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1 Distributions

The role of distributions and controllability:

• distributions determine possible directions of motion

• nonlinear controllability determines which states can be reached

• motion planning employs these structural properties to generate trajectories

• trajectory tracking processes feedback to follow these trajectories

• Let g1(x), ..., gm(x) be linearly independent vector fields on M .

• A distribution ∆ assigns a subspace of the tangent space to each point defined by

∆ = span{g1, ..., gm}.

• A distribution ∆ is involutive if it is closed under the Lie bracket, i.e. if

∀f(x), g(x) ∈ ∆(x), [f(x), g(x)] ∈ ∆(x)

• A distribution ∆ is regular if the dimension of ∆x does not vary with x.

• A distribution ∆ of constant dimension k is integrable if for every x ∈ Rn there are smooth
functions hi : Rn → R such that ∂hi

∂x are linearly independent at x and for every f ∈ ∆

Lfhi =
∂hi
∂x

f(x) = 0, i = 1, ..., n− k.

• The hypersufraces defined as the level sets

{q : h1(x) = c1, ..., hn−k(x) = cn−k},

are called integral manifolds for the distribution.

• Frobenius Theorem: A regular distribution is integrable if and only if is involutive.

• If the distribution ∆ is involutive then its integral manifolds (level sets of functions hi) are
leaves of a foliation of Rn
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Examples

• The nonholonomic integrator
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• Trapped on a sphere
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2 Nonlinear Controllability

2.1 Reachable Sets

• Consider the nonlinear control system (NCS)

Σ : ẋ = g0(x) +
m∑
i=1

gi(x)ui, x ∈ Rn, u ∈ U ⊂ Rm

• A system is controllable if for any x0, xf ∈ Rn there exists a time T and u : [0, T ]→ U such
that Σ satisfies x(0) = x0 and x(T ) = xf .

• A system is small-time locally controllable (STLC) at x0 if it can reach nearby points in
arbitrary small times and stay near x0.

• The reachable set RV (x0, T ) is the set of states x(T ) for which there is a control u : [0, T ]→ U
that steers the system from x(0) to x(T ) without leaving an open set V around x0.

• The set of states reachable up to time T is defined by

RV (x0,≤ T ) =
⋃

0<τ≤T
RV (x0, τ)

2.2 Controllability Conditions

• NCS is locally accessible (LA) from x0 if ∀V , a neighborhood of x0 and ∀T > 0

Ω ⊂ RV (x0,≤ T ), for some open set Ω

• NCS is STLC if every neighborhood V of x0 and every T > 0 if RV (x0, T ) contains a
neighborhood of x0.

• STLC ⇒ controllability ⇒ LA (not vice versa)
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• Checking LA is performed through an algebraic test :

– Let Ω̄ be the involutive closure of the distribution of {g0, g1, ..., gm}
– Theorem (Chow):. NCS is LA from x0 if and only if

dim∆(x0) = n : accessibility rank condition

– Algorithmic Test:

∆̄ = span

v ∈ ⋃
k≥0

∆k

 with

{
∆0 = span{g0, g1, ..., gm}
∆k = ∆k−1 + span{[gj , v], j = 0, ...,m : v ∈ ∆k−1}

• only sufficient conditions exists for STLC , e.g., [Sussmann 1987]

• however, for driftless control systems:

LA⇔ controllability⇔ STLC

• this equivalence holds also whenever

g0(x) ∈ span{g1(x), ..., gm(x)}, ∀x ∈ X

(“trivial” drift)

• if the driftless control system

q̇ =
m∑
i=1

gi(q)vi,

with state q and inputs v is controllable, then its dynamic extension

q̇ =
m∑
i=1

gi(x)vi,

v̇i = ui, i = 1, ...,m,

with state x = (q, v) and controls u is also controllable (and vice versa).

Examples

• The unicycle

g1 =

 cos θ
sin θ

0

 , g2 =

 0
0
1

⇒ g3 = [g1, g2] =

 − sin θ
cos θ

0


dim∆̄ = 3 for all q
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• The car-like robot (rear-drive)

g1 =

 cos θ
sin θ

tanφ/`

 , g2 =


0
0
0
1



g3 = [g1, g2] =


0
0

−1/` cos2 φ
0

 , g4 = [g1, g3] =


− sin θ/` cos2 φ
cos θ/` cos2 φ

0
0


dim∆̄ = 4 away from singularity at φ = ±π/2 of g1

• more generally, the filtration of a distribution ∆ is defind by

∆1 = ∆, ∆i = ∆i−1 + [∆1,∆i−1], i ≥ 2

where
[∆1,∆i−1] = span{[g, h] : g ∈ ∆1, h ∈ ∆i−1}

• after enough “bracketing” (e.g. k times) the rank of ∆i for i ≥ k stops increasing, no more
new directions of motion appear. The smallest such k is called degree of nonholonomy of the
distribtion, i.e. such that

dim∆k+1 = dim∆k.

• Classification in terms of k

– completely nonholonomic: dim(∆k) = n

– partially nonholonomic: m < dim(∆k) < n

– holonomic: dim(∆k) = m = n− k

• Examples: unicycle (k = 2), car-like robot (k = 3)

2.3 Good and bad brackets

For the general system with non-zero drift g0 term we will use the concept of good and bad brackets.
A bad bracket is a Lie bracket generated using an odd number of g0 vectors and even number

of gi (for each i = 1, . . . ,m) vectors. A good bracket is one that is not bad.

Theorem 1. A control system with x ∈ Rn and controls u ∈ U ⊂ Rm

ẋ = go(x) +

m∑
i=1

gi(x)ui

is STLC at x∗ if

1. g0(x∗) = 0

2. U is open and its convex hull contains 0
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3. LARC is satisfied using brackets of degree k

4. any bad bracket of degree j ≤ k can be expressed as linear combination of good brackets of
degree < j

Example 1. from Principles of Robot Motion Consider the planar rigid body with state x ∈ R6

defining its position, orientation, and velocities, controls u ∈ R2 defining the forward force and
lateral force (at distance d from the center-of-mass) with vector fields

g0(x) =



x4

x5

x6

0
0
0

 , g1(x) =



0
0
0

cosx3

sinx3

0

 , g2(x) =



0
0
0

− sinx3

cosx3

−d

 ,

We can define
g3 = [g0, g1], g3 = [g0, g2], g5 = [g1, g4], g6 = [g0, g5],

and note that
det([g1, g2, g3, g4, g5, g6]) = d4 ⇒ LARC of degree 4

The bad brackets of degree ≤ 4 are

[g1, [g0, g1]] = 0, [g2, [g0, g2]] = (0, 0, 0, 2d cosx3, 2d sinx3, 0) , 2dg1,

and since both are spanned by good brackets of lower order then the system is STLC. Note that
since the first bad bracket is zero then it becomes irrelevant. We didn’t have to consider brackets of
oder 4 since by definition they are good (i.e. since all control vector fields must appear even number
of times and the drift appear odd number of times then bad brackets must have odd order).
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