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1 Backstepping

Backstepping is a nonlinear control design tool for underactuated systems. Backstepping is used
for output stabilization or tracking using feedback similarly to feedback linearization. In feedback
linearization the stabilizing controller is designed entirely for a virtual input which is then mapped
back to the physical input by completely canceling nonlinearities. In backstepping the system is
stabilized in stages by “closing the loop” recursively which enables nonlinearities to be exploited,
e.g. if natural damping was present in the system. In addition, backstepping becomes more robust
to uncertainties.

Example 1. Stabilization for the unicycle. Consider the unicycle model with state position (x1, x2)
and orientation x3

ẋ1 = cosx3u1

ẋ2 = sinx3u1

ẋ3 = u2

(1)

The task is to stabilize the position, defined by the output y = (x1, x2), to the origin (0, 0). Start
by defining the Lyapunov function

V0(y) =
1

2
yT y

Differentiating we obtain

V̇0(y) = yT
(

cosx3u1
sinx3u1

)
, (2)

Our goal is to make V̇0 negative which will hold if we choose the controls so that(
cosx3u1
sinx3u1

)
= −k0y, k0 > 0

In general, no control u1 can be chosen to satisfy this directly. Rewrite (2) according to

V̇0(y) = yT [−k0y + z] ,

where

z = k0y +

(
cosx3u1
sinx3u1

)
.
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The term z defines an error variable that we want to drive to zero which motivates the new Lyapunov
function

V (y, z) = V0(y) +
1

2
zT z.

Differentiating, we obtain (after some manipulation)

V̇ = −k0yT y + zT
[
y + k0ẏ +R(x3)

(
u̇1
u1u2

)]
,

where

R(x3) =

(
cosx3 − sinx3
sinx3 cosx3

)
.

Now,we can set (
u̇1
u1u2

)
= R(x3)

T (−y − k0ẏ − kz), k > 0

which results in

V̇ = −k0yT y − kzT z ≤ 0,

and hence we have proved that (y, z) asymptotically stabilizes to (0, 0). The actual controls are(
u̇1
u2

)
=

[
1 0
0 1

u1

]
R(x3)

T (−y − k0ẏ − kz). (3)

The relationship (3) is used to obtain u̇1 which is integrated to obtain u1 which is used to control
the system. This is possible as long as u1 6= 0 which is a structural condition for nonholonomic
systems indicating that the vehicle must always maintain non-zero velocity during stabilization. It
can be shown that this condition does not pose practical problems since it occurs only infinitely
close to the origin [?].

Example 2. Tracking for the unicycle. It is often preferable to not directly try to stabilize to given
state xf (especially if it is far away) but instead to first design a good (i.e. optimized) reference
trajectory xd(t) that reaches xf at some time tf . This reference trajectory can then be simply
tracked until xf is reached. Consider tracking a unicycle trajectory defined through its position
y(t) = (x1(t), x2(t)), i.e. so that the system should asymptotically track a given reference yd(t).
The key difference from Example 1 is that we would like to asymptotically bring the error

e(t) = y(t)− yd(t),

to zero, and so the control law and associated Lyapunov function will be time-dependent:

V0(t, e) =
1

2
e(t)T e(t) (4)

Differentiating we obtain

V̇0(t, e) = e(t)T
[(

cosx3u1
sinx3u1

)
− ẏd(t)

]
, (5)
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Our goal is to make V̇0 negative which will hold if we choose the controls so that(
cosx3u1
sinx3u1

)
= −k0e(t) + ẏd(t), k0 > 0 (6)

In general, no control u1 can be chosen to satisfy this directly. Rewrite (5) according to

V̇0(t, e) = eT [−k0e+ z] ,

where

z = −ẏd(t) + k0e+

(
cosx3u1
sinx3u1

)
.

The term z defines an error variable that we want to drive to zero which motivates the new Lyapunov
function

V (t, e, z) = V0(t, e) +
1

2
zT z.

Differentiating, we obtain (after some manipulation)

V̇ = −k0eT e+ zT
[
e− ÿd + k0ė+R(x3)

(
u̇1
u1u2

)]
,

where

R(x3) =

(
cosx3 − sinx3
sinx3 cosx3

)
.

Now,we can set (
u̇1
u1u2

)
= R(x3)

T (ÿd − e− k0ė− kz), k > 0

which results in

V̇ = −k0eT e− kzT z ≤ 0.

The actual controls are (
u̇1
u2

)
=

[
1 0
0 1

u1

]
R(x3)

T (ÿd − e− k0ė− kz). (7)

The relationship (7) is used to obtain u̇1 which is integrated to obtain u1 which is used to control
the system.

Note that we cannot directly conclude asymptotic stability since the system is time-dependent
(Lyapunov’s direct method as well as LaSalle’s principle apply to time-invariant systems). But
under the assumption that both e(t) and ė(t) are bounded, it is possible to apply Lyapunov expo-
nential stability theorem(which holds for time-dependent ODEs), and show that the chosen control
law results in exponential tracking of the reference yd(t).
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1.1 Integrator Backstepping

Now let’s consider the system [?]

η̇ = f(η) + g(η)ξ (8)

ξ̇ = u (9)

where [ηT , ξ] ∈ Rn+1 and u ∈ R is the control input. The functions f, g : D → Rn are smooth
in a domain D ⊂ Rn that contains η = 0 and f(0) = 0. The goal is to design a controller which
stabilizes the origin (η = 0, ξ = 0).

Assume that there is a control law ξ = φ(η) which asymptotically stabilizes the subsystem (8)
with φ(0) = 0 with associated Lyapunov function V0(η) such that

∂V0
∂η

[f(η) + g(η)φ(η)] ≤ −W (η),∀η ∈ D, (10)

where W (η) is positive definite. Eq (8) can be rewritten as

η̇ = [f(η) + g(η)φ(η)] + g(η)[ξ − φ(η)]

ξ̇ = u

By defining the error variable
z = ξ − φ(η)

we have

η̇ = [f(η) + g(η)φ(η)] + g(η)z

ż = u− φ̇

Now defining the function

V (η, ξ) = V0(η) +
1

2
z2,

as a Lyapunov function candidate, we obtain

V̇ =
∂V0
∂η

[f(η) + g(η)φ(η)] +
∂V0
∂η

g(η)z + zż

≤ −W (η) +
∂V0
∂η

g(η)z + zż

If we set

ż = −∂V0
∂η

g(η)− kz, k > 0,

which is equivalent to

u =
∂φ

∂η
[f(η) + g(η)ξ]− ∂V0

∂η
g(η)− k[ξ − φ(η)], (11)

and we have
V̇ ≤ −W (η)− kz2.

This shows that the origin (η = 0, z = 0) is asymptotically stable. Since by assumption φ(0) = 0,
we conclude that the origin (η = 0, ξ = 0) is asymptotically stable.
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Lemma 1. Consider the system (8)-(9). Let φ(eta) be a stabilizing state feedback control law for
(8) with φ(0) = 0, and V (η) be a Lyapunov function that satisfies (14) with some positive definite
function W (η). Then, the state feedback control law (11) stabilizes the origin of (8)-(9), with
V (η) + [ξ−φ(η)]2 as a Lyapunov function. Moreover, if all the assumptions hold globally and V (η)
is radially unbounded, the origin will be globally asymptotically stable.

Example 3. Exploiting nonlinear damping.Consider the system

ẋ1 = x21 − x31 + x2

ẋ2 = u

which can be put into the standard form (8)-(9) with η = x1 and ξ = x2. First, we regard x2 as
input that asymptotically stabilizes x1. This is accomplished by setting

x2 = φ(x1) = −x21 − x1,

which results in the dynamics
ẋ1 = −x1 − x31

The Lyapunov function V0(x1) = 1
2x

2
1 satisfies

V̇0 = −x21 − x41 ≤ −x21, ∀x1 ∈ R

Using Lemma 1 the control

u =
∂φ

∂x1
(x21 − x31 + x2)−

∂V0
∂x1
− [x2 − φ(x1)]

= −(2x1 + 1)(x21 − x31 + x2)− x1 − (x2 + x21 + x1)

stabilizes the origin x = 0 globally, with a composite Lyapunov function

V (x) =
1

2
x21 +

1

2
(x2 + x21 + x1)

2

1.2 Block Backstepping

Now let’s consider the system [?]

η̇ = f(η) +G(η)ξ (12)

ξ̇ = fa(η, ξ) +Ga(η, ξ)u (13)

where η ∈ Rn,ξ ∈ Rm and u ∈ Rm is the control input. The functions f, fa, G,Ga are smooth
in a domain of interest, f and fa vanish at the origin and the m ×m matrix Ga is non-singular.
Assume that there is a control law ξ = φ(η) which asymptotically stabilizes the subsystem (12)
with φ(0) = 0 with associated Lyapunov function V0 such that

∂V0
∂η

[f(η) +G(η)φ(η)] ≤ −W (η),∀η ∈ D, (14)
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where W (η) is positive definite. Using

V = V0(η) +
1

2
[ξ − φ(η)]T [ξ − φ(η)]

as a Lyapunov function candidate for the overall system we obtain

V̇ =
∂V0
∂η

(f +Gφ) +
∂V0
∂η

G(ξ − φ) + [ξ − φ]T
[
fa +Gau−

∂φ

∂η
(f +Gξ)

]
Taking

u = G−1
a

[
∂φ

∂η
(f +Gξ)−

(
∂V0
∂η

G

)T

− fa − k(ξ − φ)

]
, k > 0

results in

V̇ =
∂V0
∂η

(f +Gφ)− k[ξ − φ(η)]T [ξ − φ(η)] ≤ −W (η)− k[ξ − φ(η)]T [ξ − φ(η)]

which shows that the origin (η = 0, ξ = 0) is asymptotically stable.

Example 4. Point-mass vehicle. Consider a point-mass system with position q ∈ Rn where n = 2
(the case n = 3 is identical). The vehicle has mass m and its dynamics are given by

mq̈ + bq̇ + g = u, (15)

where g = (0,−9.81m) denotes gravity, and b > 0 is a drag constant. The task is to track a given
desired position qd(t). Using the notation

e(t) = q(t)− qd(t).

define the function,

V0(t, e) =
1

2
‖e(t)‖2

Differentiating, we obtain

V̇0 = eT ė,

which can be made negative by ė = −k0e. Re-express V0 according to

V̇0(t, e) = eT (−k0e+ z), k0 > 0

where z = k0e+ ė is our new error variable to be driven to zero. Define the new Lyapunov candidate

V (t, e, z) = V0(t, e) +
1

2
zT z.

Differentiating we obtain

V̇ = −k0eT e+ zT
[
e− q̈d + k0ė+

1

m
(u− bq̇ − g)

]
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Choosing
u = m(q̈d − e− k0ė− kz) + bq̇ + g

we have
V̇ = −k0eT e− kzT z ≤ 0.

Note that for the point stabilization case (i.e. when q̇d = q̈d = 0) we could have just used the block
back-stepping to show asymptotic stability. Also note that in this case, the damping term bq̇ need
not be completely canceled since it can contribute to the control law.

For the general trajectory tracking case, we can again employ Lyapunov’s exponential stability
theorem to show exponential tracking, assuming qd(t) and q̇d(t) are bounded.
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