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1 Manifolds

In many practical applications the inherent nature of the configuration space is different than Rn.
For instance:

• a manipulator with rotational joints lives on a torus Tm = S1 × ...× S1

• rigid body configuration space of frames SE(3)

• end-effector might be constrained to a sphere S2

• Physical constraints

– position constraints: contact (e.g. end-effector constrained to a surface), mechanical
joints and other kinematic coupling relationships.

– rolling and sliding (car cannot move sideways, knife-edge can slide forward). These are
velocity constraints that result in integral manifolds, i.e. from integrating flow along the
subspace of allowable velocities.

– non-smooth constraints, hybrid systems: end-effector move freely, then lands on a rigid
surface and slides; legged robot stance on a surface, leaving/landing on the surface.

• sensing constraints, e.g. maintain line-of-sight to a point

• in computer science: compression of high-dimensional data, i.e. to identify and model lower-
dimensional structure. But it is used very loosely.

• mathematical physics, general relativity, etc...

A manifold is a set M that locally “looks like” linear space, e.g. Rn. A chart on M is a subset
U of M together with a bijective map ϕ : U → ϕ(U) ⊂ Rn. We usually denote ϕ(m) by (x1, . . . , xn)
and call the xi the coordinates of the point m ∈ U ⊂ M . Two charts U,ϕ and U ′, ϕ′ such that
U ∩U ′ 6= ∅, are called compatible if ϕ(U ∩U ′) and ϕ(U ′ ∩U) are open subsets of Rn and the maps

ϕ′ ◦ ϕ−1|ϕ(U∩U ′) : ϕ(U ∩ U ′)→ ϕ′(U ∩ U ′)

and
ϕ ◦ (ϕ′)−1|ϕ′(U∩U ′) : ϕ′(U ∩ U ′)→ ϕ(U ∩ U ′)

are C∞ (smooth). Here ϕ ◦ (ϕ′)−1|ϕ′(U∩U ′) denotes the restriction of the map ϕ ◦ (ϕ′)−1 to the set
ϕ′(U ∩ U ′).

We call M a differentiable n-manifold when:
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Figure 1: A manifold must be covered my overlapping charts and smooth transitions between them.

1. The set M is covered by a collection of charts, that is, every point is represented in at least
one chart

2. M has an atlas; that is, M can be written as a union of compatible charts

In practice, the requirement that ϕ′ ◦ϕ−1|ϕ(U∩U ′) and ϕ ◦ (ϕ′)−1|ϕ′(U∩U ′) both are both smooth
and map to open sets can be translated into checking that the Jacobian of these maps is full rank.

For example, consider R3 as a manifold. First, we pick standard cartesian coordinates (i.e. the
chart is the identity), but then add other charts such as spherical coordinates – then the collection
becomes a differentiable structure (i.e. one can pass from one chart to the other smoothly). This
will be understood to have been done when we say we have a manifold.

Example 1. The circle S1 is the set of all points (x, y) such that x2 + y2 = 1. We can show that
it is a manifold with charts e.g. ϕ : S1\(−1, 0)→ (−π, π), and ϕ′ : S1\(0,−1)→ (−π/2, 32π):

ϕ

([
x
y

])
= atan2(y, x) , θ, ϕ−1 (θ) =

[
cos θ
sin θ

]
,

where atan2(y, x) ∈ (−π, π] and is undefined for x = y = 0. A second chart is defined by “rotating”
counter-clock-wise U by π/2 radians to obtain U ′ (the resulting coordinate θ′ in U ′ is then obtained
by subtracting π/2 from the coordinate θ on U) :

ϕ′
([

x
y

])
= atan2(y, x)− π/2 , θ′, ϕ′

−1 (
θ′
)

=

[
cos(θ′ + π/2)
sin(θ′ + π/2)

]
=

[
− sin θ′

cos θ′

]
.

Note that we then have ϕ′ ◦ ϕ−1(θ) = θ− π/2 and ϕ ◦ (ϕ′)−1(θ′) = θ′ + π/2 which are smooth and
compatibale (i.e. differentiable with full-rank Jacobians on the overlapping subset of the manifold)
maps. The Jacobian of both maps is just 1.
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Example 2. S2 with spherical coordinates

ϕ

 x
y
z

 =

[
arccos(z)

atan2(y, x)

]
, ϕ−1

([
θ
ϕ

])
=

 sin θ cosϕ
sin θ sinϕ

cos θ


Note we have U = M\{(−

√
1− z2, 0, z) | z ∈ [−1, 1]} which represents the whole sphere with an

arc connecting the two poles removed (the arc passes through x = −1, y = 0, z = 0). This arc needs
to be removed for the same reason why we needed to remove the point (−1, 0) in the S1 example
and the reason why the poles themselves cannot be included is because the chart has a singularity
at x, y = 0. A second chart can be constructed by “rotating” U e.g. by π/2 radiauns around the
y-axis and then rotating it by e.g. π radias around the z-axis. As a result the two removed arcs
will not overlap and thus we will cover the full space.

We can also show that S2 is a manifold using stereo-graphic projection charts.

Example 3. Sn with stereo-graphic coordinates
We first consider the regular sphere S2 embedded in R3. Let N = (0, 0, 1) and S = (0, 0,−1)

denote the north and south poles of the sphere. We can define U = R3\N and U ′ = R3\S and
mappings

ϕ(x, y, z) =

(
x

1− z ,
y

1− z

)
, ϕ′(x, y, z) =

(
x

1 + z
,

y

1 + z

)
corresponding to the projection a point m = (x, y, z) from the north (resp. south) poles onto the
plane tangent to the south (resp. north) poles.

The inverse of these mappings is given by

ϕ−1(u1, u2) =

(
2u1

1 + ‖u‖2 ,
2u2

1 + ‖u‖2 ,
−1 + ‖u‖2
1 + ‖u‖2

)
, ϕ′−1(u′1, u

′
2) =

(
2u′1

1 + ‖u′‖2 ,
2u′2

1 + ‖u′‖2 ,−
−1 + ‖u′‖2
1 + ‖u′‖2

)
, while their composition is

ϕ′ ◦ ϕ−1(u) =

(
u1
‖u‖2 ,

u2
‖u‖2

)
which we can show is differentiable.

The construction above extends to the n-sphere Sn by computing the last coordinate similar to
z for S2, i.e. for a point m ∈ S2 we have

ϕ(m) =

(
m1

1−mn
, . . . ,

mn−1
1−mn

)
and so on, analogously to the S2 case described above.

Definition 1. Tangent Vectors. Two curves t → c1(t) and t → c2(t) in an n-manifold M are
called equivalent at the point m if

c1(0) = c2(0) = m,

and
d

dt
(ϕ ◦ c1)

∣∣∣
t=0

=
d

dt
(ϕ ◦ c2)

∣∣∣
t=0

in some chart ϕ.
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Figure 2: Consider two curves c1 and c2 passing through a point m on the manifold M with the
same velocity vector at that point. Such velocity vectors are called tangent vectors.

Figure 3: All tangent vectors at a point m form a vector space (e.g. they could span Rn), called
the tangent space at m.

A tangent vector v to a manifold M at point m is an equivalent class of curves at m. The set
of tangent vectors to M at m is a vector space. We denoted it by TmM = tangent space to M at
m ∈M . We think of v ∈ TmM as tangent to a curve in M .

The components of a tangent v are the numbers v1, . . . , vn defined by taking derivatives of the
components of the curve ϕ ◦ c:

vi =
d

dt
(ϕ ◦ c)i

∣∣∣
t=0

The components are independent of the representative curve chosen, but they do depend on the
chart chosen. (Think of components as the coordinates of the velocity).

Definition 2. The tangent bundle of M denoted by TM is the disjoint union of the tangent spaces
to M at the points m ∈M , i.e.

TM = ∪m∈MTmM
Points in TM are vectors v tangent at some m ∈ M . If M is an n-manifold then TM is a

2n-manifold. The natural projection is the map τM : TM → M that takes a tangent vector v to
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the point m ∈ M at which the vector v is attached. The inverse image τ−1M (m) of m ∈ M is the
tangent space TmM – the fiber of TM over the point m ∈M .

1.0.1 Vector fields.

Definition 3. A vector field X on M is a map X : M → TM that assignes a vector X(m) at the
point m ∈M , i.e. τM ◦X = identity. The vector space of vector fields is denoted X(M).

An integral curve of X with initial condition m0 at t = 0 is a map c :]a, b[→M such that ]a, b[
is an open interval containing 0, c(0) = m0 and

c′(t) = X(c(t))

for all t ∈]a, b[, i.e. a solution curve of this ODE.
The flow of X: a collection of maps Φt : M → M such that t → Φt(m) is the integral curve of

X with initial condition m.

ϕ

M

m

X(m)

X ′(m)

(v1, . . . , vn)

(v′1, . . . , v
′
n)

x1

xn

Figure 4: Two vector fields X and X ′ represented by local coordinates (v1, . . . , vn) and (v′1, . . . , v
′
n).

The deriviative of f : M → R at m ∈ M gives a map Tmf : TmM → Tf(m)R ' R. It is
actually a linear map df(m) : TmM → R. Thus df(m) ∈ T ∗mM , the dual of TmM (the dual is the
space of linear functions). If we replace each vector space TmM with its dual T ∗mM we obtain a
2n-manifold called the cotangent bundle and denoted by T ∗M . We call df the differential of f .
For every v ∈ TmM we call df(m) · v the directional derivative of f in the direction of v.

In a coordinate chart or in a vector space, this notion conincides with the usual notion of a
directional derviative learned in vector calculus. Using a chart ϕ the directional derivative is

df(m) · v =

n∑
i=1

∂(f ◦ ϕ−1)
∂xi

vi

Note that with this definition we can regard vectors v as differential operators, i.e. which differ-
entiate functions. In particular we can identify a basis of TmM using the operators ∂

∂xi
and we

write

{e1, . . . , en} = { ∂

∂x1
, . . . ,

∂

∂xn
}

for this basis, so that v = vi ∂
∂xi

. In other words, think of ∂
∂x1

as a unit column vector (1, 0, . . . , 0)
along which we can differentiate.
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Tangent vectors in one chart transform to tangent vectors in another chart through the Jacobian
of the map between the two charts.

Example 4. Vector field on a sphere using spherical coordinates (θ, φ). An example of a vector
field in a basis ( ∂∂θ ,

∂
∂φ) is e.g. X = θ2 ∂

∂θ − θφ ∂
∂φ . It can be visualized using the standard basis in

R3 defined using the Jacobian

Dϕ−1 =

 cos θ cosφ − sin θ sinφ
cos θ sinφ sin θ cosφ
− sin θ 0


the columns of which span a tangent space at each q ∈ S2. So the vector field X expressed in
cartesian coordinates will look like the vector cos θ cosφ − sin θ sinφ

cos θ sinφ sin θ cosφ
− sin θ 0

[ θ2

−θφ

]
.

Note: at θ = (0, π) the tangent space is undefined ⇒ need two charts.

Figure 5: Tangent vectors on the sphere corresponding to basis vectors (1, 0) and (0, 1) in spherical
coordinates at each piont (x1, x2) = (θ, φ). These tangent vectors were computed using the jacobian
of the inverse of the coordinate map ϕ. Note that one of the basis vectors shrinks to zero at the
poles, suggesting that one chart is not enough to cover the sphere.

There is a one to one correspondence between vector fields X on M and the differential operators

X[f ](m) = df(m) ·X(m)

The dual basis to ∂
∂xi

is denoted by dxi (think row unit vector so that dxj ∂
∂xi

= 1 only when i = j
and 0 otherwise). Thus, relative to a choice of local coordiantes we get the basis formula

df(x) =
n∑
i=1

∂f

∂xi
dxi
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We also have

X[f ] =
n∑
i=1

Xi ∂f

∂xi

which is why we write

X =
n∑
i=1

Xi ∂

∂xi

The Lie derivative LXf is another commonly used notation, i.e. at a point m ∈M

LXf(m) ≡ Xmf ≡ X[f ](m).

Example 5. In local spherical coordinates in S2 from Example 4 the Lie derivative of a given
function α : S2 → R is expressed as

Xα ≡ LXα = θ2
∂α

∂θ
− θφ∂α

∂φ
.

Example 6. Gradient vector field For any given function α : M → R it is possible to construct a
vector field using its gradient, i.e.

X = ∇α =

(
∂α

∂x1
, ...,

∂α

∂x1

)
.

Example 7. Dynamics and Lyapunov function Example: we already saw that for ẋ = f(x),
V̇ = ∂V

∂x f(x) ≡ LfV , the derivative of V in the direction of the dynamics.

1.0.2 Lie bracket

Q: Given two vector fields g1(x) and g2(x) do their flows commute Φg2
t ◦ Φg1

t = Φg1
t ◦ Φg2

t ?
A: In general, no. They bend and twist, unless they are constant vectors.
This is quantified by

Φ−g2t ◦ Φ−g1t ◦ Φg2
t ◦ Φg1

t (x0) = x0 + t2[g1, g2] +O(t3)

The Lie bracket of two vector fields g1 and g2 denoted by [g1, g2] is a new vector field defined
by

[g1, g2] =
∂g2
∂x

g1 −
∂g1
∂x

g2. (1)

or as applied to a function α by

[g1, g2]α = g1(g2α)− g2(g1α),

The Lie bracket tells us what direction of motion occurs after sequencing motions along the
two vector fields g1 and g2. To prove (1) we can perform Taylor series expansion of the flows, as
follows:

Φg1
t (x0) = x0 + tΦ̇g1

t (x0) +
1

2
t2Φ̈g1

t (x0)

= x0 + tg1(x0) +
1

2
t2
∂g1
∂x

g1(x0) +O(t3),
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where we used the fact that Φ̇g1
t = g1 and ġ1(x) = ∂g1

∂x ẋ, where the velocity is ẋ = g1. Next let’s
denote the resulting state after the first flow by x1 = Φg1

t (x0). Now, combining this flow with the
flow along g2 we have:

Φg2
t ◦ Φg1

t (x0) = x0 + tg1(x0) +
1

2
t2
∂g1
∂x

g1(x0) + tΦ̇g2
t (x1) +

1

2
t2Φ̈g2

t (x1) +O(t3)

= x0 + tg1(x0) +
1

2
t2
∂g1
∂x

g1(x0) + tg2(x0) + t2
∂g2
∂x

g1(x0) +
1

2
t2
∂g2
∂x

g2(x0) +O(t3)

= x0 + t (g1(x0) + g2(x0)) +
t2

2

(
∂g1
∂x

g1(x0) +
∂g2
∂x

g2(x0) + 2
∂g2
∂x

g1(x0)

)
+O(t3)

Now, if we do the same procedure but switch the order of the flows, i.e. using Φg1
t ◦Φg2

t (x0), and
take the difference of the two results we would obtain exactly the expression (1) for that difference.

Since g1α denotes the directional derivative of a function α in the direction generated by g1,
then the Lie bracket [g1, g2] can be regarded as the directional derivative of a vector field g2 in the
direction generated by g1.

The bracket has a special role – together with the linear space of vector fields at a point it forms
an algebra. More specifically, a vector space V with a bilinear operator [·, ·] : V ×V → V satisfying
the following properties

1. Skew-symmetry: [v w] = −[w, v] for all v, w ∈ V

2. Jacobi identity:
[[v, w], z] + [[z, v], w] + [[w, z], v] = 0,

for all v, w, z ∈ V is a Lie algebra.

Example 8. The unicycle  ẋ
ẏ

θ̇

 =

 cos θ
sin θ

0

u1 +

 0
0
1

u2 (2)

Example 9. Euclidean space with cross-product: (R3, [v, w] = v ×w), is a Lie algebra (e.g. appli-
cations in SO(3))

Other Examples:
Vector space (V, [·, ·] = 0), abelian Lie algebra
Matrix group (GLn, [A,B] = AB −BA), is a Lie algebra
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