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1 Introduction

The role of distributions and controllability:

• distributions determine possible directions of motion

• nonlinear controllability determines which states can be reached

• motion planning employs these structural properties to generate trajectories

• trajectory tracking processes feedback to follow these trajectories

today’s slides adapted from G. Oriolo with permission

2 Stabilizability of Nonholonomic Systems

Given a nonlinear control system
ẋ = f(x, u)

our goal is to construct a control law
u = k(x)

which accomplishes:

• stabilization: an equilibrium point xe is made asymptotically stable, or

• tracking : a desired feasible trajectory xd(t) is asymptotically stable

• the linear approximation of the system at xe is

˙δx = Aδx+Bδu δx = x− xe, δu = u− ue,

where A , ∂xf(xe, ue), B , ∂uf(xe, ue)

• if the linearized system is controllable, then the nonlinear system can be locally smoothly
stabilized at xe using a feedback law δu = Kδx

• recall that the linear system is controllable if

rank([B AB · · · An−1B]) = n
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• for driftless (kinematic) models q̇ = G(q)u the linear approximation around xe has always
uncontrollable eigenvalues at zero since

A = 0 and rankB = rankG(qe) = m ≤ n

• Necessary conditions by Brockett’s Theorem: If the system

ẋ = f(x, u)

is locally asymptotically C1-stabilizable at xe = 0 then the image of the map

f : Rn × U → Rn

contains some neighborhood of xe. More formally,, ∃δ > 0, s.t. ∀‖ξ‖ ≤ δ, ∃x, u such that
f(x, u) = ξ.

• For the special case
ẋ = g1(x)u1 + ...+ gm(x)um

with linearly independent control vectors gi and

rank{[g1(xe), ..., gm(xe)]} = m

the system is asymptotically C1-stabilizable at xe if and only if m ≥ n

• Therefore, nonholonomic mechanical systems cannot be stabilized at a point by smooth feed-
back

• The alternatives are: 1) time-varying feedback; 2) non-smooth (e.g. switching) feedback

3 Steering methods for chained forms (optional material)

3.1 Overview

• the objective is to build a sequence of open-loop input commands that steer the system from
qi to qf satisfying the nonholonomic constraints

• the degree of nonholonomy gives a good measure of the complexity of the steering algorithm

• there exist canonical model structures for which the steering problem can be solved efficiently

– chained form

– power form

– Chaplygin form

• interest in the transformation of the original model equation into one of these forms

• such model structures allow also a simpler design of feedback stabilizers (necessarily, non-
smooth or time-varying)

• we limit the analysis to the case of systems with two inputs, where the three above forms are
equivalent (via a coordinate transformation)
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3.2 Chained Forms [Murray and Sastry 1993]

• a (2, n) chained form is a two-input driftless control system

ż = g1(z)v1 + g2(z)v2

in the following form

ż1 = v1

ż2 = v2

ż3 = z2v1
...

żn = zn−1v1

• denoting the repeated Lie brackets as adk
g1g2

adg1g2 = [g1, g2], adk
g1g2 = [g1, adk−1

g1 g2]

one has

g1 =



1
0
z2
z3
...

zn−1


, g2 =



0
1
0
0
...
0


⇒ adk

g1g2 =


0
...

(−1)k

...
0


in which (−1)k is the (k + 2)-th entry.

• a one-chain system is completely nonholonomic (controllable) since the n vectors

{g1, g2, ..., adig1g2, ...}, i = 1, ..., n− 2

are independent

• its degree of nonholonomy is k = n− 1

• v1 is called the generating input, z1 and z2 are called base variables

• if v1 is (piecewise) constant, the system in chained form behaves like a (piecewise) linear
system

• chained systems are a generalization of first- and second-order controllable systems for which
sinusoidal steering from zi to zf minimizes the integral norm of the input

• different input commands can be used, e.g.

– sinusoidal inputs

– piecewise constant inputs

– polynomial inputs
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3.3 Steering with polynomial inputs

• idea similar to piecewise constant input, but with improved smoothness properties w.r.t. time
(remember that kinematic models are controlled at the (pseudo)velocity level)

• the controls are chosen as

v1 =
zf1 − z01

T
,

v2 = c0 + c1t+ ...+ cn−2t
n−2

where T is desired final time and c0, ..., cn obtained solving the linear system coming from
the closed-form integration of the model

M(T )


c0
c1
...

cn−2

+m(z0, T ) =


zf2
zf3
...
zfn


with M(T ) nonsingular for T 6= 0.

• if zf1 = z01 and intermediate point must be added

Example 1. Unicycle: consider the following change of coordinates

z1 = x

z2 = tan θ

z3 = y.

and input variables

u1 = v1/ cos θ

u2 = v2 cos2 θ.

The new equivalent system becomes

ż1 = v1

ż2 = v2

ż3 = z2v1,

Assume that the system must move between two configurations which we epxress in terms of the
new coordinates by (z01, z02, z03) (initial) and (zf1, zf2, zf3) (final).

To satisfy the first coordinate we set

v1 =
zf1 − z01

T
, v2 = c0 + c1t,

where c0, c1 are unknowns. After integrating ż2 we have

z2(t) = z02 + c0t+
1

2
c1t

2
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from which after integrating ż3 we get

z3(t) = z03 + v1

(
z02t+

1

2
c0t

2 +
1

6
c1t

3

)
Now we can solve for c0, c1 the relationships

z2(T ) = zf2, z3(T ) = zf3

which is equivalent to the relationship[
T 1

2T
2

v1
T 2

2 v1
T 3

6

]
︸ ︷︷ ︸

M(T )

[
c0
c1

]
+

[
z02

z03 + v1z02T

]
︸ ︷︷ ︸

m(z0,T )

=

[
zf2
zf3

]

and so the coefficients are found as[
c0
c1

]
= M(T )−1

([
zf2
zf3

]
−m(z0, T )

)
.

• Sinusoidal inputs: a two-phase process

– Phase 1: steer base variables z1 and z2 to their desired values zf1 and zf2

– Phase 2: choose

v1 = a0 + sinωt

v2 = b0 + cosωt+ ...+ bn−2 cos(n− 2)ωt,

and solve numerically for the n+ 1 unknowns in terms of the boundary conditions

• piece-wise constant controls

– subdivide total time T into subintervals of length δ

v1(τ) = v1,k
v2(τ) = v2,k

, τ ∈ [(k − 1)δ, kδ]

– it is convenient to set v1 =constant ⇒ then the unknowns

v2,1, v2,2, ..., v2,n−1

are found by solving a triangular linear system

3.4 Chained Form Transformation

Define the distributions

∆0 = span{g1, g2, adg1g2, ..., adn−2
g1 g2}

∆1 = span{g2, adg1g2, ..., adn−2
g1 g2}

∆2 = span{g2, adg1g2, ..., adn−3
g1 g2}
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If, for some open set, one has (i) dim∆0 = n, (ii) ∆1,∆2 are involutive, (iii) there exists a function
h1 such that

dh1 ·∆1 = 0 dh1 · g1 = 1

then the system can be transformed into chained form
the change of coordinates is given by

z1 = h1

z2 = Ln−2
g1 h2

...

zn−1 = Lg1h2

zn = h2

with h2 independent from h1 and such that dh2 ·∆2 = 0 the input transformation is given by

v1 = u1 (1)

v2 = (Ln−1
g1 h2)u1 + (Lg2L

n−2
g1 h2)u2 (2)
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