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Abstract— Extended Kalman filters on Lie groups arise
naturally in the context of pose estimation and more gen-
erally in robot localization and mapping. Typically in such
settings one deals with nonlinear measurement models that
are handled through linearization and linearized uncertainty
transformation. To circumvent the loss of accuracy resulting
from the typical coordinate-based linearization, this paper
develops a method for accurately describing the probability
density associated with nonlinear measurement models by a
second-order approximation of a distribution defined directly
on the Lie group configuration space. We show that, like
the case of linearized measurement models, this density can
be described well as a Gaussian distribution in exponential
coordinates (though with different mean and covariance than
those that result from linearized measurement models). And
therefore previously developed methods for propagation of
uncertainty and fusion of measurements can be applied to
this generalized formulation without the a priori assumption
of linearized measurement. A case study using a range-bearing
model in planar robot localization is presented to demonstrate
the method.

I. INTRODUCTION

Estimation/filtering algorithms have three fundamental
parts: (1) uncertainty propagation; (2) formulation of mea-
surement models; and (3) updating (or fusion) of prior state
estimates (or their corresponding distributions) with current
measurements. The Kalman filter implicitly makes extensive
use of the properties of Gaussian distributions such as clo-
sure under convolution (for propagation) and closure under
conditioning and marginalization (for fusion). The extended
Kalman filter (EKF) is often used for nonlinear systems and
measurement models through local linearization. A number
of recent works have developed extended Kalman filters for
Lie groups in which the intricacies of (2) are overlooked.
These works typically use the properties of exponential
coordinates, as do we. The difference is that usually in
existing formulations a linear (or linearized) measurement
model is used from the outset. While this assumption can
be justified for particular measurement modalities (such
as magnetometer data in spacecraft attitude estimation), in
many practical applications, measurement models can be far
from linear. Therefore, we develop a measurement update
step for Lie groups that captures higher order terms in the
measurement model.

Exponential coordinates for SE(2) and SE(3) are used
extensively in the context of robotics problems, as described
in [4], [5], [9], [11], [10]. The idea of modeling measurement
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distributions on Lie groups is by no means new (see e.g.,
[1], [2]), and a variety of different models for the resulting
probability densities continue to be proposed [3]. The recent
literature is particularly rich with methods for filtering on
Lie groups that use exponential coordinates. In attitude
estimation the group of rotations, SO(3), is of interest [12],
[13], [29] and works on filtering in this context include [14],
[16], [23], [24], [25], [26], [28]. And even outside of the
context of attitude estimation, the group SO(3) arises in
other applications [15]. In mobile robot localization [30],
the groups of rigid-body motions of the plane and of 3D
space, SE(2) and SE(3), are of interest [8], [7], [18], [21].
Other recent works on Lie-group filtering in a more abstract
settings and for other Lie groups include [27], [17]. Often
in the process of fusion, an optimization step is required for
which the methods developed in [22] are useful. We note that
generic nonlinear filtering methods such as those reviewed
in [19], [20] can also be applied to the Lie group setting, but
the emphasis in this paper is to determine how far the Lie
group formalism can be taken as an alternative.

This paper focuses on deriving accurate measurement
models from first principles (rather than assuming a priori
a linearized model) and showing that even in the nonlinear
setting, Gaussian distributions in exponential coordinates
constitute a good model. The remainder of this paper is orga-
nized as follows. Section II introduces measurements models
and their approximations as Lie-group Gaussians. Section III
defines Lie-group Gaussians and formulates their optimal
estimation. Section IV then provides a motivating example as
to why linear measurement models cannot be assumed from
the outset when doing filtering. Section V then generalizes
this to the context of nonlinear measurement models on Lie
groups, and develops a methodology for matching the best-
fit Lie-group Gaussian distribution to capture these nonlinear
measurement models.

II. MEASUREMENT MODELS

Consider an autonomous vehicle such as a mobile
robot, satellite, underwater or aerial vehicle operating in a
workspace W , where WĂR2 when the vehicle is moving a
plane, or WĂR3 in the 3-D case. The vehicle is described
by its pose g PG, where G“SEp2q in the planar case or
G“SEp3q in the 3-D case. The pose has the general form

g“

„

R x
0 1



,

where R is the rotation matrix and xPW is the position.
The vehicle obtains noisy sensor measurements by observing



point features relative to its body-fixed frame of reference.
Such measurements, denoted by the random variable z and
taking values in Rm, are typically defined using a nonlinear
function h̄ :WÑRm according to

z“ h̄pg´1 ¨ `q `Hpgqn,

where n is a noise vector and Hpgq is a coupling matrix.
The notation g´1 ¨ ` should be understood as a left action
of G on W , or simply g´1 ¨ `“RT p`´ xq. We will assume
that Hpgq is square and invertible, and hence n also takes
values in Rm. The sensor model can then be expressed in a
standard form

z“hpgq `Hpgqn.

through the function hpgq“ h̄pg´1 ¨ `q. If the probability
density function of the noise n is qn :RmÑRě0, then the
measurement probability density for given g PG is defined
by

ρpz | gq “
1

|Hpgq|
qn

`

rHpgqs´1rz ´ hpgqs
˘

. (1)

This equation is completely general and makes no assump-
tions about the nature of the noise.

In many practical problems, the noise is Gaussian and
zero mean, and Hpgq does not depend on g. In this case,
H can be absorbed into the definition of qn by taking the
covariance as N “HHT , and setting H“ I in (1). Hence,
for our purposes,

ρpz|gq“
1

p2πq
m
2 |N |

1
2

exp

ˆ

´
1

2
rz´hpgqsTN´1rz´hpgqs

˙

. (2)

This is a probability density function (pdf) in z, but is not
a pdf in g. However, we can generate a pdf by normalizing:

ρnpgq”ρpg|zq
.
“

ρpz | gq
ş

G
ρpz | gqdg

,

where the dependence on z is suppressed in the notation
ρnpgq. Note, that ρnpgq is well defined under the assumption
that hpgq is non-degenrate. In addition, if g has a known
nominal distribution ρ0pgq (i.e. a prior on G) then we have

ρpg|zq
.
“

ρpz | gqρ0pgq
ş

G
ρpz | gqρ0pgqdg

. (3)

Our main focus is to obtain the optimal parametric (i.e.
Gaussian) approximation of ρpg|zq and to determine whether
a Lie group representation has advantages over the traditional
coordinate-based parametric forms. The expression in (2) is
Gaussian in z, but it is clearly not Gaussian in g. Indeed,
the concept of a Gaussian on a Lie group has not even
been defined at this point. We next provide this definition
to approximate (2) by a Lie-group Gaussian.

Example Models.: We are concerned with measurement
models providing information about the vehicle pose. A
common model in the planar case is the range-bearing (RB)
model defined by

h̄RBpyq“

ˆ

}y}
arctan2py2, y1q

˙

,

for a given y PR2, which is often employed for range
sensors such as Lidars. The 3-D version (for 3-D Lidars)
can be similarly constructed using range and two angular
measurements (e.g. elevation and azimuth). Another model
of interest in the 3-D case is the monocular camera (MC):

h̄MCpyq“
y

}y}
,

for a given y PR3, using a spherical projection model. Note
that this model has one-to-one correspondence to the more
standard perspective projection model. Here, h̄MCpyq simply
returns a body-fixed unit vector pointing from the camera
center of projection to the feature `, which is computed by
shifting and normalizing the raw image pixel coordinates.

III. GAUSSIANS ON LIE GROUPS AND THEIR OPTIMAL
ESTIMATION

A concentrated Gaussian on an d-dimensional Lie group
can be defined as

fpg;µ,Σq
.
“

1

p2πqd{2|Σ|
1
2

exp

ˆ

´
1

2

›

›logpµ´1gq_s
›

›

2

Σ´1

˙

, (4)

where log :GÑg is the Lie group logarithm, and g denotes
the Lie algebra. The map p¨q_ :gÑRd converts Lie algebra
elements into their corresponding vector of elements in a
chosen algebra basis. By “concentrated” we mean that the
eigenvalues of Σ are all small enough so that the tails of the
distribution decay to zero along every geodesic path leading
away from the identity. In other words, the pdf diminishes
to a value close to zero on a small sphere centered at the
mean. And therefore the global topological properties of G
are not relevant.

From previous work, [8], [9], it has been shown that
this sort of Gaussian distribution captures very well the
propagated pdf for noisy kinematic systems. However, the
measurement model in (2) is not expressed in this form. Even
if a linear measurement model of the form hpgq “ g´1 ¨ `
were used, the resulting distribution in g would not be a
Gaussian in the sense of (4).

But we can approximate the pdfs for both linear and
nonlinear measurement models by Gaussians of the form
in (4). And the procedure for doing this does not require
linearization of the measurement model from the beginning.

Suppose that µ0“Eρ0rgs is the mean of the prior distribu-
tion on G. Our main goal is to show that (3) can be captured
well for values of g in neighborhood of µ0 by a Gaussian of
the form (4). And therefore, previously developed methods
for fusion of pdfs in [7], [18] can be used for nonlinear
measurement models.

In principle, the optimal parametric density fpg;µ,Σq that
is closest to ρpg|zq can be defined in the Kullback-Liebler
(KL) sense, i.e. as the solution to the optimization problem

min
µ,Σ

KL pρpg|zq } fpg;µ,Σqq , (5)

where the KL distance between two given densities ppgq and



qpgq is defined by

KLpp } qq“
ż

G

ppgq log
ppgq

qpgq
dg.

The optimization problem (5) is then equivalent to

min
µ,Σ

ż

G

´ρpg|zq log fpg;µ,Σqdg

and can be solved by locally parameterizing the mean
according to µ“µ0 exppεq for some εPg. In addition, the
covariance Σ can be parametrized uniquely using an upper
triangular matrix A such that Σ´1“ATA, i.e. A is the
Cholesky factor of Σ´1. Employing this parametrization the
problem becomes

min
ε,A

!

´

d
ÿ

i“1

logAii

`
1

2

ż

G

ρpg|zq
›

›logpexpp´εqµ´1
0 gq_

›

›

2

ATA
dg
)

.

(6)

The most general (but often not the most efficient) way to
optimally estimate fpgq is through sampling. In particular,
the problem (6) can be approximated according to

min
ε,A

!

´

d
ÿ

i“1

logAii

`
1

2

Ns
ÿ

i“1

ρpz|giq
řNs
i“1 ρpz|giq

›

›logpexpp´εqµ´1
0 giq

_
›

›

2

ATA

)

,

(7)

where gi PG are Ns i.i.d. samples from ρ0pgq. The sampling-
based form (7) is solved directly using a nonlinear method
such as Newton’s method for the unknowns pε, Aq. The only
requirement is that enough samples are chosen, and as NsÑ
8 one recovers the optimal solutions.

Such sampling-based estimation can be used to compute
approximately optimal Lie group Gaussians. While the tech-
nique can be employed for filtering (e.g. similarly to particle
filtering in the Euclidean case), its main purpose in this
work is for evaluation purposes. More specifically, we will
compare such optimal parametric Lie group density to the
corresponding optimal parametric Euclidean density.

A key result in this paper is then to derive an accurate
parametric density not through sampling but through a local
expansion and (first and second) moment matching, i.e. a
local second-order perturbation approach developed in §V.

IV. CASE STUDY: CAPTURING NONLINEARITIES IN A
RANGE-BEARING MODEL

We next consider the advantages of employing a Lie-
group Gaussian measurement models as opposed to standard
Gaussians in coordinates. The RB model will be used to
illustrate the differences since the associated densities can be
easily visualized in the three coordinates q“px1, x2, θq PR3,
where the orientation angle θ is related to the rotation matrix
RPSOp2q by

R“

„

cos θ ´ sin θ
sin θ cos θ



.

Assume that the vehicle is at a true position q“p0.1, 0, 0q
and has a high-variance prior ρ0pgq shown in Figure 1a.
The vehicle observes a landmark `“p0.5, 0.5q with bearing-
range measurement covariance given by N “diagp0.01, .2q.
The measurement pdf ρpz|gq defined in (2) is shown in
Figure 1b. The pdf ρpg|zq, defined in (3), combines the prior
and measurement pdf’s and is computed numerically using a
fine grid discretization (Figure 1c). Note that all distributions
shown in Figure 1 are depicted in coordinates for clarity.

Next, Ns“5000 random samples are drawn from ρ0pgq
to compute the approximately optimal Gaussian densities,
both in standard Euclidean coordinates fcpq;µc,Σcq and as
a Lie group Gaussian fpg;µ,Σq. The parameters pµ,Σq
are computed using (7) while their coordinate counterpart
pµc,Σcq using the analogous Monte Carlo Euclidean density
estimation. The resulting densities are shown in Figure 2.
Due to the nonlinearity in the models, the original density
ρpg|zq “twists” along the vertical θ-axis. Such behavior
clearly cannot be captured by ellipsoidal geometry in R3

associated to fcpqq. In contrast, the Lie group Gaussian fpgq
is able to match the distribution ρpg|zq with surprisingly
good accuracy. This could be explained through the built-in
curvature information in the exponential map which captures
the observed nonlinear behavior.

More specifically, the resulting distributions were com-
pared numerically in terms of KL-divergence as well as
difference between computed mean q and true mean q0:

Lie group Gaussian Euclidean Gaussian
KLpρpg|zq } fpgqq«0.67 KLpρpg|zq } fcpqqq«1.42

}q0 ´ q̂}« .013 }q0 ´ q̂}« .025

The marked improvement in employing a Lie group Gaussian
serves as a motivation to develop perturbation methods for
approximating ρpg|zq which do not rely on samples but
employ local expansion and moment matching, as described
next.

V. MEASUREMENT UPDATE USING SECOND-ORDER
PERTURBATION

A second-order Taylor series for hpgq can be written as

hpgq « hpµq`
d
ÿ

i“1

ηipBihqpµq`
1

2

d
ÿ

i,j“1

ηiηjpBiBjhqpµq (8)

where here Bi is shorthand defined as

pBihqpµq“
d

ds
hpµ esEiq

ˇ

ˇ

ˇ

ˇ

s“0

.

Note that (8) is not a linear measurement model, but rather a
quadratic approximation of a nonlinear measurement model.

If we substitute (8) back into (2), and keeping up to
quadratic terms, the exponent can be written in the form

cpηq
.
“´

1

2
pa` 2bT η ` ηTKηq (9)

where
a“rhpµq ´ zsTN´1rhpµq ´ zs

bi“rhpµq ´ zs
TN´1pBihqpµq



x1 x2

θ

x1 x2
x1

x2

ρ0(g) ρ(z|g) ρ(g|z)

a) b) c)

Fig. 1. Densities displayed in q“px1, x2, θq coordinates corresponding to prior ρ0pgq (shown in a), measurement model ρpz|gq (shown in b), and
combined density ρpg|zq (shown in c). The density ρpg|zq is the full (non-parametric) nonlinear (and non-Gaussian in pose space) density that we aim to
approximate.

x1 x2

θ

x1
x2

fc(q;µc,Σc) f(g;µ,Σ)

a) b)

Fig. 2. Optimal parametric approximations of ρpg|zq from Figure 1: a) a Gaussian fcpq;µc,Σcq in coordinates q“px1, x2, θq; b) a Lie-group Gaussian
fpg;µ,Σq for g PSEp2q.

Kij“rpBihqpµqs
TN´1pBjhqpµq`rhpµq´zs

TN´1pBiBjhqpµq

Keeping all terms up to quadratic (and no terms higher
than this) is justified because of the assumption that the
eigenvalues of N are all small. Note that if a linear mea-
surement model had been assumed a priori, then the second
term in Kij would not be present. Higher-order Taylor series
approximations are also possible, but then the measurement
pdf would be defined by higher moments and would no
longer be Gaussian.

A. Measurement PDFs Described as G-Gaussians
We now ask the following question: What G-Gaussian best

approximates

ρnpµ ˝ e
ηq«

|K|
1
2

p2πqd{2
e´

cpηq
2 ?

In other words, we seek

fpµ ˝ eη;µn,Σnq“fpe
η;µ´1 ˝ µn,Σnq

to match to ρnpµ˝eηq when µ´1 ˝µn is close to the identity
and the eigenvalues of Σn are small.

Under these conditions, the exponent in (4) can be ex-
panded using the Baker-Campbell-Hausdorf (BCH) formula,
and put in a form like (9). This provides equations that can
be solved to obtain the equivalent pµ´1 ˝µn,Σnq (and hence
pµn,Σnq) that define a G-Gaussian approximation to the
measurement model.

Let
eε“µ´1 ˝ µn and eη“µ´1 ˝ g.

Then
µ´1
n ˝ g“e´ε ˝ eη



where ε and η are both small. The BCH gives

log_pe´ε˝eηq« ´ ε_ ` η_ ´
1

2
adpεqη_

`
1

12
radpεqadpεqη_´adpηqadpηqε_s.

(10)

This results from truncating the BCH series at two nested Lie
brackets and is called “second order” in [8]. It is quadratic in
each of η and ε independently. Moreover, it is cubic in these
variables jointly, and hence it could also be called a “third
order” approximation from this perspective. The next term
in the BCH involves three nested brackets and is quadratic
in each η and ε independently, and is quartic in them jointly.
There is no reason to use this “fourth order” approximation
here because the information it contains pertains to moments
higher than covariances. If the Gaussian model is good, then
higher-order moments can be obtained from lower moments.
Or, put another way, if the quartic approximation is used, it
will contribute cubic terms (and higher) in η in the exponent
of the G-Gaussian that will have nothing to match to in the
exponent of ρn. If one desired to keep higher order terms,
it may be possible, but this would only make sense in the
context of a higher order Taylor series expansion than that
in (8), and a non-Gaussian approximation.

Using the approximation in (10), the exponent in the G-
Gaussian fpeη ; eε,Σnq can be expanded as

´
1

2
rlog_pe´εeηsT Σ´1

n log_pe´εeηqs «

´
1

2
pan ` 2bTnη ` η

T Knηq.
(11)

The right-hand side of (11) is a simple form to which we can
match the corresponding approximation in the measurement
model expressed in (9). In other words, our main goal
becomes how to perform the matching

a“an, b“ bn, K“Kn,

which of course first requires writing analytical expressions
for an, bn, and Kn.

In finding an, bn, and Kn in terms of ε and Σn, it will
be convenient to use the linearity of adp¨q. That is, if η“
řd
i“1 ηiEi where Ei is an orthonormal basis for the Lie

algebra } with respect to the inner product p¨, ¨q, then

adpηq “
d
ÿ

i“1

ηi adpEiq.

Using this, (10) becomes

log_pe´ε˝eηq«´ ε_`

„

Id´
1

2
adpεq`

1

12
adpεqadpεq



η_

´
1

12

d
ÿ

i,j“1

ηi ηj adpEiq adpEjq ε
_.

(12)

and we find that

pε_qTΣ´1
n ε_“a (13)

´pε_qTΣ´1
n

„

Id ´
1

2
adpεq `

1

12
adpεqadpεq



“ bT (14)

and
„

Id ´
1

2
adpεq `

1

12
adpεqadpεq

T

Σ´1
n

¨

„

Id ´
1

2
adpεq `

1

12
adpεqadpεq



`M “K

(15)

where

Mij“
1

12
pε_qT

”

adTEjad
T
EiΣ

´1
n ` Σ´1

n adEiadEj

ı

ε_. (16)

In keeping quadratic terms in η in the BCH, cross terms
are present (such as those in M ) that would not be if we
had stopped at the linear approximation. We also get higher
order terms in ε.

Referring back to (9) and matching a“an, bi“pbnqi, and
Kij“pKnqij provides conditions to specify the values of ε
and Σn in terms of properties obtained from the original
measurement pdf. The nonlinear equations bn“ b may not
have exact closed-form solutions (and exact solutions may
not even be possible). But a good initial guess that can be
used to minimize }bn“ b}2 with respect to ε is ε_p0q“Σnbn,
though Σn is unknown. A good initial guess for Σn such that
Kn“K is Σnp0q“K

´1.
Substituting both of these back in, the next better ap-

proximation can be obtained by letting ε_p1q“ ε_p0q ` ν,
where ν PRd is small, and solving the associated quadratic
minimization in closed form. Then substituting this known
value into the expression for Kn reduces the search for the
next Σn to one which involves inverting a linear equation in
the entries of Σ´1

n .
With both the propagation and measurement pdfs put in

this common description, both fusion and future propagations
can be handled in a single unified framework.

B. Solving the Matching Equations

Given the constraint equations (13)-(15) we seek Σn and ε.
Our solution is based on approximations of increasing order
of accuracy.

1) Zeroth Order Approximation: The simplest zeroth-
order approximation from (14) and (15) results in Σn«K

´1

and bn«´K
´1b. Such approximation is valid under the

assumption that both }Σn} and }ε} are small relative to 1.
2) Case 1: ν “ Op}Σn}q “ Op}ε}q.: Following a stan-

dard perturbation approach one can show the a first-order
approximation requires the solution of the equations

Σ´1
n “pI´AT1 `BT qKpI´A1 `Bq, (17)

ε_“´pI`A1 ` CqK
´1b (18)

where

A1“
1

2
ad

´

{K´1b
¯

, A2“
1

12
ad

´

{K´1b
¯

ad
´

{K´1b
¯

The matrix B is computed from the linear relationship

BTK `KB“r´A2 `A
2
1s
TKr´A2 `A

2
1s ´M. (19)



after which the matrix C is computed to satisfy the equation

BT ´KpA2
1 ´B ´ CqK

´1“r´A2 `A
2
1s
T . (20)

The procedure can be performed once or iterated multiple
times until the variables Σn, ε converge. These terms are
initialized using the zeroth order solution.

3) Case 2: }Σn} “ Opνq and }ε} “ Opν2q.: We again
start with (17) and (18) and the same lowest order approx-
imations Σn«K

´1 and bn«´K
´1b. But in this scenario,

we take A2“O since ε is already Opνq-times smaller than
Σn. Therefore, in the first order matching does not appear
and we solve the following linear equation (which is a
modified version of (20) given the above constraints)

BT ´KBK´1“´AT1

for B, which is the only second-order correction, along with

Σn“K
´1 ´BK´1 ´K´1BT , ε_“´K´1b.

4) Case 3: }Σn} “ Opν2q and }ε} “ Opνq.: In this sce-
nario B“O because corrections at this level are not required
for Σn. We then have

Σn“K
´1`A1K

´1`K´1AT1 , ε_“´pI`A1`CqK
´1b.

VI. CONCLUSION

A general methodology was presented to capture measure-
ment probabilities associated with nonlinear measurement
models on Lie groups as Gaussian distributions in expo-
nential coordinates. Unlike previous Lie-group methods that
assume a priori linearized measurement models, we build
fully nonlinear measurement models from first principles.
Nevertheless, and somewhat surprisingly, the probability
densities associated with these measurement models can be
captured quite well as Gaussian distributions in exponential
coordinates. Future work will develop general recursive
filters based on the proposed formulation and moment match-
ing solution, and study their performance in comparison to
standard extended or unscented Kalman filters.
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