ.

Here, β is the magnetic two form on Q, β(q) : TqQ × TqQ → R, defined by β =
dαμ, i.e. in coordinates, βij = ∂αj

∂qi − ∂αi

∂qj . (Recall that αμ is a one form on Q, so

in coordinates, αμ = αi dqi with dqi being the basis vectors for T ∗
q Q.) Based on



J Nonlinear Sci

a splitting of the configuration manifold into the symmetry group G and the shape
space S = Q/G, each vector (q, v) ∈ TqQ can be decomposed into its horizontal
and its vertical part, v = horqv + verqv, where verqv = [α(q, v)]Q(q) and horqv =
v−verqv. That means, the vertical part belongs to the vertical space of the connection
and consists of all points that are mapped to zero under the projection from Q to S.
These are the infinitesimal generators. The horizontal part is an element of the space
that is orthogonal to the G-orbits, given by horq = {(q, v)|J (q, v) = 0}. In Marsden
and Scheurle (1993), it is shown that for fixed level sets of J , the Routhian can be
reduced to Rμ = 1

2‖hor(q, v)‖2 − Vμ. Hence, the Euler–Lagrange equations for Rμ

can be reduced as well and the following statement can be deduced (cf. e.g. Marsden
and Scheurle 1993, Prop. 3.5):

Proposition 3.5 A point xe = (qe, ve) is a relative equilibrium if and only if qe is a
critical point of the amended potential Vμ with μ = J (qe, ve).

For control purposes it makes sense to generalize the definition of relative equilib-
ria to forced systems by allowing constant control values. We will use the terminol-
ogy of Frazzoli et al. (2005) and call them trim primitives originated from trimmed
motions.

Definition 3.6 (Trim primitives) A point xe = (qe, ve) together with some control
value ue ∈ U is called a trim primitive (or shortly a trim), if we have X

ue
L (xe) ∈

Txe(G · xe) with the forced Lagrangian vector field X
ue
L .

In other words, trims generate solutions (q(t), q̇(t)) on [0, tf] of the forced Euler–
Lagrange equations with control u(t) for a G-invariant Lagrangian L and forcing
fL, which can be written as (q, q̇)(t) = ΦT Q(exp(tξ), (qe, ve)), u(t) = ue = const.
∀t ∈ [0, tf] with ξ ∈ g and exp : g → G,ξ �→ exp(tξ) ∈ G. Trims are uniquely defined
by their initial value (q0, q̇0, u0) and the Lie algebra element ξ , which makes them
easy to store and handle in a library of motion primitives. A second benefit of trims
is that they are simply parametrized by time, i.e. their duration need not be fixed in
advance, but can be adjusted during the sequencing (cf. Frazzoli et al. 2005).

In the following we will introduce the concept of controlled potentials that pro-
vides a method to construct trim primitives based on the computation of relative
equilibria.

Controlled Potentials We augment the original potential V (q) by a parameter-
dependent term, representing potential forces, i.e. a special kind of forcing that is de-
fined by a potential (cf. Bullo and Lewis 2004). That means, we replace V : Q → R

by V u : Q → R, V u(q) = V (q) − ν(q) with ν : Q → R having the property that
∂
∂q

ν(q) = u for some control value u ∈ U , where we assume that U ⊆ R
n.

This type of control is intrinsically restricted to depend on configurations, so can-
not be used to model dissipative, i.e. velocity dependent forces. However, many ex-
amples of control forces on mechanical systems fit into this structure.

The following theorem describes how a trim primitive for a controlled Lagrangian
system can be computed by means of the concept of controlled potentials.
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Theorem 3.7 Let L = T − V be a G-invariant Lagrangian and V u(q) = V (q) −
ν(q) the augmented, G-invariant controlled potential. The critical points of the
amended controlled potential V u

μ are relative equilibria of the forced Lagrangian
vector field, Xu

L, i.e. trim primitives according to Definition 3.6.

Proof Amending the controlled potential V u leads to the amended controlled poten-
tial V u

μ = V u + 1
2 〈μ, I(q)−1μ〉 = V (q) − ν(q) + 1

2 〈μ, I(q)−1μ〉 = Vμ − ν(q). Since
we assume V u to be G-invariant, Proposition 3.5 can be applied to the modified sys-
tem given by the Lagrangian Lu = T − V u, i.e. relative equilibria are given by the
critical points of V u

μ :

∂

∂q
V u

μ = 0 ⇔ ∂

∂q

(
Vμ − ν(q)

) = 0 ⇔ ∂

∂q
Vμ = u.

In other words, if a pair (xe, ue) = ((qe, ve), ue) satisfies ∂
∂q

Vμ(qe) = ue with μ =
J (qe, ve), the definition of a relative equilibrium, XLu(xe) ∈ Txe(G · xe), is ful-
filled. The Euler–Lagrange equations of Lu read as follows: ∂

∂q
(T (q, q̇) − V u(q)) −

d
dt

∂
∂q̇

T (q, q̇) = ∂
∂q

(T (q, q̇) − V (q)) − d
dt

∂
∂q̇

T (q, q̇) + u = 0 and hence are equal to

the forced Euler–Lagrange equations for L with forcing f (q, q̇, u) = ∂
∂q

ν(q) = u.

Thus, the vector fields XLu = Xu
L coincide and therefore, X

ue
L (xe) ∈ Txe(G · xe), i.e.

(xe, ue) is a trim primitive as defined in Definition 3.6. �

Note that in Theorem 3.7 the condition that the controlled potential is G-invariant
implicitly gives restrictions on ν and thus on the control u. The forced Noether’s The-
orem 3.3 suggests candidates for trim primitives, namely all trajectories with such
controls that act orthogonal to the group action. Indeed the following corollary states
that this orthogonality condition is in fact necessary for the construction of trim prim-
itives.

Corollary 3.8 If xe = (qe, ve) with control ue is a trim primitive of a Lagrangian
system with symmetry group G and G-invariant controlled potential V ue = V (q) −
ν(q) with ∂

∂q
ν(q) = ue, it necessarily holds that ue · ξQ(qe) = 0, with · denoting

the standard scalar product. Here, ξQ is the infinitesimal generator of ξ ∈ g such
that (q, q̇)(t) = ΦT Q(exp(tξ), (qe, ve)), u(t) ≡ ue is a solution of the forced Euler–
Lagrange equations.

Proof It follows from the G-invariance of L that the original V is G-invariant, be-
cause we assume G to act by isometries and the kinetic energy is given in terms of
a metric. Then, from the G-invariance of V ue , i.e. V ue(Φ(g, q)) = V ue(q), it can be
deduced that

V
(
Φ(g,q)

) − ν
(
Φ(g,q)

) = V (q) − ν(q) ⇔ ν
(
Φ(g,q)

) − ν(q) = 0.

As g is a point in the one-parameter subgroup R � s → exp(sξ) ∈ G generated
by ξ ∈ g, we can replace g by exp(sξ), set q to the trim primitive value xe and then
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differentiate with respect to s and evaluate at s = 0:

0 = d

ds

(
ν
(
Φ

(
exp(sξ), qe

)) − ν(qe)
)
∣∣∣∣
s=0

= ∂

∂q
ν
(
Φ

(
exp(sξ), qe

)) · d

ds
Φ

(
exp(sξ), qe

)
∣∣∣
∣
s=0

= ue · ξQ(qe). �

Hence, we received a necessary condition on ue to be admissible for a trim primi-
tive that can be used to compute trim primitives in example systems.

Note that depending on the system under consideration, it is not guaranteed to
identify all trim primitives by numerically finding the zeros of the gradient of the
amended potential. However, restricting to only some of all existing trim primitives
does not make the motion planning approach fail. However, it does in fact reduce the
number of controllable states.

3.3 Invariant Manifolds in Natural Dynamics

In this section, we analyze the system’s natural dynamics, i.e. the unforced case
of e.g. a mechanical system. Nonlinear dynamical systems may exhibit compli-
cated structures, e.g. local attractors or invariant manifolds (Guckenheimer and
Holmes 1983) that separate the state space. These structures are not at all ob-
vious up to a careful and systematic analysis. However, there may be motions
of the unforced system that can be of great interest in control problems when
searching for energy efficient solutions. Stable manifolds are introduced in a num-
ber of textbooks on dynamical systems (e.g. Guckenheimer and Holmes 1983;
Katok and Hasselblatt 1995 among others or Abraham and Marsden 1987 for me-
chanical systems). The following definitions are basically taken from the latter with
a slightly different notation at some points.

Consider a vector field X on a manifold with its corresponding flow F t , e.g. a
Lagrangian vector field XL on the tangent bundle T Q with flow F t

L : T Q → T Q.
A critical element is either an equilibrium, i.e. a point x̄ ∈ T Q such that XL(x̄) = 0
and, hence, F t

L(x̄) = x̄ for all t ∈ R, or a closed orbit, i.e. the orbit of a periodic point
(F t

L(x̄) = F t+τ
L (x̄) with τ > 0 being the smallest value that satisfies this condition).

Given an equilibrium point x̄, we are interested in the eigenvalues of X′
L(x̄), i.e.

the linearization of XL at x̄, X′
L(x̄) : Tx̄(T Q) → Tx̄(T Q) defined by X′

L(x̄) · v =
d

dλ
(T Fλ

L (x̄) · v)|λ=0. In coordinates, the matrix X′
L(x̄) is given by (

∂Xi
L

∂xj )|x=x̄ . It is a
well known stability criterion that a system is asymptotically (un)stable, if all eigen-
values have strictly negative (resp. positive) real parts. In the following, we will study
the case where there are eigenvalues on both sides of the imaginary axis. A critical
point is called hyperbolic, if none of the corresponding linearization eigenvalues has
zero real part.

To investigate the dynamic behavior near closed orbits, the Poincaré map of a
transversal section S is studied. A transversal section of XL at a point x on the orbit
is a submanifold S ⊂ T Q of codimension one with x ∈ S and for all s ∈ S, XL(s)

is not contained in TsS. Then, roughly speaking, the Poincaré map of a closed or-
bit γ is a diffeomorphism Θ between neighborhoods of x in S that assigns to each
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neighboring point s ∈ S the point, where the orbit F
ρ(s)
L (s) intersects S again for the

first time. Here, ρ(s) is the corresponding return time. (For a detailed description we
refer to Abraham and Marsden 1987 or another textbook on dynamical systems.) For
a closed orbit γ of a vector field XL, the characteristic multipliers of XL at γ are the
eigenvalues of TxΘ for any Poincaré map Θ at any x ∈ γ . γ is called hyperbolic,
if none of the characteristic multipliers has modulus one. Analogous to the stability
criterion of Lyapunov for equilibria, a period orbit is asymptotically (un)stable, if the
modulus of all characteristic multipliers is less (resp. greater) than one.

Theorem 3.9 (cf. Abraham and Marsden 1987) If γ ⊂ T Q is a critical element of
XL, there exist submanifolds of T Q, i.e. local stable (W s

loc), center-stable (W cs
loc),

center (W c
loc), center-unstable (W cu

loc), and unstable (W u
loc) manifolds, respectively,

with the following properties:

(i) each submanifold is invariant under XL and contains γ ,
(ii) For x ∈ γ , Tx(W

s
loc) is the sum of the eigenspace in Tx(T Q) of the characteristic

multipliers of modulus <1 and the subspace Txγ ; Tx(W
cs
loc) (resp. Tx(W

c
loc),

Tx(W
cu
loc), Tx(W

u
loc)) is the sum of the eigenspace in Tx(T Q) of the characteristic

multipliers of modulus ≤1 (resp. =1, ≥1, >1) and the subspace Txγ .
(iii) If x ∈ W s

loc, then the ω-limit, given by ω(x) = ⋂∞
T =0 (

⋃
t≥T F t

L(x)) is equal

to γ . If x ∈ W u
loc, then the α-limit is γ , with α(x) = ⋂−∞

T =0 (
⋃

t≤T F t
L(x)).

(iv) W s
loc and W u

loc are locally unique.

Thus, all points of the local stable manifold W s
loc tend to the critical element under

the evolution. Conversely, the local unstable manifold W u
loc consists of all points in

T Q which show this behavior if time runs backwards. The dynamics on the center
manifold is subject to a further analysis (see e.g. Abraham and Marsden 1987 and the
references therein) but out of the scope for this work.

Remark 3.10 In case of a critical point, i.e. an equilibrium γ = x̄, the tangent space
is trivial, Tx̄γ = {0} and therefore, Tx̄(W

s
loc) equals the eigenspace in Tx̄(T Q) of

the characteristic multipliers of modulus <1. Further, for γ = x̄, the characteristic
multipliers have to be interpreted as the eigenvalues of Tx̄F

t
L, i.e. etμ1, . . . , etμn where

μ1, . . . ,μn are the eigenvalues of X′
L(x̄) (also called characteristic exponents). In

other words, the stable manifold W s
loc, for example, is defined by the eigenvalues that

lie in the strict left plane (Re(μi) < 0). In contrast, for γ being a closed orbit, Tx̄γ

is the subspace generated by X(x̄) that is included in all of the submanifolds defined
above.

Of special interest is the hyperbolic case, where there are no center eigenspaces.
Then the nearby orbits of γ behave qualitatively like the linear case, i.e. for a hyper-
bolic critical point, the flow nearby looks like that of the linearization at γ .

Corollary 3.11 (Global stable manifold theorem of Smale, cf. Abraham and Marsden
1987) If γ is hyperbolic, then the stable manifold, W s(γ ) = {x ∈ T Q|ω(x) ⊂ γ } and
the unstable manifold, W u(γ ) = {x ∈ T Q|α(x) ⊂ γ } are immersed submanifolds.
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Also, γ ⊂ W s(γ )∩W u(γ ) and for x ∈ γ , TxW
s(γ ) and TxW

u(γ ) generate Tx(T Q).
If ns is the number of characteristic multipliers of γ of modulus <1, and nu the
number of modulus >1, then the dimension of W s(γ ) (resp. W u(γ )) is ns (resp. nu)
if γ is a critical point, or ns + 1 (resp. nu + 1) if γ is a closed orbit.

That means, the local (un)stable manifolds defined in Theorem 3.9 can be uniquely
expanded to global manifolds by applying the flow of the vector field.

So far, we have not covered all of the structure of critical points of Lagrangian
systems. Since a regular Lagrangian system can be transformed into a Hamiltonian
system by the Legendre transformation, the eigenvalue spectrum of a critical point
can be characterized even further. It is a well known result (see e.g. Abraham and
Marsden 1987) that the linearization of a Hamiltonian system is a linear Hamilto-
nian system and therefore, if μ is an eigenvalue of X′

H (x̄), then so are μ̄,−μ,−μ̄.
Therefore, stable and unstable manifolds of a critical point always have the same
dimension and the center manifold, if existent, is even dimensional. Additionally,
for a Lagrangian that equals kinetic minus potential energy, solely the second-order

partial derivatives of the potential, i.e. ∂2

∂q2 V determine the spectral characteristics.
From the Lagrange–Dirichlet stability criterion (see e.g. Abraham and Marsden 1987;

Marsden 1993), it follows that the system is stable, if the matrix ∂2

∂q2 V evaluated at
the equilibrium is positive definite. Then the eigenvalues lie on the imaginary axis.
Otherwise, the system is unstable, because there has to be at least one eigenvalue with
positive real part giving rise to an unstable manifold.

For another extension of the preceding theory for critical points, let us assume that
the strongest stable and unstable eigenvalues, i.e. μss := minμ∈σ Re(μ) and μuu :=
maxμ∈σ Re(μ) where σ denotes the eigenvalue spectrum of the linearization at the
equilibrium x̄, are unique and real. Then we define the strong (un)stable manifolds
W ss(x̄) and W uu(x̄) as the submanifold of the (un)stable manifold that are tangent
to the eigenspace corresponding to the strongest (un)stable eigenvalues μss and μuu

(see e.g. Osinga et al. 2004).
However, in most cases it is not possible to compute these global invariant man-

ifolds analytically. For that reason, a number of numerical techniques for approxi-
mating (un)stable manifolds has been developed in the last decades (see Krauskopf
et al. 2005 for an overview of existing approaches and a comprehensive comparison
of the methods for the example of the Lorenz system). The different methods all share
the idea to successively grow the (un)stable manifold from a local neighborhood of
the equilibrium. Among these techniques is GAIO (Global Analysis of Invariant Ob-
jects), a set oriented method (cf. Dellnitz et al. 2001) that we use for our numerical
examples.

As discussed in Sect. 1, invariant manifolds have been used in many applications
in astrodynamics to generate low energy trajectories. In this setting, trajectories along
invariant manifolds provide pieces of maneuver sequences that are solutions of opti-
mal control problems in space mission design (cf. e.g. Koon et al. 2000 or Dellnitz
et al. 2006, 2009 for approaches based on set oriented computations by GAIO).
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4 Motion Planning Using Primitives

Now we go into more detail describing the computational aspects of motion planning
with primitives. First it is shown how the identified dynamical structures can be used
to generate motion primitives. The maneuver automaton is introduced to organize the
primitives in a library. Secondly, trajectory generation and the computation of motion
plans are presented.

4.1 Maneuver Automaton

A library of primitives constitutes a maneuver automaton, i.e. a finite-state machine
with states and transitions corresponding to motion primitives (cf. Frazzoli et al.
2005). In our work, the states correspond not only to trim primitives, but also to
(un)stable manifolds. The automaton’s transitions between different states correspond
to maneuvers, i.e. short motions satisfying the boundary conditions imposed by the
initial and final states that they connect.

A library is constructed by selecting a discrete set of trim primitives and trajec-
tories on (un)stable manifolds. Let Ξ denote the set of trims, chosen for instance
by uniformly gridding a bounded subspace of the Lie algebra (see Definition 3.6),
or alternatively by quantizing the space of internal (shape) variables and control in-
put. For example, the elements of Ξ can be computed by the critical points of the
controlled amended potential (cf. Sect. 3.2). It is sufficient to select and store only a
trim’s initial value α(0) := (xα(0), uα(0)), because the orbit can be constructed by the
flow, α : t ∈ [0, tf] �→ (ΦT Q(exp(tξ), xα(0)), uα) with ξ ∈ g and a constant control
uα ≡ uα(0).

Analogously, a finite set O of orbits on (un)stable manifolds, O � O : t ∈ [0, tf] �→
FL(xO, t) has to be defined with some initial value xO on the manifold. For motion
planning purposes it is advantageous to select orbits with fast dynamical transition.
Such motions correspond to trajectories on the strong (un)stable manifolds, because
these are the directions of the most contraction to (expansion from, respectively) a
critical element. Such choices are reasonable since we are interested in energy mini-
mal or time minimal solutions (cf. Sect. 2.1). Because the strong (un)stable manifolds
are one-dimensional (assuming simple strong (un)stable eigenvalues as in Osinga
et al. 2004), orbits O ∈ O can be computed by choosing a starting point xO in the
close neighborhood and evolving the uncontrolled flow for some finite time tf; in
forward time for unstable, and in backward time for stable manifolds, respectively.

A maneuver is then designed to connect pairs of trim primitives and pairs of orbits
on manifolds as well as pairs of a trim primitive and a manifold orbit. A fully con-
nected automaton graph would thus require nt(nt −1)+no(no −1)+ntno maneuvers,
where nt = dim(Ξ) and no = dim(O).

4.2 Maneuvers

We next describe the construction of maneuvers. Let the map � : X → X\G subtract
out the invariant coordinates from a given state according to the system’s symmetry
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equivalence. Each maneuver is computed through nonlinear optimization of a trajec-
tory whose start and end correspond to either a trim primitive or a manifold. This is
defined through the following procedure:

Compute: tf;x : [0, tf] → X; u : [0, tf] → U (11)

minimizing: J (x,u, tf) =
∫ tf

0

(
λ1 · 1 + λ2 · ∥∥u(t)

∥∥2)dt, (12)

subject to: dynamics equation (5) for all t ∈ [0, tf] (13)

and one of the following boundary conditions:

from trim xα to trim xβ : �
(
x(0)

) ∈ �(xα),�
(
x(tf)

) ∈ �(xβ), (14)

from trim xα to manifold Oβ : �
(
x(0)

) ∈ �(xα),�
(
x(tf)

) ∈ �(Oβ), (15)

from manifold Oα to trim xβ : �
(
x(0)

) ∈ �(Oα),�
(
x(tf)

) ∈ �(xβ), (16)

from manifold Oα to manifold Oβ : �
(
x(0)

) ∈ �(Oα),�
(
x(tf)

) ∈ �(Oβ), (17)

with λ1, λ2 ∈ R
+
0 and where �(xα) should be understood as a pointwise evaluation.

In essence, the optimization is performed by not enforcing a given final group dis-
placement or by allowing a maneuver to start and end anywhere on the initial and
final manifold orbits, respectively.

Definition 4.1 (Maneuvers) A maneuver is a solution pair π := (x∗, u∗), π : t ∈
[0, tf] �→ (q∗(t), q̇∗(t), u∗(t)) to (11)–(17) that connects two automaton states, i.e.
trim primitives or (un)stable manifolds.

More generally, the boundary constraints can adapted based on the problem. For
instance, using the identity instead of � in (14)–(17), the points on the primitives
are completely fixed (including the invariant coordinates). This is important, if one
wants to control the group displacement of the maneuver (cf. Sect. 4.3). In addition,
a boundary point on a manifold orbit can either be a fixed point on the orbit, or an an-
alytic expression of the entire orbit (or an approximation of it, e.g. by splines) can be
used as a boundary constraint. As another design parameter, the weighting λ1,2 has
to be chosen to prioritize one objective over the other. Naturally in most applications,
energy efficiency is contradictory to time optimality, rendering a multiobjective opti-
mal control problem. That means that different values of λ1,2 correspond to different
optimal compromises of the concurring objectives—the so called Pareto optimal so-
lution (Ehrgott 2005) of the optimal control problem. The prioritization of objectives
leads to a scalarization of the vector valued cost functional. If this cannot or is not
desired to be done in advance, several optimal control maneuvers for the same bound-
ary conditions, but different values of λ1,2 can be computed and stored in the motion
planning library.

In our applications, the optimizations were performed offline such that all maneu-
vers are organized and saved in a library which is loaded at run-time providing instant
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look-up during planning. The continuous optimal control formulation was computa-
tionally solved through the discrete mechanics methodology DMOC (Ober-Blöbaum
et al. 2011; Marsden and West 2001; Kobilarov 2008) which is particularly suitable
for systems with nonlinear state spaces and symmetries.

The key property of motion primitives is that they can be concatenated to create
more complex motion sequences. Following Frazzoli et al. (2005), a concatenation
of two motion primitives π1 : t ∈ [0, tf,1] �→ (x1(t), u1(t)) and π2 : t ∈ [0, tf,2] �→
(x2(t), u2(t)) on the time interval [0, tf,1 + tf,2] is defined by

π1π2(t) :=
{

(x1(t), u1(t)) if t ≤ tf,1,

(ΦT Q(g12, x2(t − tf,1)), u2(t − tf,1)) otherwise,

if there exists a group element g12 such that the second motion can be shifted compat-
ibly, i.e. it holds x1(tf,1) = ΦT Q(g12, x2(0)). Furthermore, a trajectory π connecting
two trims xα and xβ by means of a motion along an (un)stable manifold orbit O ∈ O
can be regarded as an extended maneuver.

Definition 4.2 (Extended Maneuvers) Let xα , xβ (α �= β) be trims and let O ∈ O
be an (un)stable manifold orbit. Let π1 be the maneuver of duration t1 connecting
xα and O , and π2 the maneuver connecting O and xβ . Define κ : t ∈ [t1, t̃] �→
(FL(x1(t1), t),0), t̃ ≥ t1 as that piece of the trajectory on O (with zero control)
that starts at the final state of maneuver π1 with duration t̃ − t1, s.t. x2(0) =
FL(x1(t), t̃ − t1). Then an extended maneuver π is defined as

π = π1κπ2.

Recall that the dynamical system is assumed to be autonomous, so time shifts are
well defined. Controllability of the maneuver automaton is proved in Frazzoli et al.
(2005) and still holds in the same sense for our motion planning approach applied to
the trims and extended maneuvers.

4.3 Trajectory Generation

Consider the task of generating a trajectory from a given state x0 ∈ X. It is typical
to assume that this is either an equilibrium or periodic motion corresponding to a
trim primitive. Denote the primitive by α0 with initial state xα0(0). Then we have
x0 = ΦT Q(g0, xα0(0)) for some g0 ∈ G. A trim primitive can be parametrized by
its time duration, called the coasting time τ , leading to a family of trims, α(τ) : t ∈
[0, τ ] �→ (ΦT Q(exp(tξα, xα(0))), uα).

Consider a sequence of trim primitives α0, α1, . . . , αN with coasting times
τ0, τ1, . . . , τN and connecting maneuvers π0, . . . , πN−1. These maneuvers can be
either regular or extended. They form the trajectory ρ starting from x0, defined by

ρ = α0(τ0)π0α1(τ1)π1 · · ·αN(τN−1)πN−1αN(τN). (18)
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The states along ρ are expressed, for k ≥ 0, by

ρ(t) =
{

(ΦT Q(gk exp((t − tk)ξαk
), xαk

(0)), uαk
), t ∈ [tk, tk + τk],

(ΦT Q(gk exp(τkξαk
), xπk

(t ′)), uπk
(t ′)), t ∈ [tk + τk, tk+1],

(19)

where gk = g0
∏k−1

i=0 exp(τiξαi
)gπi

, tk = ∑k−1
i=0 (τi + |πi |), with duration |πi | of ma-

neuver πi , and t ′ = t − tk −τk . The group elements exp(τiξαi
) are trim displacements,

whereas gπi
are the displacements of the maneuvers πi . In addition, the total group

displacement along ρ is

gρ = gN exp(τNξαN
). (20)

4.4 Computing Motion Plans

Next, consider the task of finding a sequence of primitives driving the system from its
initial state x0 to a given final state xf ∈ Xf. Let α0 and αf denote the given boundary
trims with initial states xα0(0) and xαf(0). Then we have x0 = ΦT Q(g0, xα0(0)) and
xf = ΦT Q(gf, xαf(0)) for some group elements g0, gf ∈ G.

Computing a motion from x0 to xf amounts to finding a proper sequence of trim
primitives α0, . . . , αN ,αf, coasting times τ0, τ1, . . . , τN , τf, and connecting maneu-
vers π0, . . . , πN some of which include motions along (un)stable manifold orbits
O ∈ O. The sequence will form the trajectory ρ defined by

ρ = α0(τ0)π0α1(τ1)π1 · · ·αN(τN)πNαf(τf). (21)

The total group displacement along ρ is

gρ =
[

N∏

i=0

exp(τiξαi
)gπi

]

exp(τfξαf) (22)

and computing a motion from x0 to xf amounts to finding a motion plan ρ such that

gρ = g−1
0 gf. (23)

An optimal sequence of primitives and manifolds orbits should minimize the cost
function J (ρ). Although this is generally a complex combinatorial optimization with
nonlinear constraints, it is much easier to solve than the original optimal control prob-
lem. The first reason is that the length of the sequence of required primitives is usually
known in advance. For instance, in addition to the initial and final trim in general at
least max(n − 2,0) additional (intermediate) trims are required to exactly satisfy any
boundary conditions for an n-dimensional group G. In addition, in many cases the
condition (23) can be solved analytically by computing the required trim coasting
times using kinematic inversion.

Our implementation is based on a search tree (see Fig. 1) which expands all pos-
sible sequences of trims and manifold orbits and connecting maneuvers. The tree is
grown in depth-first manner so that each trajectory contains max(n,2) trim primi-
tives. The search space is pruned using bounds on the optimal cost that is updated
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Fig. 1 Left: An automaton with states corresponding to relative equilibria and (un)stable manifolds and
transitions corresponding to maneuvers. Right: An example of a search tree expanding paths of various
sequences of primitives. This particular tree has three trim primitives and each trajectory must end at trim
state αf. The goal is to find a sequence and the coasting times along its relative equilibria so that the group
displacement is satisfied and the total cost is minimized

Table 1 Combinations of
primitives for n = 1,2,3 dim(G) sequence # of trims # of maneuvers

(depth)

1 α0π0αf 2 1

α0π0O1π1αf 2

2 α0π0αf 2 1

α0π0O1π1αf 2

3 α0π0α1π1αf, 3 2

α0π0O1π1α1π2αf 3

α0π0α1π2O1π3αf 3

α0π0O1π1α1π2O2π3αf 4

during the algorithm operation. Thus, the number of primitives along trajectories in
the tree varies from 2n − 1 (when no manifolds are visited) to 4n − 3 (when alter-
nating between visiting trims and manifolds). For instance, for n = 3 the shortest
sequence is α0π0α1π1αf while the longest is α0π0O1π1α1π2O2π3αf. Table 1 lists
the combinations of primitives up to n = 3.

Such sequences are automatically created by the tree-expansion algorithm for a
given Lie group G. Note that we have assumed that all trims are non-equilibrium.
Boundary conditions corresponding to equilibrium states (i.e. zero velocity) are han-
dled by creating a sequence with an additional maneuver to or from a non-zero trim
primitive.

By the construction of the maneuver automaton, the sequence ρ is a dynamically
feasible solution for the optimal control problem from the initial state x0 to the final
state xf. Thus, it can be used as a good initial guess for a post-optimization, e.g. per-
formed by DMOC again. If the maneuver automaton is small, i.e. the gridding of trim
and manifold state space is rough and the number of different connecting maneuvers
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Fig. 2 Left: Model of the simple spherical pendulum with sketched motion primitives in configuration
space: trims are purely horizontal motions (ϕ̇ = 0), whereas the (un)stable manifold are vertical motions
(θ̇ = 0). Right: Optimal sequence for a scenario from trim A to trim B consisting of the trims, two con-
trolled maneuvers and a trajectory on the stable manifold in between. The blue curve is the solution of a
DMOC optimization with the sequence as initial guess (Color figure online)

is small, a post-optimization is useful to smooth out the changes between controlled
and uncontrolled pieces of the sequence trajectory. Furthermore, post-optimization
is also required if the weighing of the (concurrent) objectives has to be updated or
adjusted.

5 Numerical Examples

The simple spherical pendulum, i.e. a mass point moving in 3D constrained on a
sphere, is a popular example to study symmetries of a mechanical system (see, among
others Marsden 1993; Abraham and Marsden 1987; Bullo and Lewis 2004) and can
be also used to demonstrate our motion planning approach (cf. Flaßkamp et al. 2010).
From the application point of view, spherical pendula can be seen as idealizations of
industrial robots, for example a double spherical pendulum is a simplified two-link
manipulator. Therefore, optimal control of spherical pendula is of great importance.

5.1 The Spherical Pendulum

The pendulum consists of a point mass with mass m that is firmly connected by a
massless rod of length r to the ground. Thus, the configuration space of this two
degree of freedom system is a sphere. In coordinates, it can be described by a vertical
angle, denoted by ϕ and a horizontal angle, denoted by θ (cf. Fig. 2).

Invariance and Symmetry The Lagrangian is given by L(ϕ, θ̇ , ϕ̇) = K(ϕ, θ̇ , ϕ̇) −
V (ϕ) = 1

2mr2(ϕ̇2 + θ̇2 sin2(ϕ)) − mgr(cos(ϕ) + 1). It can be easily seen that L is
independent of θ , which is therefore called a cyclic coordinate (cf. e.g. Bloch 2003).
Thus, it follows directly from ∂L

∂θ
= 0 that the corresponding Euler–Lagrange equa-

tions simplify to ∂L

∂θ̇
= const. In other words, the system is symmetric w.r.t. rotations
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about the vertical axis and the symmetry group is G = S1, acting by addition only
in the horizontal coordinate. Therefore, the conserved quantity equals pθ = ∂L

∂θ̇
, that

is, the momentum map J = pθ = mr2 sin2(ϕ)θ̇ . The Hamiltonian as the system’s
energy is given by E(q, q̇) = K(q, q̇) + V (q). The amended potential is then given
by Vμ(q) = V (q) + 1

2 〈μ, I
−1μ〉 = mgr(cos(ϕ) + 1) + 1

2μ2(mr2 sin2(ϕ))−1. Rela-
tive equilibria can be computed as critical points of Vμ and fulfill θ̇2 = − g

r·cos(ϕ)
,

i.e. they are purely horizontal rotations (ϕ̇ = 0) in the lower hemisphere. A dis-
crete set Ξ of uncontrolled trims (cf. Sect. 4.1) for ϕ ∈ { 2

3π, 3
4π, 5

6π} for exam-
ple, can be defined by the rotational velocity, i.e. the Lie group elements Ξ =
{±

√
2 g

r
,±

√√
2 g

r
,±

√
2
√

3
3

g
r
}. If we add control in ϕ-direction, the rotational ve-

locity and the height of a trim can be chosen arbitrarily with uϕ = −mgr sin(ϕ) −
mr2 sin(ϕ) cos(ϕ)θ̇2.

(Un)stable Manifolds of the Upper Equilibrium The planar pendulum exhibits a
hyperbolic equilibrium in the upper fixed point. This gives rise to one-dimensional
stable and unstable manifolds; together they form the separatrix in the well known
phase portrait of a simple pendulum. For purely vertical initial conditions (θ̇ = 0),
the spherical pendulum behaves like a planar pendulum. This, together with the hor-
izontal symmetry, explains why the stable and unstable manifold of the upper equi-
librium of the spherical pendulum are given by W u,s(x̄) = {(q, q̇) ∈ T Q | J (q, q̇) =
0,E(q, q̇) = V (x̄) = 2mgr} = {(θ,ϕ, θ̇ , ϕ̇)|θ = const., θ̇ = 0, ϕ̇2 = 2 g

r
(1−cos(ϕ))},

i.e. the manifolds of the planar pendulum with an arbitrary, but fixed horizontal angle.

Motion Planning Trim primitives are uniform rotations in horizontal planes,
whereas trajectories on the (un)stable manifolds are purely vertical motions. Choos-
ing a discretization in both angles (plus a discretization of the rotational velocity for
trim primitives in case of non-zero control) gives the motion primitives for the library
(see Fig. 2 (left) for a sketch of the motion primitives). For numerical computations,
all parameters are normalized to one. The connecting maneuvers are computed by
DMOC. Here we allow forcing in both coordinate directions and search for solu-
tions that minimize J (x,u) = ∫ tf

0 (uθ (t)
2 + uϕ(t)2)dt . As an exemplary scenario

we choose a starting point A and a final point B on trims (ϕA = 13
16π uncontrolled,

ϕB = 1
8π controlled s.t. θ̇ = −π ) and search for sequences with minimal control

effort that connect these trims with a trajectory on the stable manifold to the upper
equilibrium by maneuvers. The resulting trajectory (cf. Fig. 2 (right)) has the costs
J = 3.2211 and the final time tf = 4.3335, which is the sum of the time spent on the
trims, the fixed durations of the maneuvers and the time that the sequence stays on the
manifold orbit. The sequence is then used as an initial guess for a post-optimization
by DMOC that reduces the costs of the sequence to J = 1.3821. This is compared
to optimal solutions of naive, direct optimizations with simple linearly interpolated
initial guesses, i.e. we interpolate each coordinate between its initial and final point
on an equidistant time grid. Such an initial guess can be constructed without any
knowledge of the dynamical system, however, the resulting curve is by no means an
admissible solution. It turns out that the information about the duration of the optimal
trajectory that we obtain from the sequencing approach is important for finding en-
ergy efficient maneuvers: direct solutions for tf = 2 or tf = 12 have much higher costs
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Fig. 3 Left: Model of the double spherical pendulum. Middle: Shape of the relative equilibria without
control. Adding constant control in vertical direction also allows for trim primitives with both pendula
pointing upwards and an arbitrary jointly rotational velocity (not shown). Right: Approximation of the
stable manifold of the upper equilibrium and the strong stable manifold in black, computed by GAIO
(Color figure online)

of J = 6.3427 and J = 2.6084. For the time tf defined by the sequence, the direct so-
lutions are similar in cost and qualitative behavior compared to the sequence. In more
complicated systems, such as a double spherical pendulum, it is much harder to find
any reasonable, admissible solution without choosing a sophisticated initial guess.

5.2 The Double Spherical Pendulum

In case of a double spherical pendulum, a mixture of analytical and computational
methods have to be applied to compute the motion primitives. In the following, we
will present candidates for a motion planning library and afterwards, show numerical
results for specific optimal control scenarios.

Euler–Lagrange Equations The configuration space of two 3D pendula, idealized
as mass points m1 and m2 on massless rods, is Q = S2

l1
× S2

l2
, where S2

l1,2
denotes the

two dimensional sphere of radius l1,2. As a minimal set of coordinates, we choose
horizontal and vertical angles (q = (θ1, θ2, ϕ1, ϕ2)), such that the mass points posi-
tions are given by (cf. Fig. 3)

q1 =
⎛

⎝
x1
y1
z1

⎞

⎠ =
⎛

⎝
l1 cos(θ1) sin(ϕ1)

l1 sin(θ1) sin(ϕ1)

l1 cos(ϕ1)

⎞

⎠ ,

q2 =
⎛

⎝
x2
y2
z2

⎞

⎠ =
⎛

⎝
x1
y1
z1

⎞

⎠ +
⎛

⎝
l2 cos(θ2) sin(ϕ2)

l2 sin(θ2) sin(ϕ2)

l2 cos(ϕ2)

⎞

⎠ .

The Lagrangian as the difference of kinetic and potential energy can be written as
L(q(t), q̇(t)) = K(q(t), q̇(t)) − V (q(t)), where V (q(t)) = (m1 + m2)gl1(cos(ϕ1) +
1) + m2gl2(cos(ϕ2) + 1), and K(q(t), q̇(t)) = 1

2 q̇T (t)M(q(t))q̇(t) with the sym-
metric mass matrix M = (mij ) with m11 = (m1 + m2)l

2
1 · sin2(ϕ1), m12 = m2l1l2 ·

cos(θ1 − θ2) · sin(ϕ1) sin(ϕ2), m13 = 0, m14 = −m2l1l2 sin(θ1 − θ2) · sin(ϕ1) cos(ϕ2),
m22 = m2l

2
2 sin2(ϕ2), m23 = m2l1l2 · sin(θ1 − θ2) · cos(ϕ1) sin(ϕ2), m24 = 0, m33 =

(m1 + m2)l
2
1 , m34 = m2l1l2((cos(θ1 − θ2) · cos(ϕ1) cos(ϕ2)) sin(ϕ1) sin(ϕ2)), m44 =

m2l
2
2 .
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Hence, the Euler–Lagrange equations for the double spherical pendulum without
forcing are

d

dt

∂L

∂ϕ̇1,2
− ∂L

∂ϕ1,2
= 0,

d

dt

∂L

∂θ̇1,2
− ∂L

∂θ1,2
= 0. (24)

Symmetry and Reduction The symmetry group is G = S1, acting by rotation of
both pendula about the z-axis: Φ : G×Q → Q, Φ(g, (θ1, θ2, ϕ1, ϕ2)) = (g + θ1, g +
θ2, ϕ1, ϕ2) with tangent lift to T Q by Φ

T Q
g (q, v) = (Φ(g, q), θ̇1, θ̇2, ϕ̇1, ϕ̇2). Then

the infinitesimal generator can be determined to be ξQ(q) = (ξ, ξ,0,0)T with ξ ∈ R.
Hence, the conserved quantity is the total angular momentum about the z-axis

J (q, v) = ∂L

∂θ̇1
+ ∂L

∂θ̇2
, (25)

and the locked inertia tensor (cf. Sect. 3.2) equals

I
(
q(t)

) = (m1 + m2)l
2
1 sin2(ϕ1) + m2l

2
2 sin2(ϕ2)

+ 2m2l1l2 cos(θ1 − θ2) · sin(ϕ1) sin(ϕ2).

The mechanical connection α : T Q → g can be easily computed by α(q, v) =
I
−1(q) · J (q, v), assigning to each (q, v) the angular velocity of the locked system

(cf. Marsden and Scheurle 1993). The amended potential can be computed by

Vμ

(
q(t)

) = V
(
q(t)

) + μ2

2I(q)
.

Trims Trims of the uncontrolled system, i.e. relative equilibria, are classified in
(Marsden and Scheurle 1993) in an elegant way by introducing two shape defin-
ing parameters and then computing the critical points of the amended potential (cf.
the Lagrangian reduction in Sect. 3.2). Besides the four true equilibria (each pendu-
lum either pointing straight upwards or downwards), all relative equilibria are given
by a one-parameter curve and they look similar to one of the four sketched types in
Fig. 3 (middle). According to Definition 3.6, non-zero constant control values are al-
lowed, if they do not influence the conservation of the angular momentum J (cf. (25)).
Hence, we add forcing in ϕ1- and ϕ2-direction in (24). This leads to a controlled po-
tential and we can therefore solve ∂

∂q
Vμ = −u for constant u = (0,0, uϕ1 , uϕ2)

T as
proposed by Theorem 3.7. This additionally admits trims with both pendula pointing
upwards as well as arbitrary rotating velocities in all shapes.

Manifolds For this example, we are interested in the (un)stable manifold of the up-
per equilibrium, i.e. both pendula pointing upwards (x̄ = (q̄, ˙̄q) = 08×1). In this point,
the system’s energy equals Ex̄ := V (q̄) while the angular momentum is zero. Hence
the manifolds are part of the set {x ∈ T Q | E(x) = Ex̄, J (x) = 0}. This includes in
particular the motion on (un)stable manifolds of a planar double pendulum, to which
we have restricted our computations so far. Since the manifolds are two dimensional,
we still have to choose concrete trajectories that are stored in the motion planning



J Nonlinear Sci

library. Here we use the strong (un)stable manifolds (cf. Sect. 4.1). In Fig. 3 (right)
the black line corresponds to the approximation of the strong stable manifold in the
stable manifold of the upper equilibrium, which has been computed with GAIO (cf.
Sect. 3.3).

Numerical Results for Motion Planning Scenarios As mentioned before, we use
the optimal control method DMOC (cf. Sect. 2.3) to compute connecting maneuvers
between trims and orbits on manifolds. For numerical computations, we choose the
following parameter values: m1 = m2 = 1 kg, l1 = l2 = 1 m, and g = 9.81 m

s2 . The

nonlinear optimization problem is solved by an SQP method (cf. Sect. 2.1) of NAG1

(Numerical Algorithms Group). To improve the accuracy of the derivatives that have
to be provided, the implementation of the DMOC method has been combined with
ADOL-C2 (Automatic Differentiation by OverLoading in C++), an automatic differ-
entiation technique, in Ober-Blöbaum and Walther (2010). For the connecting maneu-
vers, we allow an arbitrary boundary point on the specific trims (cf. (14)–(17)), i.e. the
point is fixed except for the horizontal coordinates, which have to fulfill θ1 = θ2 for
an arbitrary angle θ1. Since the double spherical pendulum is modeled in minimal co-
ordinates that are not globally valid, we are faced with singularities in our numerical
computations. If one of the pendulum’s vertical angle equals 0 or π (or multiplicities
of that), the horizontal angle becomes meaningless. The NAG algorithm is able to
perform the optimization for our scenarios. Nevertheless, to overcome this problem
in principle, a global system description by e.g. differential algebraic models could
be used in future work.

The motion planning is performed for the following scenario: the starting point is
chosen to lie on an uncontrolled trim (ϕ1 = 2.4087, ϕ2 = 2.2532), where the double
pendulum is outstretched. The final point is the upper equilibrium, i.e. both pendula
pointing upwards. We consider the fully actuated system (u = (uθ1 , uθ2 , uϕ1 , uϕ2)

T)
and choose the control effort as the cost functional, i.e.

J
(
x(t), u(t)

) =
∫ tf

0
u(t)2 dt with u(t) ∈ R

4.

According to the defined scenario, a sequence of depth 2 (cf. the definition of a search
tree in Sect. 4.4) is searched for, consisting of a maneuver from the trim to the orbit
of the strong stable manifold of the upper equilibrium and then a second, very short
maneuver to bridge the gap from the orbit’s endpoint to the equilibrium itself. Fig-
ure 4 shows a resulting sequence with duration tf = 3.28 and costs J = 548.76. The
durations of the maneuvers have been fixed in advance, such that the entire duration
depends on how long the sequence stays on the manifold orbit. The dashed lines refer
to the results of a post-optimization performed by DMOC, which reduces the costs
to J = 296.51. In comparison, when DMOC is directly applied to the problem with
a simple, linearly interpolated initial guess, the retained optimal solution has much
higher costs of J = 5.85 · 103.

1www.nag.co.uk.
2https://projects.coin-or.org/ADOL-C.

http://www.nag.co.uk
https://projects.coin-or.org/ADOL-C
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Fig. 4 Left: Sequence for an example scenario, presented in Cartesian coordinates of both pendula (solid
lines; inner pendulum red, outer pendulum blue) and resulting optimal trajectory for a post-optimization
with DMOC (dashed lines). Right: A maneuver resulting from an optimization by DMOC with simple
initial guess (Color figure online)

In this scenario, we considered sequences involving only one manifold and there-
fore restricted to the stable manifold of the upper equilibrium. However, it might be
possible that a sequence of higher depth including other manifolds as well would
even lead to further improvement. This has to be studied in future work.

6 Conclusion and Outlook

This work proposes a motion planning strategy based on motion primitives encod-
ing inherent dynamical system properties. We extend the approach of Frazzoli et al.
(2005) by including motion primitives on (un)stable manifolds of critical elements
of the uncontrolled dynamics. Such primitives are useful for finding energy efficient
solutions, experimentally confirmed by the numerical results for our example op-
timal control scenarios. We study the motion primitives induced by symmetries in
more detail, focusing on mechanical systems. Trim primitives for arbitrary mechan-
ical systems are identified using Noether’s theorem on conserved angular momenta
through a symmetry reduction process. In addition to trim primitives and orbits on
(un)stable manifolds, connecting maneuvers are computed by the optimal control
method DMOC and stored in the motion planning library. The maneuver automa-
ton of Frazzoli et al. (2005) is extended to include orbits on manifolds and finally
we develop a tree search algorithm in this new automaton for motion planning. The
application of the approach to the optimal control of a double spherical pendulum
clearly shows that optimization using initial guesses, obtained by exploiting the key
structural properties of the system, results improved solutions (w.r.t. to cost) com-
pared to standard initialization.

Future work will apply this optimal control policy to more complex systems such
as multi-body systems with holonomic (Leyendecker et al. 2009) or nonholonomic
constraints (Kobilarov et al. 2010). For example, the structural properties of a rigid
body pendulum that are revealed in Chaturvedi et al. (2011) could be used for optimal
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control scenarios as well. In higher dimensional systems it will be more challenging
to identify symmetries, i.e. Lie groups and admissible controls for trim primitives.
If the computation of (un)stable manifolds gets numerically too expensive, invari-
ant objects in a reduced system (e.g. obtained by Lagrangian reduction) could be
considered. Alternatively, one could restrict oneself to the one-dimensional strong
(un)stable manifolds.

Studying hybrid Lagrangian systems is another natural extension. A control se-
quence resulting from a motion planning procedure is already hybrid in the sense
that different types of control trajectory are concatenated. Hybrid dynamics can also
occur if different Lagrangian are valid in different regions of state space or because
of impacts, i.e. instantaneous jumps in the states. Symmetry and reduction of hybrid
Lagrangian systems has been already studied in e.g. Ames and Sastry (2006). Thus,
it is desirable and conceptually possible to extend the motion planning approach to
symmetric hybrid systems. If the motion planning library is designed to include many
admissible sequences, our tree search can be augmented with a more efficient sam-
pling strategy. A possible approach is to employ adaptive sampling used in the context
of randomized motion planning (Kobilarov 2011).

Thinking further ahead, optimal control problems of complex dynamical systems
will typically include not only one or two, but several, competing objectives. Addi-
tionally, a real world motion planning problem will include several boundary con-
straints, e.g. given by different operation points that have to be reached one after the
other. These subproblems as well as the prioritized objective may change during an
operation. For scenarios like this, a motion planning library that has been generated
offline in advance seems appropriate for an online optimization.
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