
EN530.678 Nonlinear Control and Planning in Robotics

Lecture 6: Differential Flatness

March 7, 2022

Prof: Marin Kobilarov

1 Differential Flatness

Controlling a nonlinear system to achieve a desired state is accomplished through a two-step process.
The first step is trajectory generation and the second is trajectory tracking using feedback. Based
on computational resources available, trajectory generation can be recomputed (typically at a slow
frequency) while tracking operates at the rate close to the sensor frequency. The key advantage
of the two-step approach is that trajectory generation is performed to account for the system
dynamics, any constraints such as input bounds, and often to minimize a desired performance
metric. Thus, it is expected that even if the system deviates from the path due to uncertainties
the overall performance will be close to optimal.

1.1 Basic Definition

An important class of systems for which trajectory generation is particularly easy are the so-called
differentially flat systems [?]. A system is differentially flat if one can find a set of outputs (equal
to the number of inputs) which completely determine the whole state and the inputs without the
need to integrate the system. More formally, a system with state x ∈ Rn and inputs in u ∈ Rm is
differentially flat if one can find outputs y ∈ Rm of the form

y = h(x, u, u̇, ..., u(a)), (1)

such that

x = ϕ(y, ẏ, ..., y(b)),

u = α(y, ẏ, ..., y(c)).
(2)

The coordinates y are called flat outputs.

Example 1. Fully-actuated robotic system. Consider robotic systems with configuration q ∈ Rm

and control inputs u ∈ Rm with dynamics in standard form

M(q)q̈ + b(q, q̇) = B(q)u,

where B(q) is an invertible matrix. We have x = (q, q̇) and consider the output function

h(x(t)) = q(t),

i.e. we have y(t) = q(t). The functions ϕ and α then correspond to

ϕ(y, ẏ) =

[
q
q̇

]
, α(y, ẏ, ÿ) = B(q)−1[M(q)q̈ + b(q, q̇)], (3)
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so that we have a = 0, b = 1, c = 2. This means that a given trajectory q(t) exactly determines the
state x(t) and the required controls u(t).

Example 2. Wheeled robot. The wheeled robot is differentially flat with outputs y = (x1, x2) by
noting that

x3 = atan2(ẋ2, ẋ1) + kπ, k = 0, 1,

depending on whether the vehicle is moving forward or backwards.
The control inputs are found by (recall d

da tan−1 a = 1
a2+1

)

u1 = ±
√
ẋ21 + ẋ22,

u2 = ẋ3 =
ẋ1ẍ2 − ẍ1ẋ2
ẋ21 + ẋ22

.

Thus, one can generate a trajectory in position y(t) = (x1(t), x2(t)) coordinates which uniquely
determines the robot orientation and required forward velocity and turn rate.

Example 3. Planar rigid body Consider a rigid body in the plane controlled with two body-fixed
forces u1 and u2 and dynamics [?]

mẍ1 = u1 cosx3 − u2 sinx3

mẍ2 = u1 sinx3 + u2 cosx3 −mg
mẍ3 = ru1

(4)

The equations of motion can be combined to obtain

− J

mr
ẍ3 + ẍ1 cosx3 + ẍ2 sinx3 + g sinx3 = 0 (5)

It is possible to show that flat outputs y1 and y2 are given

y1 = x1 −
J

mr
sinx3,

y2 = x2 +
J

mr
cosx3.

(6)

Substituting x1 = y1 + J
mrsinx3, x2 = y2 − J

mr cosx3 into (5) we get

ÿ1 cosx3 + (ÿ2 + g) sinx3 = 0,

from one can determine x3 except at the singularity ÿ1 = ÿ2 + g = 0. The point y is actually
a body-fixed point called the center of oscillation which happens to be at distance J

mr from the
center-of-mass on the other side of the point at which control forces intersect.

1.2 Trajectory Generation

Consider the problem of generating a trajectory between two given states

ẋ = f(x, u), x(0) = x0, x(T ) = xf .
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The boundary conditions of a differentially flat systems are expressed as

x(0) = ϕ(y(0), ẏ(0), ..., y(b)(0)),

x(T ) = ϕ(y(T ), ẏ(T ), ..., y(b)(T )),
(7)

i.e. they are specified entirely using the flat outputs. Thus, it is possible to perform trajectory
generation in the flat output space.

The general strategy is to assume a parametric form

y(t) = Aλ(t),

where λ(t) ∈ RN are basis functions and A ∈ L(Rm,RN ) is matrix with constant coefficients that
will be computed in order to satisfy (7). This is accomplished by computing A to satisfy the flat
boundary conditions

y(0) = Aλ(0), ..., y(b)(0) = Aλ(b)(0), (8)

y(T ) = Aλ(T ), ..., y(b)(T ) = Aλ(b)(T ), (9)

which can be put in the compact form

Y = AΛ, (10)

where the matrices Y ∈ L(Rm,R(2(b+1)) and Λ ∈ L(RN ,R2(b+1)) are defined by

Y =
[
y(0) | · · · | y(b)(0) | y(T ) | · · · | y(b)(T )

]
,

and
Λ =

[
λ(0) | · · · | λ(b)(0) | λ(T ) | · · · | λ(b)(T )

]
.

Thus, the coefficients A must lie in the affine subspace defined by (10). To satisfy the boundary
conditions it is necessary that N ≥ 2(b+ 1).

In particular, for N = 2(b+ 1) and Λ full-rank one can directly compute

A = Y Λ−1.

Example 4. Fully-actuated robot (continued). The state is x = (q, q̇) while the controls depend on
(q, q̇, q̈) and so we have b = 1 and c = 2. Assume we are interested in moving between two states
x0 and xf in time T . We can choose basis functions according to

λ(t) = [t3, t2, t1, 1]T ,

in which case A is a mx4 matrix of unknown constants,

Y = [q0, q̇0, qf , q̇f ] ,

and

Λ =


0 0 T 3 3T 2

0 0 T 2 2T
0 1 T 1
1 0 1 0

 .
We find the trajectory y(t) = Aλ(t) by setting A = Y Λ−1. Given y(t) we can find x(t) and u(t) as
specified by (3).
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Example 5. Wheeled robot (continued). For the wheeled robot, the state x depends on the the
flat output y and its derivative ẏ while the controls depend also on ÿ. Therefore, we have b = 1
and c = 2. Assume we are interested in moving between two poses x0 and xf in time T . We can
choose basis functions according to

λ(t) = [t3, t2, t1, 1]T ,

in which case A is a 2x4 matrix of unknown constants,

Y = [y0, ẏ0, yf , ẏf ] ,

and

Λ =


0 0 T 3 3T 2

0 0 T 2 2T
0 1 T 1
1 0 1 0

 .
The initial and final conditions, (y0, ẏ0) and (yf , ẏf ) respectively are not uniquely determined by
the given poses x0 and xf since a given pose x only specifies the attitude corresponding to the

ratio ẋ2/ẋ1 rather that the velocity
√
ẋ21 + ẋ2. Thus, one can freely choose the starting and ending

velocities v0 =
√
ẋ210 + ẋ20 and vf =

√
ẋ21f + ẋ2f in specifying (y0, ẏ0) and (yf , ẏf ). Such choice

will affect the shape of the resulting trajectory and is useful in controlling its aggressiveness.

Example 6. Planar rigid body (continued). The state of the planar rigid body x = (x1, x2, x3, ẋ1, ẋ2, ẋ3)
depends on flat outputs up to order y(3) while the control inputs u depend on terms up to y(5).
Therefore, we have b = 3 and c = 5. If we are interested in moving between two poses x0 and xf
in time T we can choose basis functions according to

λ(t) = [t7, t6, t5, t4, t3, t2, t1, 1]T ,

in which case A is a 2x8 matrix of unknown constants,

Y =
[
y0, ẏ0, ÿ0, y

(3)
0 , yf , ẏf , ÿf , y

(3)
f

]
,

and Λ will become an invertible 8x8 matrix.

In following lectures we will introduce the concept of feedback-linearizable systems which include
differentially flat systems as a special case. The trajectories generated for flat system can be tracked
using the feedback linearization techniques that we will study next. The flat outputs naturally
become the outputs leading to feedback linearization.
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