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1 Introduction

Consider the nonlinear control system

ẋ = f(x) +G(x)u, (1)

y = h(x), (2)

where x ∈ Rn is the state, u ∈ Rm–the inputs, and y ∈ Rp≤m–the output that one wants to achieve,
i.e. a trajectory to be tracked.

We are interested in transformation of the form

u = a(x) +B(x)v, (3)

where B(x) is a nonsingular matrix, and v ∈ Rp is a transformed or virtual input, so that the input-
output response between v and y is linear. This requirement is called input-output linearization
because only the input-output map h is made linear. On the other hand, full state linearization
refers to the case when the whole state x must be “linearized”.

Linearization of the form (3) is called static feedback.
In some cases one could accomplish the linearization only with the help of extra variables which

evolve dynamically. This is the case of dynamic feedback which takes the form

u = a(x, ξ) +B(x, ξ)v, (4)

ξ̇ = c(x, ξ) +D(x, ξ)v, (5)

where ξ are the extra “compensating” variables, also referred to as the compensator state. The
term dynamic is appropriate since ξ has its own additional dynamics that affect the control law.

Feedback linearization, in its simplest form, proceeds by differentiating the output mapping
y = h(x) enough times so that all controls appear in a linear, nonsingular relationship to the
outputs (or their higher derivatives).

2 Examples from robotics

2.1 Static Feedback

2.1.1 Fully-actuated manipulator control: computed torque law

A fully-actuated mechanical system can generally be written as

M(q)q̈ + b(q, q̇) = u, (6)
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where q is the configuration (e.g. the joint angles) and the state is x = (q, q̇), with M(q) denoting
the mass matrix and b(q, q̇) the bias consisting of Coriolis/centrifual, gravitational and friction
terms. Assume that one is interested in tracking a desired path qd(t). The task is specified by the
output

y = q.

and a virtual input v to be determined, which satisfies

q̈ = v,

so that

u = M(q)v + b(q, q̇) (7)

The linear input-output transformation corresponding to (3) is accomplished by setting

a(x) = b(q, q̇), (8)

B(x) = M(q). (9)

The control is set to

v = q̈d − kd(q̇ − q̇d)− kp(q − qd), (10)

for some positive scalars kd, kp > 0. In order to see that the resulting dynamics is linear and stable
define the error state z ∈ Rn=2m according to

z =

(
q − qd
q̇ − q̇d

)
The control law (10) results in the closed-loop linear dynamics

ż = Az,

where

A =

(
0 I
−kpI −kdI

)
is a Hurwitz matrix. The virtual controls are mapped back to the original input u using (7).
In general, whenever dim(Q) = dim(U) one can always use nonlinear static feedback to achieve
linearization.

2.1.2 Partial feedback linearization

Now consider the case of an underactuated system in the form

M(q)q̈ + b(q, q̇) =

(
0
u

)
, (11)

where u ∈ Rm. It can be equivalently expressed as
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M11q̈1 +M12q̈2 + b1 = 0 (12)

M21q̈1 +M22q̈2 + b2 = u, (13)

where
q1 ∈ R`=n−m, q2 ∈ Rm,

the mass matrices are defined so that

M =

(
M11 M12

M21 M22

)
,

and b1(q, q̇) ∈ R` and b2(q, q̇) ∈ Rm correspond to the bias terms.

Collocated Input/Output Linearization. Assume that one is interested in controlling the
output

y = q2 ∈ Rm,

i.e. the coordinates corresponding to the controlled degrees of freedom. Equations (12)-(13) can
be combined to obtain

M̄22q̈2 + b̄2 = u, (14)

where

M̄22 = M22 −M21M
−1
11 M12, (15)

b̄2 = b2 −M21M
−1
11 b1, (16)

(17)

Define the virtual control v ∈ Rm to be determined so that the dynamics q̈2 = v solves the tracking
problem. From (14) we have

u = M̄22v + b̄2 (18)

The control law is set to

v = ÿd − kd(ẏ − ẏd)− kp(y − yd), (19)

In order to see that the resulting dynamics is linear define the error state z ∈ R2n according to

z =

(
z1
z2

)
=

(
y − yd
ẏ − ẏd

)
The control law (19) results in the closed-loop linear dynamics

ż = Az,

where

A =

(
0 Im

−kpIm −kdIm

)
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is a Hurwitz matrix. The virtual controls are mapped back to the original input u using (18).
In order to study the evolution of the remaining “non-linearized” coordinates q1 define the state
η ∈ R2m by

η =

(
η1
η2

)
=

(
q1
q̇1

)
.

Using (12) we have

η̇1 = η2 (20)

η̇2 = −M−111 (M12(ÿd − kpz1 − kdz2) + b1) . (21)

The complete system can be written as

ż = Az : linearized (22)

η̇ = w(z, η, t). : non-linearized. (23)

The zero dynamics of the system is then defined as the evolution of the non-linearized part after
the linear part has stabilized, i.e. at z = 0 or

η̇ = w(0, η, t). (24)

Theorem 1. (see [?]) Consider the system (22)-(23). Suppose that w(0, η0, t) = 0 for t ≥ 0, i.e.
(0, η0) is an equilibrium of the full system(22)-(23) and η0 is an equilibrium of the zero dynam-
ics (24). Suppose also that A is a Hurwitz matrix. Then (0, η0) is locally stable (respectively, locally
asymptotically stable, unstable) if η0 is locally stable (respectively, locally asymptotically stable,
unstable) for the zero dynamics (24).

Non-collocated Input/Output Linearization. Assume that one is interested in achieving the
output

y = q1 ∈ R`,

i.e. the coordinates corresponding to the unactuated degrees of freedom. This would only be
possible if ` ≤ m, i.e. if the number of controlled DOF is at least as large as the uncontrolled DOF.
In addition, the system must be strongly inertially coupled, i.e. more formally it must satisfy

rank(M12) = `.

If the system is strongly coupled, then equations (12)-(13) can be combined to obtain

M̃21q̈1 + b̃2 = u, (25)

where

M̃21 = M21 −M22M
†
12M11, (26)

b̃2 = b2 −M22M
†
12b1, (27)

(28)

where the right pseudo-inverse M †12 of a matrix M12 is defined by

M †12 = MT
12(M12M

T
12)
−1
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Notice that rank(M12) = ` ⇒ rank(M12M
T
12) = ` and the inversion is valid since M12M

T
12 ∈ R`×`.

Define the virtual control v ∈ R` to be determined so that the dynamics q̈1 = v solves the
tracking problem. From (25) we have

u = M̃21v + b̃2. (29)

The control law is set to

v = ÿd − kd(ẏ − ẏd)− kp(y − yd), (30)

In order to see that the resulting dynamics is linear define the error state z ∈ R2` according to

z =

(
z1
z2

)
=

(
y − yd
ẏ − ẏd

)
The control law (10) results in the closed-loop linear dynamics

ż = Az,

where

A =

(
0 I`

−kpI` −kdI`

)
is a Hurwitz matrix. The virtual controls are mapped back to the original input u using (29).
In order to study the evolution of the remaining “non-linearized” coordinates q1 define the state
η ∈ R2m by

η =

(
η1
η2

)
=

(
q2
q̇2

)
.

Using (12) we have

η̇1 = η2 (31)

η̇2 = −M †12 (M11(ÿd − kpz1 − kdz2) + b1) . (32)

The complete system can be written as

ż = Az : linearized (33)

η̇ = w(z, η, t). : non-linearized. (34)

The zero dynamics of the system is then defined as the evolution of the non-linearized part after
the linear part has stabilized, i.e. at z = 0 or

η̇ = w(0, η, t). (35)

Theorem 1 applies to this case as well.

Example 1. The two-link robot. The equations of motion of a two-link robot are

m11q̈1 +m12q̈2 + b1 = u1 (36)

m21q̈1 +m22q̈2 + b2 = u2, (37)
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where

m11 = m1`
2
c1 +m2(`

2
1 + `2c2 + 2`1`c2 cos q2) + I1 + I2

m22 = m2`
2
c2 + I2,

m12 = m21 = m2(`
2
c2 + `1`c2 cos q2) + I2

b1 = h1 + φ1, b2 = h2 + φ2

h1 = −m2`1`c2 sin q2q̇
2
2 − 2m2`1`c2 sin(q2)q̇2q̇1

h2 = m2`1`2c sin(q2)q̇
2
1

φ1 = (m1`c1 +m2`1)g cos(q1) +m2`c2g cos(q1 + q2)

φ2 = m2`c2g cos(q1 + q2),

where we split bi into the Coriolis terms hi and gravity terms φi for i = 1, 2, with g = 9.8m/s2.
Setting u1 = 0 corresponds to the Acrobot while u2 = 0 the Pendubot. Another example with
φ1 = φ2 = 0 and u2 = 0 is the underactuated manipulator.

Example 2. Cart-pole system. Even-though this is a classical academic example it still has inter-
esting challenges from the standpoint of nonlinear control [?]. The dynamics are given by:

(mp +mc)ẍ+mp` cos θθ̈ −mcθ̇
2 sin θ = F, (38)

mp` cos θẍ+mpθ̈ −mp`g sin θ = 0 (39)

The system can be put into standard form by setting q1 = θ, q2 = x, u = F and after normalizing
the constants

q̈1 + cos q1q̈2 − sin q1 = 0, (40)

cos q1q̈1 + 2q̈2 − q̇21 sin q1 = u (41)

2.2 Dynamic Feedback

2.2.1 Wheeled robot trajectory tracking

Consider the kinematic unicycle model with configuration q ∈ R3 denoting its position and orien-
tation. The state of the vehicle is x = q so that (x1, x2) denote the position and x3 the orientation.

Note: we normally use coordinates (x, y, θ) for this example but in order to illustrate the general
theory we are using the equivalent x = (x1, x2, x3).

The equations of motion are ẋ1
ẋ2
ẋ3

 =

 cosx3
sinx3

0

u1 +

 0
0
1

u2. (42)

The task is to track given desired trajectory specified by the positions (x1d(t), x2d(t)).
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Feedforward Control It is interesting to note that for wheeled vehicles eventhough we only
specify the desired position, the orientation is also implicitly specified. This is expressed by the
relationship

x3d = atan2(ẋ2d, ẋ1d) + kπ, k = 0, 1,

depending on whether the vehicle is moving forward or backwards.
A feedforward control law then becomes (recall d

dt tan−1 a = 1
ȧ2+1

)

u1d = ±
√
ẋ21d + ẋ22d,

u2d = ẋ3d =
ẋ1dẍ2d − ẍ1dẋ2d

ẋ21d + ẋ22d
.

In a perfect (zero-noise) setting if x(0) = xd(0) then this control law will exactly follow the trajec-
tory.

Feedback Control Tracking with feedback is much more desirable in order to have robustness.
Assume that we can measure the position (x1, x2) and we would like to track it. We specify that
by the output

y = h(x) =

(
x1
x2

)
.

It is not possible to directly track it since we have only one input u1 with direct influence on position
velocities.

Differentiate the equations of motion (42) to obtain(
ẍ1
ẍ2

)
=

(
− sinx3ẋ3u1 + cosx3u̇1
cosx3ẋ3u1 + sinx3u̇1

)
=

(
cosx3 − sinx3u1
sinx3 cosx3u1

)(
u̇1
u2

)
. (43)

Eq. (43) means that the accelerations (ẍ1, ẍ2) can be specified exactly by choosing (u̇1, u2) as
long as u1 6= 0. This suggests we should be thinking of controlling the system through (u̇1, u2) or
equivalently, as long as the condition u1 6= 0 holds, through (ẍ1, ẍ2).

More formally, in the language of feedback linearization define the virtual input v ∈ R2 so that(
ẍ1
ẍ2

)
= v (44)

and the dynamic compensator ξ ∈ R defined by

ξ = u1.

Equation (43) can be solved for (ξ̇, u2) to obtain

ξ̇ = v1 cosx3 + v2 sinx3, (45)

u2 =
v2 cosx3 − v1 sinx3

ξ
. (46)

The control law is then chosen according to

v = ÿd − kp(y − yd)− kd(ẏ − ẏd), (47)
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where kp and kd are 2×2 positive definite matrices, to asymptotically track yd(t) = (x1d(t), x2d(t)).
In order to see that the resulting dynamics is linear and stable define the error state z ∈ R4

according to

z =

(
z1
z2

)
=

(
y − yd
ẏ − ẏd

)
The control law (10) results in the closed-loop linear dynamics

ż = Az,

where

A =

(
0 I
−kp −kd

)
is a Hurwitz matrix.

The actual inputs u are computed using (45) and integrating u̇1. Note that the control law is
valid only when u1 6= 0 (see [?] for precise treatment of the singularity related to u1).

The feedback linearized form can by summarized according to:
Definition General Wheeled Robot

Outputs: y = h(x) y = (x1, x2)

Controls transformation: u = a(x, ξ) +B(x, ξ)v u =

(
ξ

v2 cos θ−v1 sin θ
ξ

)
Dynamic Compensator: ξ̇ = c(x, ξ) +D(x, ξ)v ξ̇ = v1 cos θ + v2 sin θ

2.2.2 UAV trajectory tracking

Consider a 2D model of a UAV with configuration q ∈ R3 where (q1, q2) denote its horizontal and
vertical positions and q3 denotes its orientation. The vehicle has mass m and moment of inertia J .
The state of the vehicle is x = (q, q̇) and evolves according to the dynamics

m

(
ẍ1
ẍ2

)
= R(x3)

(
0
u1

)
+ g, (48)

Jẍ3 = u2, (49)

where g = (0,−9.81m) denotes gravity, and R(x3) rotates from body to spatial frame, i.e.

R(x3) =

(
cosx3 − sinx3
sinx3 cosx3

)
. (50)

The task is to track a given desired position (x1d(t), x2d(t)). It is not possible to control directly
the position so we differentiate (48) to get

m

(
x
(3)
1

x
(3)
2

)
= R(x3)

(
−u1ẋ3
u̇1

)
, (51)

where we used the relationship

Ṙ(x3) = R(x3)

(
0 −ẋ3
ẋ3 0

)
. (52)
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The controls (or their derivatives) still do not appear linearly, so repeat differentiation to obtain

m

(
x
(4)
1

x
(4)
2

)
= R(x3)

((
−u̇1ẋ3
−u1ẋ23

)
+

(
−u̇1ẋ3 − u1ẍ3

ü1

))
, (53)

or equivalently(
x
(4)
1

x
(4)
2

)
=

1

m
R(x3)

(
−2u̇1ẋ3
−u1ẋ23

)
+

1

m
R(x3)

(
−u1/J 0

0 1

)(
u2
ü1

)
. (54)

Similarly to the wheeled robot we can define the virtual input v ∈ R2 which will be determined
so that (

x
(4)
1

x
(4)
2

)
= v (55)

renders the closed-loop dynamics stable. The presence of time-derivative terms requires the dynamic
compensator ξ ∈ R2 defined by

ξ =

(
u1
u̇1

)
.

Equation (54) can be solved for (ü1, u2) to obtain(
u2
ü1

)
=

(
−J/ξ1 0

0 1

)(
mRT (x3)v −

(
−2ξ2x6
−u1x26

))
(56)

Then we can set

v = y
(4)
d −

3∑
i=0

Ki

(
y(i) − y(i)d

)
, (57)

where Ki are 2 × 2 positive definite matrices that will be chosen to asymptotically track yd(t) =
(x1d(t), x2d(t)). In order to see that the resulting dynamics is linear and stable define the error
state z ∈ R8 according to

z =


z1
z2
z3
z4

 =


y − yd
ẏ − ẏd
ÿ − ÿd

ẏ(3) − ẏ(3)d


The control law (57) results in the closed-loop linear dynamics

ż = Az,

where

A =


0 I2×2 0 0
0 0 I2×2 0
0 0 0 I2×2
−K0 −K1 −K2 −K3


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and so for the system to be asymptotically stable, the matrices Ki must be chosen so that A is a
Hurwitz matrix. Note that with the simpler form Ki = kiI2×2 for some ki > 0, it is possible to find
simple algebraic condition on the ki’s that render A Hurwitz.

The feedback linearization form is summarized according to:
Definition General UAV

Outputs: y = h(x) y = (x1, x2)

Controls transformation: u = a(x, ξ) +B(x, ξ)v u =

(
ξ1

u2 from (56)

)
Dynamic Compensator: ξ̇ = c(x, ξ) +D(x, ξ)v ξ̇ =

(
ξ2

ü1 from (56)

)

2.3 Relationship to differential flatness.

Theorem 2 ([?]). If a control system is differentially flat then it is dynamic feedback linearizable
on an open dense set, with the dynamic feedback possibly depending explicitly on time.

In the single-input case full-state feedback linearization via static feedback and differential
flatness are equivalent. In higher-dimensions, though it is more complex.

3 The general case

3.1 Single-input single-output (SISO) case

Consider the system [?]
ẋ = f(x) + g(x)u,

where u ∈ R. Let x∗ be the equilibrium, i.e. f(x∗) = 0. We have

ẏ = ∂h · ẋ = ∂h · [f(x) + g(x)u] ≡ Lfh(x) + Lgh(x)u,

where recall that Lfh , ∂h · f. We proceed as follows:

• if |Lgh(x)| > δ for some δ > 0 (i.e. bounded away from 0) then

u = a(x) + b(x)v =
1

Lgh(x)
(−Lfh(x) + v), ẏ = v

• if Lgh(x) = 0, then differentiate again

ÿ = LfLfh(x) + LgLfh(x)u+ LfLgh(x)u+ LgLgh(x)u2

= L2
fh(x) + LgLfh(x)u,

where the last two terms dropped due to Lgh(x) = 0. Now if |LgLfh(x)| > δ for some δ > 0
then

u =
1

LgLfh(x)
(−L2

fh+ v), ÿ = v
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• More generally, we keep differentiating ẏ, ÿ, y(3), . . . and denote γ to be the smallest integer
for which

LgL
i
fh(x) = 0, for i = 0, . . . , γ − 2,

and |LgLγ−1f h(x)| > δ (bounded away from zero). Then we have

u =
1

LgL
γ−1
f h(x)

(−Lγfh(x) + v), y(γ) = v,

i.e. the output becomes a γ-order linear system.

Definition 1. Strict Relative Degree. The system

ẋ = f(x) + g(x)u, y = h(x)

has a strict relative degree γ at x∗ if

LgL
i
fh(x) = 0, i = 0, . . . , γ − 2,

LgL
γ−1
f h(x∗) 6= 0.

3.2 Multiple-input multiple-output system (MIMO)

We’ll illustrate the MIMO case with a two-input two-output (TITO) system

ẋ = f(x) + g1(x)u1 + g2(x)u2,

y =

[
y1
y2

]
=

[
h1(x)
h2(x)

]
, u =

[
u1
u2

]
.

Differentiate both until inputs start appearing, e.g. assume that at some point we have

yγ11 = Lγ1f h1 + Lg1L
γ1−1
f h1u1 + Lg2L

γ1−1
f h1u2,

yγ22 = Lγ2f h2 + Lg1L
γ2−1
f h2u1 + Lg2L

γ2−1
f h2u2,

and define the matrix

G(x) =

[
Lg1L

γ1−1
f h1 Lg2L

γ1−1
f h1

Lg1L
γ2−1
f h2 Lg2L

γ2−1
f h2

]
.

Then we say that the system has a relative degree (γ1, γ2) at x∗ if

LgjL
k
fhi(x) = 0, j = 1, 2, 0 ≤ k ≤ γi − 2, i = 1, 2

and the matrix G is non-singular. Then

u = G−1(x)

{[
Lγ1f h1(x)

Lγ2f h2(x)

]
+ v

}
,

[
y
(γ1)
1

y
(γ2)
2

]
=

[
v1
v2

]
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Example 3. Consider

ẋ =

[
x2

2w(1− µx21)x2 − w2x1

]
+

[
0
1

]
u.

Let y = x1, we have

Lgh(x) =
[

1 0
] [ 0

1

]
= 0

Lfh(x) =
[

1 0
] [ x2

2w(1− µx21)x2 − w2x1

]
= x2

LgLfh(x) =
∂Lfh

∂x
· g(x) =

[
0 1

] [ 0
1

]
= 1

Therefore, the relative degree of the system is 2. Further since

L2
fh(x) =

[
0 1

]
f(x) = 2w(1− µx21)x2 − w2x1,

we have
u = −2w(1− µx21) + w2x1 + v.

3.3 Normal Forms

If a SISO has a relative degree γ ≤ n at some point x∗ then it can be transformed into a normal
form, i.e. one can find a change of coordinates x→ Φ(x) such that

Φ(x) =

[
z
η

]
,



h(x)
Lfh(x)

...

Lγ−1f h(x)

η1(x)
η2(x)

...
ηn−γ(x)


The first γ coordinates are denoted by z ∈ Rγ , i.e. z1 = Φ1(x), . . . , zγ = Φγ(x). The last n − γ
coordinates η ∈ Rn−γ are chosen so that the following conditions hold:

1. Φ(x) is a diffeomorphism (defined below),

2. the dynamics of η̇ is not directly affected by u, i.e.

η̇i(x) = ∇ηi(x)T [f(x) + g(x)u] ≡ ∇ηi(x)T f(x),

or in other words we must have Lgηi(x) = 0. This last condition will enable us to express the
internal dynamics as η̇ = w(t, z, η), i.e. independently of the inputs u.

Definition 2. A diffeomorphism is a smooth map with smooth inverse. The implicit function
theorem states that Φ is a diffeomorphism if its jacobian ∂Φ is full rank on an open set inside which
the system operates.

12



This condition is employed to choose η(x), by i.e. making sure that the rows of ∂η(x) are
linearly independent and that they are also linearly independent from the rows of ∂z(x).

We have  ż1
...
żγ

 =

 0
... Iγ−1
0 · · · 0


 z1

...
zγ

+


0
...
0
1

 v
which, along with the resulting dynamics of η is written as

ż = Aoz +Bov, η̇ = w(t, z, η).

It can be checked that
rank([Bo|AoBo| · · · |Aγ−1o Bo]) = γ,

so that the system is controllable and a linear control law for the virtual input v can be chosen
according to

v = Kz, where K is such that Ao +BoK is Hurwitz.

Finally, the virtual to physical control mapping is expressed as

u =
1

LgL
γ−1
f

(
−Lγfh(x) + v

)
.

Although the z-dynamics is stable, the internal dynamics η̇ = w(t, z, η) might not be.

Definition 3. If the zero dynamics
η̇ = w(t, 0, η)

is asymptotically stable, then the system is minimum phase, otherwise it is non-minimum phase.

Example 4. Consider the system

ẋ =

 x3 − x32
−x2

x21 − x3

+

 0
−1
1

u, with output y = x1.

We have

ẏ = ẋ1 = x3 − x32
ÿ = ẋ3 − 3ẋ2x

2
2

= x21 − x3 + 3x32 + [1 + 3x22]u,

so the relative degree is γ = 2 and hence we need only one η coordinate. We have

z1 = x1

z2 = ẋ1 = x3 − x32

13



We have one additional coordinate η ∈ R. The jacobian of the coordinate transformation is

∂Φ =

 1 0 0
0 −3x22 1
∂η
∂x1

∂η
∂x2

∂η
∂x3

 .
To obtain the last function η(x) we require that

rank(∂Φ) = 3 and Lgη = − ∂η

∂x2
+

∂η

∂x3
= 0

This is satisfied for instance for
η = x2 + x3.

The internal dynamics is

η̇ = −x2 − u+ x21 − x3 + u

= x21 − x2 − x3
= z21 − η

The zero dynamics (i.e. at z = 0) then becomes η̇ = −η so the system is minimum phase.
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