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Abstract— This paper is concerned with the computation of
optimal motion control as well as the optimal input injection
policy of an actuator arm regulating the temperature in
a reaction-diffusion system. The system has two dynamical
components consisting of the arm mechanics with inertial,
elastic and damping properties, which is driven by bounded
mechanical actuation controls and an underlying reaction-
diffusion system described by the parabolic PDE. The state
of the actuator arm parametrizes the input injection operator
of the parabolic PDE systems model and causes coupling
between the two dynamical systems generally operating at
different time scales. The method proposed in this paper is
aimed at solving this coupled problem. The actuator mechanics
and its control are achieved in the discrete mechanics and
optimal control (DMOC) framework, while the input injection
for the reaction diffusion system is calculated by the modal
model predictive control (MMPC) algorithm suitable for the
dissipative systems. The actuation arm policy and input to
the parabolic PDE system include in its realization low-order
discrete representation of the parabolic PDE evolution and
incorporate optimality with respect to both the state of the PDE
and the actuator displacement cost from current to some more
optimal control position as well as naturally present input and
PDE state constraints. The proposed actuation arm policy and
optimal stabilization of the unstable reaction-diffusion system in
the presence of constraints in the full state-feedback controller
realization have been evaluated through simulations.
Key words: Distributed-Parameter Systems, Moving Actuator,
Discrete Mechanics Optimal Control (DMOC), Model Predic-
tive Control (MPC), Input/State Constraints

I. INTRODUCTION

This work considers the control design of a temperature
regulating actuator mounted over a catalytic bar in a mul-
tiscale mechanical and reaction-diffusion system. The con-
troller synthesis is based on two different types of dynamics
present – the reaction-diffusion system dynamics describing
the catalytic rod temperature in terms of a parabolic PDE,
and the rigid body dynamics of the actuator arm. This
coupled dynamics system configuration is common in the
process industry, in particular in material processing plants in
which the welding arm is crossing over the welded material,
or in the wood processing plants in which drying of the wood
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boards takes place by moving the actuator arm that provides
dry air steam.
While the problem of temperature control in reaction-

diffusion systems described by the parabolic PDEs is well
studied [1], [2], [3], the issue of the moving actuator in-
corporated in the temperature and/or concentration regulator
synthesis has not been explored due to the complexity
of integrating mechanical system control realization with
the dynamics emerging from the transport-reaction models.
In other words, the complexity arising from the coupling
of the finite dimensional system representation due to the
mechanical system dynamics with the infinite-dimensional
representation of dissipative reaction-diffusion type system’s
description has not been successfully resolved from the point
of unifying controller synthesis. In addition to this challeng-
ing task, the natural presence of constraints which arise either
from limited actuator ability (not only related to the actuation
associated with the reaction-diffusion subsystem but also the
one present in the mechanical subsystem) and/or stringent
process specification requirements, contribute to the com-
plexity of controller synthesis. Moreover, the requirements
for optimality and natural presence of constraints further
complicate the problem which at present cannot be handled
systematically by any available methods. Therefore, in order
to address all the aforementioned issues, we propose a novel
controller synthesis approach that combines recent advances
in discrete mechanics [4] for computational modeling of
mechanical systems, and in the synthesis of model predictive
control realizations suitable for parabolic systems [5].
We are interested in the following optimal control problem:
“Compute the actuator force f(t) over a given finite time
interval which brings the system to a desired state while
minimizing a user-specified cost function combining the
energy required for heating/cooling injected by the actuator
u(t), as well as the actuator control effort, subject to the
dynamics of both reaction-diffusion system and mechanical
actuator, and subject to the reaction-diffusion systems’ state
and/or input injection constraints, and actuator constraints.”
More formally,

min
u(t) f(t)

∫ T

0

(‖y(t)‖2Q + ‖u(t)‖2R + ‖f(t)‖2)dt (1)
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with constraints applied on both the mechanical system
and parabolic PDE state y(t) dynamics and the inputs
(u(t) f(t)).
The subsystem reaction-diffusion dynamics describing the

evolution of the PDE state, e.g. the temperature in the
catalytic rod, is treated by the model reduction through
Galerkin method and subsequent model modal predictive
control (MMPC) formulation that includes constraints on
the available input injection and on allowable temperature
profile. The actuator arm dynamics is represented numer-
ically through a discrete Lagrange-d’Alembert variational
principle suitable for robust numerical integration and opti-
mization purposes. The resulting discrete mechanical optimal
control (DMOC) problem is combined with the constrained
optimization structure emerging from the MPC realization.
While there are standard methods to represent the actu-
ator mechanics for numerical optimization purposes, we
choose DMOC methodology because since it has proven
effective for systems with holonomic and nonholonomic
constraints [4], [6] which are present in realistic actuator
arm models.
This work reports initial results towards incorporating

actuator dynamics and control effort optimality required for
actuator arm transfer policy subject to reaction-diffusion
system dynamics constraints. In this way, the multiscale
feature of the mechanical systems dynamics and temperature
evolution of the conventional process systems are incorpo-
rated in the realizable controller synthesis.

MOVING ACTUATOR

Fig. 1. Moving actuator scheme.

Dynamical model of the system is given as a multiscale
system of moving actuator arm which provides a founda-
tion for the mounted injection cooling/heating module that
supplies an input to the underlying reaction-diffusion system
governed by the parabolic PDE ( see Fig. 1).
A simple linear actuator arm with configuration q ∈ R is

modeled as,

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (2)

where M is the arm inertia, C is damping, K is elastic
constant and f is the input, e.g. from a motor, which moves
the arm across the domain. This arm provides a foundation

for the input which can be viewed as a heat source/sink to the
reaction-diffusion system described by parabolic reaction-
diffusion equation, which takes the following form,

∂x

∂t
= κ

∂2x

∂ζ2
+ ηx + b(q(t))u(t) 0 ≤ ζ ≤ l (3)

where x is a state variable, κ and η are constants, and b(q(t))

provides the position of the actuator guided by the actuator
sliding across the domain [0 l]. Also, there are constraints
present in the reaction-diffusion system

umin ≤ u(t) ≤ umax (4)
xmin ≤

∫ l

0
δ(ζc − ζ)x(ζ t)dζ ≤ xmax (5)

which limit the allowable control action applied to the
reaction-diffusion system and place bounds on the state
applied at point ζc within domain. One can notice that
the coupling between the two systems is through the
position of the arm q(t) determining the input function
b(q(t)) = δ(q(t)− ζ).
The problem considered is common in the process indus-

try. A movable actuator scans the physical space domain
constrained by the arm dynamics and its bounded velocity
and attempts to control optimally in finite time the dynamics
of the diffusion reaction system. The problem is, therefore,
modeled in two layers–the mechanical system with the
mass-spring-dashpod model and reaction-diffusion system
modeled by the parabolic PDE. Equivalently, it is formulated
as

arg min
u(t) f(t)

∫ T

0

(‖y(t)‖Q + ‖u(t)‖R + ‖f(t)‖)dt (6a)

Mq̈(t) + Cq̇(t) + kq(t) = f(t) (6b)
∂x

∂t
= κ

∂2x

∂ζ2
+ ηx + b(q(t))u(t) (6c)

y(t) = Cx(t) (6d)
umin ≤ u(t) ≤ umax (6e)

xmin
w ≤ Sx(t) ≤ xmax

w (6f)

The straightforward solution by the time discretization of the
mechanical system dynamics and reaction-diffusion system
dynamics with the inclusion of constraints leads to complex
optimization programs. However, one can explore the dis-
crete mechanics optimal control and model predictive con-
trol methodologies in order to obtain a realizable actuation
arm policy. Namely, model predictive control (MPC) [7],
[8] is one of the successful engineering originated control
synthesis naturally incorporating constraints that occur in
practice. Such a discrete system based synthesis solves the
finite horizon optimal control problem through optimization
(e.g., LP or QP) achieving stabilization and constraints
satisfaction over the given finite horizon. A specific feature
of the model predictive control algorithm, i.e. the state
constraints relaxation method [9], has already been utilized
in the distributed and boundary model predictive control of
parabolic systems [10], [11]. Recently, there were works
that considered a number of actuators distributed along the
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domain and an optimal switching scheme which should be
applied to spatially explore the system by switching the
controller realizations [12]. However, the important notion
of optimality within the moving actuator control of the
parabolic PDEs setting has not been explored, nor has the
issue of the point state constraints been addressed in the
related work. Since the control and state/output constraints
are naturally present in the engineering practice, their proper
inclusion in the infinite dimensional setting of the distributed
parameter systems representation is of paramount interest.
In this paper, the parabolic PDE control framework [11] is

augmented with optimal control of the moving actuator arm
in the DMOC setting. In particular, the evolution of the opti-
mal control problem for the arm dynamics is solved by incor-
porating exact dynamics of the mechanical system, while the
underlying parabolic PDE is treated within the modal model
predictive control setting for the dissipative systems. The
model modal predictive controller (MMPC) benefits from
the dominant diagonal feature of the unbounded system’s
operator and from the separation among the finite number
of unstable modes and the infinite dimensional stable modal
complement. The proposed control problem formulation has
been evaluated through simulations in the case of a full-state
feedback control synthesis.

II. PRELIMINARIES
A. Discrete Mechanics and Optimal Control
One of the primary goals of this paper is to consider

the reaction-diffusion system driven by the actuator with
dynamics which must be explicitly accounted for to guar-
antee feasible and optimal control design. We choose to
represent computationally the actuator dynamics using the
methodology originated from discrete mechanics and vari-
ational integrators [4], which has provable preservation
properties leading to accurate and stable numerical schemes.
The main advantage of discrete mechanics with the optimal
control (DMOC) lies in its robust numerical representation
of dynamics that is suitable for complex systems with con-
straints, such as an actuator with multi-rigid body dynamics
and/or actuator with end-effector bound to a given surface
in the workspace. In addition, an interesting link between
asynchronous variational integrators [13] and the multi-scale
nature of the system dynamics in this work will be of interest
in our future work.
Assume that we are given a mechanical system on a

manifoldQ with Lagrangian L : TQ→ R and control forces
f ∈ T ∗Q (here T ∗Q denotes the space dual to the tangent
bundle TQ consisting of the system velocity vectors). Our
goal is to find a trajectory q : [0 T ]→ Q between two given
states q(0) q̇(0) and q(T ) q̇(T ) which minimizes a given
cost function,

J(q f) =

∫ T

0

Θ(q(t) f(t))dt

while satisfying the system dynamics. The cost Θ : T ∗Q →
R can, for instance, represent the control effort Θ = 1

2‖f‖
2

or time Θ = 1. In the absence of constraints, the dynam-
ics is derived through the Lagrange-d’Alembert variational

principle which requires that the trajectory q : [0 T ] → Q
satisfies

δ

∫ T

0

L(q q̇)dt +

∫ t

0

f · δq = 0 (7)

This leads to the Euler-Lagrange equations of motion

∂t∂q̇L− ∂qL = f

which can be discretized using finite differences and used as
constraints in nonlinear optimization of J(q f).
Alternatively, the dynamics can be derived numerically by
discretizing the variational principle directly. This is achieved
by first discretizing the trajectory in time using a finite set
of Nd points q0 qNd

with fixed time-step h = T Nd

and applying a discrete Lagrange-d’Alembert principle:

δ

Nd−1∑
k=0

L(qk+α

qk+1 − qk

h
) +

Nd−1∑
k=0

fk+α · δqk+α = 0 (8)

by varying each one of these points separately. Here, the
notation

xk+α = (1− α)xk + αxk+1 α ∈ [0 1]

was used to denote an interpolated point along the line
segment between xk and xk+1. The parameter α determines
the quadrature point used to approximate the integrals in
(7). Typical values for α are 0, 1 2, and 1. Applying the
variations in (8) results in the following discrete equations
of motion:

1

h
(∂vLk − ∂vLk−1)− (1− α)∂qLk − α∂qLk−1

= (1− α)fk+α + αfk−1+α

(9)

using the shorthand notation Lk := L(qk+α
qk+1−qk

h
).

The discrete equations of motion (9) can now be used to
formulate a constrained optimization problem as follows:

Discrete Mechanics and Optimal Control (DMOC):

min
q0:Nd

f0:Nd

Nd−1∑
k=0

Θd(qk+α fk+α) subject to:

q0 = q(0) qNd
= q(T )

1

h
(∂vL0 − p(0))− (1 − α)∂qL0 = (1 − α)fα (10a)

1

h
(∂vLk − ∂vLk−1)− (1− α)∂qLk − α∂qLk−1

= (1− α)fk+α + αfk−1+α for k = 1 Nd − 1
(10b)

1

h
(p(T )− ∂vLNd−1)− α∂qLNd−1 = αfNd−1+α (10c)

fmin ≤ fk ≤ fmax for k = 0 Nd (10d)

The additional equations (10a) and (10c) correspond to initial
and final velocity constraints. In the variational framework
such constraints are formulated as initial and final balance
of momentum conditions, see [14]. As such, they are writ-
ten in terms of given initial and final momenta p(0) =
∂q̇L(q(0) q̇(0)) and p(T ) = ∂q̇L(q(T ) q̇(T )) that can be
directly computed from the given velocities q̇(0) and q̇(T ).
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Example: Consider the case of a linear system with
Lagrangian L(q v) = 1

2

(
vT Mv − qT Kq

)
, where M is the

system mass matrix and K is a quadratic potential (e.g. from
elastic energy) matrix and let f = u−Cv, where u is control
input and C is a damping matrix. Then, denoting the discrete
velocity by

vk =
qk+1 − qk

h
the equations of motion become:

M
v0 − v(0)

h
− (1− α)Kq0 = (1− α)(uα − Cv0)

M
vk − vk−1

h
− (1− α)Kqk+α − αKqk−1+α

= (1− α)(uk+α − Cvk) + α(uk−1+α − Cvk−1)

M
v(T )− vNd−1

h
− αKqN = α(uNd−1+α − CvNd−1)

for k = 1 Nd−1. The example of actuator studied in this
paper (see, §III) is based on such a model with the simple
case Q = R and appropriately chosen damping and spring
coefficients. While simplistic, in the context of this paper,
such a model is useful to demonstrate the combined optimal
control of the reaction-diffusion parabolic PDE and actuator
arm. Our ongoing work considers a more realistic rigid body
actuator with velocity constraints that exploit the structural
preservation properties of the variational discretization as
described in [6].
An example of an optimized trajectory for the system (2)

realized by eqs.(10a),10b,10c is given in Fig.2, in which the
control-effort minimizing trajectory between the two points
starting and ending with zero velocity is provided. The
example was computed by formulating a quadratic program
in the DMOC implementation.

0 25 50 75 100 125 150
0.1

0.15

0.2

0.25

0.3

0.35

Discretization points

q
(t

)

0 25 50 75 100 125 150
−0.05

0

0.05

0.1

Discretization points

f(
t)

Fig. 2. Solution to the DMOC problem given by eqs.(10a),(10b),(10c)
for (2) with the scaled parameters L = 10, K = 2 L, M = 10 L2,
C = 10

−3 L.

B. Parabolic PDEs
In this work, we consider a class of distributed parameter

systems that can be represented by the linear parabolic PDEs
of the following form:

∂x

∂t
= κ

∂2x

∂ζ2
+ ηx + b(q(t))u(t) 0 ≤ ζ ≤ l (11)

y(t) =

∫ l

0

cdj
(ζ)xdζ (12)

with the following boundary and initial conditions:
∂x

∂ζ
ζ=0 = 0 =

∂x

∂ζ
ζ=1 (13)

subject to the following input and state constraints:

umin ≤ u(t) ≤ umax (14)

xmin ≤

∫ l

0

rw(ζ)x(ζ t)dz ≤ xmax w = 1 · · · g (15)

where x(ζ t) denotes the state variable, ζ ∈ [0 l] is the
spatial coordinate, t ∈ [0 ∞) is the time, u(t) ∈ R denotes
constrained manipulated input; umin and umax are real
numbers representing the lower and upper limits associated
with the input applied at the actuator location, and xmin

w and
xmax

w are real numbers representing the lower and upper state
constraints enforced at w−th constraints location, y(t) is the

output variable obtained by dj-th sensor. The term
∂2x(ζ t)

∂ζ2

denotes the second-order spatial derivative of x(ζ t) and
x0(ζ) is a sufficiently smooth function of ζ. The function
cdj

(ζ) ∈ L2(0 l) shows how the sensing is distributed
within the spatial interval [0 l]. In (15), the function rw(ζ) ∈
L2(0 l) is the “state constraint distribution” function which
is a square-integrable and describes how the w − th state
constraint is enforced within the spatial domain [0 l]. The
state space of interest is H = L2(0 l), with the standard
inner product (· ·) and the norm ‖·‖ defined on it. The PDE
of eqs.(11),-(12) is formulated as an abstract evolutionary
equation in the state space H = L2(0 l) as follows:

ẋ(t) = Ax(t) + Bq(t)u(t) x(0) = x0 (16a)
y(t) = Cjx(t) (16b)

where the operator A is defined as:

Aφ = κ
d2φ

dζ2
+ ηφ 0 < ζ < l (17)

where φ(ζ) is a smooth function on [0 l], with the following
dense domain

D(A) = φ(z) ∈ L2(0 π) : φ(z)
dφ(z)

dz
are abs. cont.

Aφ ∈ L2(0 l) φ′(0) = 0 = φ′(l) = 0
(18)

the input operator as:

B(t)u(t) = bq(t)(·)u(t) (19)

and the output operator as:
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Cjx(t) = (cdj
(·) x(ζ t)) (20)

and the PDE state constraints as:
xmin

w ≤ (rw(·) x(ζ t)) ≤ xmax
w (21)

Using the above definitions, the system of
eqs.(11),(13),(12),(14),(15) can be written as the family of
switched systems which is parametrized by the actuator
and sensing distribution function, which takes the following
abstract evolutionary equation form,

ẋ(t) = Ax(t) + Bq(t)u(t) x(0) = x0 (22a)
y(t) = Cjx(t) j = 1 · · · ms (22b)

umin
ι ≤ u(t) ≤ umax

ι ι = 1 · · · ma (22c)
xmin

w ≤ Swx(t) ≤ xmax
w w = 1 · · · g (22d)

onH = L2(0 l). The spectrum of the Riesz spectral operator
A can be obtained by solving the eigenvalue problem: Aφ =
λφ with boundary conditions (13). In the case of a self-
adjoint operator, the eigenvalues ofA are real, and for a given
κ and η, only a finite number of unstable eigenvalues exists,
and the distance between any two consecutive eigenvalues
(i.e., λi and λi+1) increases as κ increases. This implies
that the dominant dynamics of the PDE can be described
by a finite–dimensional system, and motivates the use of
modal decomposition to derive a finite–dimensional system
that well approximates dynamics of the PDE.
Remark 1: It is important to emphasize that the input and
output operators Bq(t) and Cj in (22a)-(22b) are parametrized
by the spatial location of the ι-th actuator and j-th sen-
sor, which invokes condition on the generic property of
the controllability and observability of the evolutionary
equation (22a)-(22b). Namely, in the context of proposed
predictive control optimal switching policy with collocated
actuators and sensors developed in the ensuing sections, we
assume that the set of all available actuator locations consid-
ered preserves approximate controllability condition for the
(A Bq(t)) pair, and approximate observability condition for
the (A Cj) pair [2].

C. Modal decomposition
In this section, we apply standard modal decomposition

to the infinite-dimensional system of (22a) to obtain a finite-
dimensional system. Let us define a spectral projection
operator Ps which induces the following decomposition of
the separable Hilbert space H into two subspaces Hs and
Hf , H = Hs

⊕
Hf , so that Hs = PsH, and Hf =

(I − Ps)H = PfH, see [2]. The state z(t) of the system
of (22a) can be decomposed as:

ẋs(t) = Asxs(t) + Bsιu(t) xs(0) = Psx(0)

ẋf (t) = Afxf (t) + Bfιu(t) xf (0) = Pfz(0) (23)
y(t) = Csjxs(t) + Cfjxf (t)

where As = PsA, Bsι = PsBι, Af = PfA, Bfι = PfBι,
Csj = CjPs, Cfj = CjPf . In the above system, As is a
diagonal matrix of dimension m × m of the form As =
diag λνκ (λνκ are possible unstable eigenvalues of As,
κ = 1 m) and Af is an infinite dimensional operator

which is exponentially stable (following from the fact that
λm+1 < 0). We consider a high fidelity approximation (ℵ-
th order approximation) of the xs(t)- and xf (t)- subsys-
tems (23) which can be transformed into an appropriate
discrete equivalent of the continuous dynamics, when the
ideal sampler is used.

D. Model Predictive Control
In the controller synthesis utilized in this work, a linear

time invariant discrete model of the system is considered and
it is given in the following form:

x(ι + 1) = Ax(ι) + Bu(ι) (24)
y(ι) = Cx(ι)

where x(ι) ∈ IRn, u ∈ IRm, and y ∈ IRp. A stabilizing reg-
ulator can be determined as the solution of minimization of
the following infinite horizon open-loop quadratic objective
function at the time ι:

Φ(ι) =

∞∑
i=1

x(ι + i ι)T CT QCx(ι + i ι)

+u(ι + i ι)T Ru(ι + i ι) +

�u(ι + i ι)T P�u(ι + i ι) (25)

where Q = QT ≥ 0, R = RT > 0, P = PT ≥ 0, term
�u(ι+ i ι) = u(ι+ i ι)−u(ι+ i− 1 ι) is the change of the
input vector at the time ι, x(ι+ i ι) and u(ι+ i ι) denote the
variable x(·) and u(·) at a sampling time ι+i predicted at the
given sampling time ι. At the time ι + N , the control input
vector u(ι+i ι) is set to zero and kept at this value for all i ≥
N in the open-loop objective function value calculation, so
that at sampling time ι, the control move u(ι) equals the first
element u(ι ι) of the sequence [u(ι ι) · · · u(ι + N − 1 ι)]
which is the minimizer of the optimization problem:

J(ι) = min
u(ι ι) ··· u(ι+N−1 ι)

Φ(ι) + εT (ι)Qε(ι) (26)

�u(ι + i ι) ≤ �umax i = 0 1 · · · N

umin ≤ u(ι + i ι) ≤ umax

Gx(ι + i ι) ≤ g + ε(i ι)

where G ∈ IRnG×n, g ∈ IRnG , and Q > 0 is diagonal.
Input constraints represent physical limitations on actuators
which cannot be violated under any circumstances, while the
output/state constraints can be softened by slack variables
ε(ι) and can be temporally violated if necessary. Stability
properties of the state feedback controller given by (26)
is conditionally connected with the feasibility issue of the
constrained optimization problem [15], [16], [9].

III. ACTUATOR GUIDANCE AND SCHEDULING POLICY BY
MODAL MODEL PREDICTIVE CONTROL

In this section, a novel optimal predictive control law
that accounts for the input and state constraints with an
optimal actuation/sensing policy calculated by DMOC is
considered. It explores the optimality in the sense of the best
location utilized within a finite set of available locations with
respect to actuation/sensing under the presence of state and
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input constraints, under the cost of translating the actuator
from one prespecified position to another. In particular, we
consider the case of moving actuator among prespecified
positions within domain, fixed sensor architecture with as-
sociated input constraints and PDE state constraints fixed
at prespecified locations. Such flexibility of the actuator
architecture needs to be allowed either due to the process
specifications or the actuator’s ability to provide control
signal with desirable speed and accuracy [17], [18], [19]. The
predictive control law formulation of the movable-actuator
fixed-sensing architecture relies on some assumptions, see
[18]. Namely, we assume that there is a finite number of
admissible prespecified actuator arm locations, denoted by
pi(ζ) = p1(ζ) p2(ζ) · · · pma

(ζ) ∈ P . An important
factor in the implementation of a movable actuator fixed
sensing architecture is the time required by the actuation
device to transverse from one location pj(ζ) to p∗(ζ) location
and we assume that the actuator arm is faster than the fastest
unstable dynamics in the parabolic PDE model. However, the
important attribute of the proposed fuzzed DMOC methodol-
ogy and model predictive control formulation is the flexible
ability to account for the speed of the actuation device to
transverse from one location to another through an additional
term in the performance functional (25) representing the
weight associated with the transfer of the actuation device
from the given current location to all other available actu-
ator locations. With this in mind, a combined optimization
problem is given as follows:

min
u(t) f(t)

∫ T

0

(y(t)′Qy(t) + u(t)′Ru(t)′ +

f ′(t)Q̄f(t))dt (27a)
Mq̈ + Cq̇ + kq = f(t) (27b)
ẋ(t) = Ax(t) + Bq(t)u(t) x(0) = x0 (27c)
y(t) = Cx(t) (27d)
umin ≤ u(t) ≤ umax (27e)
xmin

w ≤ Swx(t) ≤ xmax
w (27f)

can be reformulated in the discrete DMOC & MMPC set-
ting which is constructed in optimal and realizable (QP)
optimization. Namely, just a straightforward discretization
of eqs.(27a)–(27f) will lead to nonconvex constrained op-
timization problem which does not exploit any features of
the underlying systems’ dynamics representation nor the
structure of the optimization.

In order to account in the model modal predictive control
formulation for the optimization problem (27a)–(27f), the
MPC formulation [15], [9] with DMOC can be taken into

the following form:

min
u

N−1∑
i=0

[
xs(ι + i ι)T C̃T

sjQC̃sjxs(ι + i ι)

+u(ι + i ι)TRu(ι + i ι)
]
+

+xs(ι + N ι)T Qpj
xs(ι + N ι) +

+ min
q0:Nd

f0:Nd

Nd−1∑
k=0

Θd(qk+α fk+α) (28)

xs(i + 1 ι) = Ãsxs(i ι)+B̃s(qk)u(i ι) (29a)
xf (i + 1 ι) = Ãfxf (i)+B̃f (qk)u(i ι) (29b)

umin ≤ u(i ι) ≤ umax (29c)
S̃swxs(i ι) ≤ xmax

w − S̃sfxf (i ι) (29d)
−S̃swxs(i ι) ≤ −xmin

w + S̃sfxf (i ι) (29e)
xus(N) = 0 i = 0 1 · · · N − 1 (29f)

M v0−v(0)
h

− (1− α)Kq0 = (1 − α)(uα − Cv0) (29g)
M

vk−vk−1

h
− (1− α)Kqk+α − αKqk−1+α

= (1− α)(uk+α − Cvk) + α(uk−1+α − Cvk−1) (29h)

M
v(T )−vNd−1

h
− αKqNd

= α(uNd−1+α −

CvNd−1) k = 1 Nd − 1 (29i)
q0 = q(0) qNd

= q(T ) v(0) = 0 v(T ) = 0 (29j)

where index k is associated with the positions of the actuator
arm which is provided by the solution of the DMOC prob-
lem. In other words, we can decompose eqs.(29a)–(29j) into
the solution of the optimal trajectory by DMOC algorithm
from the given arm position (p∗(ζ)) to all prespecified
arm positions (pj(ζ)) and obtain associated cost of arm
displacements, and for chosen transfer calculate the MMPC
problem which is parametrized by the calculated trajectories
(that is qk, [q0 q1 · · · qNd

]) of the chosen actuator arm
transfer.

Fig. 3. Stabilization of the state of the parabolic PDE by moving actuator.

Actuator arm activation policy
a In the realization of the actuator arm activation policy,
a decision to transfer actuator to a more optimal position
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with state and input constraints satisfaction, is based on the
minimal cost criteria which combines the cost of transfer
to the new position and the cost associated with MMPC
at that new position without any violation of input and
state constraints. In the operational mode, the controller
calculates the cost of transfer from the current state to
all other prespecified locations through the DMOC setting
which yields a discrete mechanics quadratic problem in
the configuration qk and input fk space. This cost can be
easily computed since it is a quadratic problem with linear
constraints. The displacement arm cost and the cost of the
MMPC controller for the prespecified locations are merged
in the decision criteria of moving to another or staying at a
given location. Once the minimal cost is found, in the case
of moving actuator arm decision, the MPC is subsequently
solved at each time instance of the actuator arm movement
which is characterized in eqs.(29a)–29e by parametrization
of the input operator B̃f (qk) and B̃s(qk) through discrete
arm positions. In the case of not moving actuator arm
decision, the standard MPC controller given by eqs.(29a)–
(29e) provides the input to the underlying PDE system.
Therefore, the controller activation policy can be formulated
as follows:
• Actuator arm activation policy algorithm
(1) At time instance ι and given actuator position

pj and for all ma-prespecified actuator positions,
pj = [p1 p2 · · · pma

], a standard linear predic-
tive control program (29a)–(29e) is constructed. A
DMOC problem is constructed as it is given in
eqs.(29a),(29f)–(29j) for all possible combinations
of actuator positions,

(2) At the time instance ι, a quadratic constrained
predictive control programs for MMPC and DMOC
are solved and among the possible actuator moves
choose the one that minimizes the cost functional
given by:

p∗ = arg min
pi

[J(x(ι) k u(·) pi)+

+Jdmoc(q(k) q̇(k) f(k) pi pj)] (30)

(3) If the smallest cost implies pj 
= p∗, move arm
to p∗ and solve the family of the model predic-
tive control programs eqs.(29a)–(29e) which are
parametrized by the q(t) evolution for each instance
of actuator transition from pj to p∗ and applied
MPC input as the arm moves in time at each qk

(4) Repeat step (1)
Stability property of the aforementioned actuators/sensor
activation policy algorithm through model predictive control
law eqs.(29a)–(29e) is ensured by asymptotic stabilization
over the horizon length of unstable modes of the operator
Ãs by the model predictive control algorithm [20]. In this
work, we do not analyze closed-loop system properties
under the optimal integrated actuator arm activation policy.
Comprehensive and thorough analysis of switched distributed
parameter systems that can be applied within the context of
this work is already given in the work of Demetriou et al [18].
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Fig. 4. Constrained input profile evolution.

The aforementioned actuator activation policy within the
modal model predictive control framework has four essential
merits. First, it exploits particular linear structure of modal
representation of the parabolic PDE state in the infinite
dimensional setting. Second, it utilizes the best features of
the modal model predictive control constructed constraints
relaxation optimization algorithm based on the use of the
penalty function [15] and it addresses the optimality from
the standpoint of the best location for the implementation
of an actuator/sensor device. Finally, it uses an easily im-
plementable discrete mechanics optimal control framework,
which also preserves mechanical system properties. In this
work, only state feedback structure is considered as the
control law utilizes the knowledge of entire modal state
evolution in its structure. The extension of proposed control
law in the case of output feedback realization will heavily
rely on the accurate estimation of the modal dynamics, and
this issue is not considered in this work.
In the simulations studies, we consider the unstable linear

parabolic PDE system with the Neumann boundary condi-
tions, with the following parameters applied in the MMPC
controller, weights in MMPC controller are Q = 100 and
R = 0 01, 15 eigenfunctions are used to approximate
the infinite dimensional system, [umin umax] = [−9 9],
[xmin xmax] = [−1 2], there are five prespecified actuator
positions pj = [0 1 0 3 0 5 0 7 0 9], and the state constraint
function is given as rw(ζ) = δ(ζ−0 41), the initial condition
x(0) = sin(πζ) and the horizon length is N = 50, κ = 0 15
and η = 1 6631, while DMOC parameters are Nd = 25
and h = 0 016. In Fig.3, the arm is initiated at p1 = 0 1
and moves to another position while the stabilization is
ensured together with input constraints satisfaction, see Fig.4.
Associated with this figure is Fig.5 which describes the
optimal arm evolution within domain.
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