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1 Introduction

The role of distributions and controllability:
e distributions determine possible directions of motion
e nonlinear controllability determines which states can be reached
e motion planning employs these structural properties to generate trajectories
e trajectory tracking processes feedback to follow these trajectories

today’s slides adapted from G. Oriolo with permission

2 Stabilizability of Nonholonomic Systems

Given a nonlinear control system
our goal is to construct a control law

which accomplishes:
o stabilization: an equilibrium point z. is made asymptotically stable, or
e tracking: a desired feasible trajectory x4(t) is asymptotically stable
e the linear approximation of the system at z. is
dx = Adx + Bdu 0T =T — Te, U = U — Ue,
where A 2 0, f(ze,ue), B 2 Ouf (e, ue)

e if the linearized system is controllable, then the nonlinear system can be locally smoothly
stabilized at x. using a feedback law du = Kdz

e recall that the linear system is controllable if

rank([B AB --- A"7'B])=n



for driftless (kinematic) models ¢ = G(q)u the linear approximation around z. has always
uncontrollable eigenvalues at zero since

A=0 and rankB =rankG(g.)=m <n

Necessary conditions by Brockett’s Theorem: If the system
&= f(z,u)
is locally asymptotically C'-stabilizable at z, = 0 then the image of the map
fR"xU—R"

contains some neighborhood of z.. More formally,, 3§ > 0, s.t. V||| < d, 3z, u such that

f(a:,u) =¢.

For the special case
T =g1(x)ur + ... + gm(T)um

with linearly independent control vectors g; and
rank{[g1(xe), ..., gm(ze)]} =m
the system is asymptotically C''-stabilizable at z. if and only if m > n

Therefore, nonholonomic mechanical systems cannot be stabilized at a point by smooth feed-

back

The alternatives are: 1) time-varying feedback; 2) non-smooth (e.g. switching) feedback

3 Steering methods for chained forms (optional material)

3.1

Overview

the objective is to build a sequence of open-loop input commands that steer the system from
qi to qy satisfying the nonholonomic constraints

the degree of nonholonomy gives a good measure of the complexity of the steering algorithm
there exist canonical model structures for which the steering problem can be solved efficiently

— chained form
— power form

— Chaplygin form
interest in the transformation of the original model equation into one of these forms

such model structures allow also a simpler design of feedback stabilizers (necessarily, non-
smooth or time-varying)

we limit the analysis to the case of systems with two inputs, where the three above forms are
equivalent (via a coordinate transformation)



3.2 Chained Forms [Murray and Sastry 1993]

e a (2,n) chained form is a two-input driftless control system
Z2 = g1(2)v1 + g2(2)v2

in the following form

21 = V1
,7;’2 = V2
Z3 = 2201

Zn = Zp—101

e denoting the repeated Lie brackets as ad]g“1 g2

adg,g2 = [g1, 02,  adb go = [g1,adl " go]
one has
1 0 0
0 1
Z9 0
g1 = 2 , = o [=adge=] (-1
Zn—1 0 0

in which (—1)* is the (k 4 2)-th entry.
e a one-chain system is completely nonholonomic (controllable) since the n vectors
{91, 92, ...,adglgg, ) oi=1.,n—2
are independent
e its degree of nonholonomy is k =n — 1
e v is called the generating input, z1 and zy are called base variables

e if vy is (piecewise) constant, the system in chained form behaves like a (piecewise) linear
system

e chained systems are a generalization of first- and second-order controllable systems for which
sinusoidal steering from z; to zy minimizes the integral norm of the input

e different input commands can be used, e.g.

— sinusoidal inputs
— piecewise constant inputs

— polynomial inputs



3.3 Steering with polynomial inputs

e idea similar to piecewise constant input, but with improved smoothness properties w.r.t. time
(remember that kinematic models are controlled at the (pseudo)velocity level)

e the controls are chosen as
Zf1 — 201
=TT
v =cg+cit+ ...+ Cn,Qtn_2

U1

where T is desired final time and ¢y, ..., ¢, obtained solving the linear system coming from
the closed-form integration of the model

co Zf2

C1 Zf3

M(T) +m(20,T) = f
Cn—2 Zfn

with M(T') nonsingular for T" # 0.

e if 2y = 2091 and intermediate point must be added

Example 1. Unicycle: consider the following change of coordinates

21 =X
29 = tan b
zZ3 =Y.

and input variables

u; = vy/cosf

Uy = V9 cos? 6.

The new equivalent system becomes

21 =1
22 = V2
Z3 = zo01,

Assume that the system must move between two configurations which we epxress in terms of the
new coordinates by (zo1, 202, 203) (initial) and (zf1, zf2, 2¢3) (final).
To satisfy the first coordinate we set

_ Zf1— Zo1

U1 T )

v2 = ¢ + c1t,

where cg, c1 are unknowns. After integrating zo we have

1
29(t) = z02 + cot + §c1t2



from which after integrating z3 we get

1L o 1 3
23(t) = 203 + v1 | 202t + icot + 661t

Now we can solve for cy,c1 the relationships

2o(T') = zp2, 23(T) = 243

which is equivalent to the relationship

T2 T3 + -
V1 Vg c1 203 + v1202T 2f3

M(T) m(zo,T)

and so the coefficients are found as

[ [z (5] -meom)

e Sinusoidal inputs: a two-phase process

— Phase 1: steer base variables z1 and 22 to their desired values zy; and zf9

— Phase 2: choose
V] = ag + sinwt
vg = bg + coswt + ... + by_2 cos(n — 2)wt,
and solve numerically for the n + 1 unknowns in terms of the boundary conditions

e piece-wise constant controls

— subdivide total time T into subintervals of length

v1(T) = v

vo(7) = vay 1 | C [(k — 1), k4]

— it is convenient to set v; =constant = then the unknowns
U2,1,02,2, -+, U2 n—1

are found by solving a triangular linear system

3.4 Chained Form Transformation

Define the distributions

Ao = span{gi, g2, adg, ga, .-, ad§;2gg}
A = Span{927 adglg27 sy adg1_292}
AQ = Span{927 adgng) seey adgl_392}



If, for some open set, one has (i) dimAg = n, (ii) A1, Ag are involutive, (iii) there exists a function
hy such that
dhl'Alzo dhl‘glzl

then the system can be transformed into chained form
the change of coordinates is given by

lehl

-2
29 = L;ll h2

Zn—1 — Lg1 h2

Zn = hQ
with ho independent from h; and such that dhs - Ao = 0 the input transformation is given by

V1 = U (1)

vg = (L7 ha)us + (Lg, L7 ho)uy (2)
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