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0.1 Model prerequisites

Consider ẋ = f(t, x). We will make the following basic assumptions ensuring that this model can
be used for evolving the state x: f(t, x) is piecewise continuous in t and locally Lipschitz, i.e.:

• f(t, x) is piecewise continuous if f is continuous on any subinterval of t except at, possibly,
finite number of points where it might have finite-jump discontinuitiies

• f(t, x) is locally Lipschitz on a domain D ⊂ Rn if for all x0 ∈ D there is a neighborhood
Br(x0) , {x ∈ Rn|‖x− x0‖ ≤ r} around x0 which satisfies the Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, L > 0,

for all x, y ∈ Br(x0).
A point x∗ ∈ Rn is an equilibrium point of the system if f(t, x∗) = 0. We would be interested in

controlling the system to such points. When the goal is to regulate/stabilize the system to a given
x∗ we could awlays transform the problem to stabilizing to the origin, by shifting the coordinate
system by x∗.

0.2 Stability

Definition 1. Stability in the sense of Lyapunov. An equilibirum point x0 = 0 is stable at
t = t0 if for any ε > 0 there exists a δ(t0, ε) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t > t0. (1)

Stability is defined at time instant t0. Uniform stability further guarantees that stability holds
for all t0.

Definition 2. Asymptotic Stability. An equilibirum point x0 = 0 is asymptotically stable at
t = t0 if it is stable and locally attractive , i.e. there exists a δ(t0) such that

‖x(t0)‖ < δ ⇒ lim
t→∞

x(t) = 0. (2)

When stability holds for any t > t0 it is called uniform stability. When it holds for all initial
x ∈ Rn it is called global, otherwise it is local.

Asymptotic stability does not provide information about how quickly the system approaches
equilibrium. This notion is quantified by exponential stability.
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Definition 3. Exponential Stability. An equilibirum point x0 = 0 is exponentially stable if
there exist constants m,α, ε > 0 such that

‖x(t)‖ ≤ me−α(t−t0)‖x(t0)‖,

for all ‖x(t0)‖ ≤ ε and t > t0. The largest constant α is called the rate of convergence.

0.3 Autonomous Systems

We first consider autonomous systems, i.e. for which the dynamics does not depend on time and
can be generally expressed as

ẋ = f(x).

There are two general methods for stability analysis: direct and indirect. The direct method works
directly with the nonlinear dynamics by seeking an energy-like function called Lyapunov function.
The Lyapunov function has a minimum at the equilibrium and never increases along trajectories
which corresponds to a stable motion (otherwise if the system is departing from equilibirum this
energy would grow). The argument generalizes the notion of stability even for non-energetic systems
such as a financial portfolio. The indirect method is based on linearization around the equilibirum
and can be used to determine stability only in the vicinity of the equilibrium.

0.3.1 Lyapunov Direct Method

The method was originally proposed by Lyapunov around 1890 for studying local stability and
later extended to the global setting. Let V (x) be continuously differentiable function defined over
D ⊂ Rn , 0 ∈ D.

Theorem 1. Lyapunov’s Theorem. If there is a V (x) such that a

V (0) = 0 and V (x) > 0, ∀x ∈ D/{0}
V̇ (x) ≤ 0, ∀x ∈ D,

then the origin is stable. If V̇ (x) < 0, ∀x ∈ D/{0} then it is asymptotically stable. Furthermore,
if V (x) > 0 for all x 6= 0,

‖x‖ → ∞ ⇒ V (x)→∞,

(i.e. V is radially unbounded) and V̇ (x) < 0,∀x 6= 0 then the origin is globally asymptotically
stable.

We have the following definitions for a function V :
V (0) = 0, V (x) ≥ 0, ∀x 6= 0 positive semidefinite (p.s.d.)
V (0) = 0, V (x) > 0, ∀x 6= 0 positive definite (p.d.)
V (0) = 0, V (x) ≤ 0, ∀x 6= 0 negative semidefinite (n.s.d.)
V (0) = 0, V (x) < 0, ∀x 6= 0 negative definite (n.d.)
‖x‖ → ∞⇒ V (x)→∞ radially unbounded

For instance, let x ∈ R2 so that x = (x1, x2). Then the function V (x) = xTx is p.d. but
V (x) = x21 is p.s.d. Similarly, V (x) = −xTx is n.d. but V (x) = −x21 is n.s.d.

The theorem can be equivalently stated as follows [?]: the origin is stable if there is a contin-
uously differentiable positive definite function V (x) so that V̇ (x) is negative semidenite, and it is
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asymptotically stable if V̇ (x) is negative definite. It is globally asymptotically stable if the conditions
for asymptotic stability hold globally and V (x) is radially unbounded.

The function V satisfying the conditions for stability is called a Lyapunov function. The surface
V (x) = c, for some c > 0, is called a Lyapunov surface, or level surface.

Geometric Interpretation: Consider a level set V (x) = c. At point x we have:

V̇ = ∇V T ẋ,

If ẋ and ∇V point in the same direction then V̇ > 0. This means that if a system is stable, then
trajectories should cross level sets only inwards. To find the region of stability, the region can be
expanded until V̇ ≥ 0 is detected, or equivalently if V fails to strictly increase.

Theorem 2. Local instability. Let x = 0 be an equilibrium point. Let V : D → R be a continuously
differentiable function such that V (0) = 0 and V̇ (x0) > 0 for some x0 with arbitrarily small ‖x0‖.
Let V (x) > 0 in a ball Br around 0. Then, x = 0 is unstable.

0.3.2 Lyapunov’s indirect method

Assume that the system is linearized around the equilibrium x0 = 0,

ẋ = f(x) = Ax+ h(x),

where A = ∂xf |x=0 and h(x) defines the nonlinear terms.

Theorem 3. Stability by linearization. If the origin 0 is an asymptotically stable equilibirum
of

ż = Az,

(equivalently if A is Hurwitz i.e. Reλi(A) < 0 for all i) and h is well-behaved, i.e.

lim
‖x‖→0

h(x)

‖x‖1+p
= 0, for some p ≥ 0,

then it is a locally asymptotically stable equilibirum point of ẋ = f(x). Furthermore, if Reλi(A) > 0
for any i, then the system is unstable.

We cannot conclude anything for the case when Reλi(A) ≤ 0 for all i, or Reλi(A) = 0 for some
i.

For 2-D systems it is instructive to study the behavior around critical points

• Critical points (show phase portraits)

Critical Point Behavior Eigenvalues
Stable node stable all real and negative
Untable node unstable all real and positive
Saddle point unstable saddle all real, positive and negative
Stable focus damped oscillations both complex, negative real parts
Unstable focus undampled oscillations both complex, positive real parts
Centre concentric ellipses both complex, zero real parts

The procedure is:
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1. Find all critical points of ẋ = f(x), denoted by x∗

2. Linearize at each critical point x∗: ẋ = Ax+ h(x), where A , ∂f |x=x∗ .

3. The behavior of the nonlinear system near x∗ is determined by A if:

• no eigenvalues of A have zero real parts

• h is well-behaved

Example 1. Consider the system ẋ1 = x2, ẋ2 = −x1−x21−x2. The critical values are (0, 0) and
(−1, 0). The linearization is

Df(x) =

[
0 1

−1− 2x1 −1

]
which is evaluted at each ciritical point according to

Df |x=(0,0) =

[
0 1
−1 −1

]
, Df |x=(−1,0) =

[
0 1
1 −1

]
.

The eigenvalues are λ1,2 = −.5 ± i
√

3/2 at (0, 0) and λ1 ≈ −1.618, λ2 ≈ 0.618 at (−1, 0). Thus,
the first equilibirum is a stable focus, while the second is saddle point. We piece together these
local behaviors to infer the behavior more globally. In particular, the structure between the two
equilibria called a separatrix.
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Figure 1: Phase plot of the 2-d system showing the two equilibria: left is a saddle point, right is a
stable focus, there is a separatrix between them.

Example 2. Third-order system. Consider the system

ẋ = ax3
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Linearizing about the origin we have

A = ∂f |x=0 = 3ax2|x=0 = 0,

There is one eigenvalue which lies on the imaginary axis, so we cannot conclude stability using
linearization. If a < 0 the origin is AS considering the Lyapunov function

V (x) = x4,

whose derivative V̇ (x) = 4ax6 < 0 for all x 6= 0. If a = 0 the system is linear and the origin is AS.
If a > 0 the origin is unstable since V̇ = 4ax6. Note that we could have also shown AS using a
Lyapunov function V (x) = x2.

Example 3. More complex Lyapunov function.Consider the system

ẋ1 = x2 − x31
ẋ2 = −x1 − 2x2 + 2x31

and the Lyapunov function V (x) = x21 + x22 + x41. We have

V̇ = 2x1x2 − 2x41 − 2x1x2 − 4x22 + 4x31x2 + 4x31x2 − 4x61

= −4(x31 − x2)2 − 2x41,

which shows that the system is asymptotically stable. Furthermore, V is radially unbounded which
implies global stability.
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Figure 2: Phase plot of the pendulum without damping showing several equilibria: the “eyes” at
θ = 0± 2πk are stable centre, the other at θ = π +±2πk are saddles.
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Figure 3: Phase plot of the pendulum with damping showing several equilibria: the “eddies” at
θ = 0± 2πk are stable foci, the other at θ = π +±2πk are saddles.

Example 4. Example: pendulum Dynamics: θ̈ +Bθ̇ + sin θ = 0, for 0 < B < 2.
Lyapunov’s first method : set x1 = θ, x2 = ẋ1,

ẋ1 = x2 (3)

ẋ2 = − sinx1 −Bx2 (4)

• critical points: (nπ, 0), n = 0,±1,±2, ...

• at even n we have

A =

(
0 1
−1 B

)
, λ1,2 = −B

2
±
√
B2

4
− 1 ⇒ stable foci (if B 6= 0), otherwise undetermined

• at odd n we have

A =

(
0 1
1 −B

)
, λ1,2 = −B

2
±
√
B2

4
+ 1 ⇒ saddle points

Consider the pendulum without damping, i.e. B = 0 (Figure ??). Now consider adding
damping, e.g. B = 0.5 (Figure ??).

Lyapunov’s second method Consider the function V = 1
2 θ̇

2 + (1 − cos θ) which actually corre-
sponds to the system total energy. Consider the equilibrium θ∗ = (0, 0). The function is locally
p.d. around θ∗ for |θ| < π. Furthermore, it is not radially unbounded. Thus, the analysis will be
only local. We have

V̇ = θ̇θ̈ + θ̇ sin θ = −Bθ̇2 ≤ 0
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so V̇ is n.s.d. implying that the system is stable, but not necessarily asymptotically stable. In
particular, we have V̇ = 0 for θ̇ = 0 and any θ.

Nevertheless, notice that θ̇ = 0 ⇒ θ̈ = − sin θ, then θ̇ will change if θ 6= 0 so that θ will also
tend to zero.

A generalization known as LaSalle invariance principle then deduces asymptotic stability: Let
S be all points x for which V̇ = 0. If no solution can stay in S other than x = 0 then the system
is asymptotically stable.

In the pendulum example we weren’t able to show asymptotic stability because V̇ is n.s.d., i.e.
we have V̇ = 0 at some points different than x = 0. LaSalle’s principle implies asymptotic stability
based on the following idea: if the system starts at x(0) such that V̇ (x(0)) = 0, it will immediately
leave the set {x ∈ Rn|V̇ (x) = 0} and come back to it only at x = 0. But in case when V̇ = 0
persists along the solution, then the system is not asymptotically stable.

We formalize this as follows:

Definition 4. Invariant set ([?]) The set M ⊂ Rn is said to be a (positively) invariant set if for
all y ∈M and t0 ≥ 0, we have

s(t, y, t0) ∈M, ∀t ≥ 0.

In other words, if a state originates in an invariant set, it remains there.

Theorem 4. Lasalle’s principle ([?]) Let V : Rn → R be a locally positive definite function such
that on the compact set Ωc = {x ∈ Rn : V (x) ≤ c} we have V̇ (x) ≤ 0. Define

S = {x ∈ Ωc : V̇ (x) = 0}.

As t→∞ the trajectory tends to the largest invariant set inside S. In particular, if S contains no
invariant sets other than x = 0, then the origin is asymptotically stable. Equivalently,

• If no solution can stay identically in S, other than the trivial solution x(t) = 0, then the
origin is asymtptically stable

• If Ωc ⊂ Rn and V (x) is radially unbounded, then the origin is globally asymptotically stable

Example 5. Pendulum. Continuing the pendulum example we have

S = {(x1, x2 = 0)}

the system will stay in S only when ẋ2 = 0 which means sinx1 = 0 or that x1 = kπ for any integer
k. If in the region x1 ∈ (−π, π) the system will maintain V̇ = 0 in S only when x1 = 0. Thus, the
system is locally asymptotically stable at the origin.

We can also construct the set Ωc by choosing c = V ((±π, 0)) = 2 which physically means
starting with zero velocity infinitely close to the vertical position. Thus, all points in the set

Ω2 = {(θ, θ̇) | 1

2
θ̇2 + 1− cos θ < 2}

will asymptotically stabilize to 0.
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Example 6. Linear damped harmonic oscillator. Consider x = (q, q̇), M,B,K > 0

Mq̈ +Bq̇ +Kq = 0

Construct Lyapunov function:

V =
1

2
Mq̇2 +

1

2
Kq2 =

1

2
xT
(
K 0
0 M

)
x

V̇ = Mq̈q̇ +Kq̇q = −Bq̇2 ⇒ stable

We have S = {(q, 0)}. Invariance of S requires that q̈ = 0 ⇒ which requires that q = 0. Since
(0, 0) is the only invariant set within S then the system is asymptotically stable. Furthermore, V
is radially unbounded which implies global stability.

In this particular example, we could have shown asymptotic (in fact even exponential) stability
without using LaSalle, but through a different cost function:

V =
1

2
Mq̇2 +

1

2
Kq2 + εq̇Mq =

1

2
xT
(

K εM
εM M

)
x = xTPx

verify that V̇ = −xT
(
εK ε

2B
ε
2B B − εM

)
x = −xTDx,

where D is p.d. for a small enough ε.

0.3.3 The Linear Case

Consider a linear system
ẋ = Ax, V (x) = xTPx, P = P T > 0,

We have
V̇ (x) = xTPẋ+ ẋPx = xT (PA+ATP )x , −xTQx

If Q > 0 then A is Hurwitz (since the system must be asymptotically stable).
Alternatively, choose Q > 0 and solve the Lyapunov equation for P

PA+ATP = −Q,

if P > 0 then A is Hurwitz. This is done with P = lyap(AT , Q).

Theorem 5. A matrix A is Hurwitz if and only if for any Q = QT > 0 there is a P = P T > 0
that satisfies the Lyapunov equation

PA+ATP = −Q

Moreover, if A is Hurwitz then P is the unique solution.

Theorem 6. Exponential Stability Theorem. The point x0 = 0 is an exponentially stable
equilibrium of ẋ = f(t, x) iff there exists an ε > 0 and a function V (t, x) that satisfies

α1‖x‖2 ≤ V (t, x) ≤ α2‖x‖2 (5)

V̇ ≤ −α3‖x‖2 (6)

‖∂V
∂x

(t, x)‖ ≤ α4‖x‖, (7)
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for some positive constants αi and ‖x‖ ≤ ε. The rate of convergence is then determined by

m ≤
√
α2

α1
, α =

α3

2α2
. (8)

Proof:

α1‖x‖2 ≤ V (t, x) ≤ α2‖x‖2 (9)

V̇ ≤ −α3‖x‖2 (10)

≤ −α3

α2
V (x) (11)

Therefore, we have

V̇ (x) ≤ −α3

α2
V (x)

V (x) ≤ V (x0)e
−α3
α2
t

‖x‖ ≤
(
V (x)

α1

) 1
2

≤

(
V (x0)e

−α3
α2
t

α1

) 1
2

‖x(t)‖ ≤ ‖x0‖
√
α2

α1
e
− α3

2α2
t

For quadratic Lyapunov functions V = xTPx with V̇ = −xTQx, where P,Q > 0 we have

V (t) ≤ e−
λmin(Q)

λmax(P )
t
V (0)⇒ exponential energy decay

which follows directly from the fact that for a p.d. martix P we have λmin(P )‖x‖2 ≤ xTPx ≤
λmax(P )‖x‖2.

Example 7. The nonlinear spring-damper [?].Consider the dynamics

ẋ1 = x2, (12)

ẋ2 = −f(x2)− g(x1), (13)

where f(x) and g(x) are nonlinear smooth functions modeling the friction in the damper and the
restoring force in the sptring, respectively. We will assume that f and g are passive, i.e.

σf(σ) ≥ 0, σg(σ) ≥ 0, for all σ ∈ [−σ0, σ0]

with equality only when σ = 0. The candidate for the Lyapunov function is

V (x) =
x22
2

+

∫ x1

0
g(σ)dσ

Passivity implies that V (x) is a locally positive definite function. Then we have

V̇ (x) = −x2f(x2) ≤ 0,
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for |x2| ≤ σ0 which shows that the system is stable but not necessarily asymptotically stable. We
apply LaSalle’s principle by considering the Lyapunov function value c = min(V (σ0, 0), V (−σ0, 0))
for which we can see that

V̇ (x) ≤ 0 for all x ∈ Ωc , {x : V (x) ≤ c}

Consider the region
S = Ωc ∩ {x1, x2|V̇ = 0)} = Ωc ∩ {(x1, 0)},

to obtain the largest invariant set within S note that

x2(t) = 0⇒ x1(t) = x10 ⇒ ẋ2 = 0 = −f(0)− g(x10),

where x10 is some constant. This means that g(x10) = 0 or that x10 = 0. Which means that the
largest invariance set in S is the origin, i.e. that the system is asymptotically stable.

0.4 Using feedback to design stabilizing control

Consider systems of the form ẋ = f(x, u). We will not investigate in-depth topics such as Input-to-
State-Stability (ISS) and Input-Output Stability (IOS). Instead we will study how control is used
to obtain desired stability as pertitent to applications in robotics.

At a basic level, our goal is to obtain u in a feedback-form, i.e.

u = φ(x),

so that the resulting closed-loop systems has the dynamics

ẋ = f(x, φ(x))

Example 8. 1-d examples. Consider the system

ẋ = ax2 − x3 + u, for some a 6= 0

The simplest approach is to set
u = −ax2 + x3 − x

which results in the closed-loop system
ẋ = −x

which is exponentially stable. This approach was to simply cancel all nonlinear terms. But actually,
it is not really necessary to cancel the term −x3 since it is already dissipative. A more economical
control law would have just been:

u = −ax2 − x

The question of determining a proper u also comes down to finding a Lyapunov function. One
approach is to actually specify the Lyapunov function V and a negative definite V̇ and then find u
to match these choices. For instance, in the example above, let

V (x) =
1

2
x2
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and let
V̇ = ax3 − x4 + xu ≤ −L(x),

for some positive definite L(x). One choice is L(x) = x2 which results in

u = −ax2 + x3 − x,

i.e. the same expensive control law. But another choice is to include higher-order terms, i.e.
L(x) = x2 + x4. Then we have

u = −ax2 − x,
which is the preffered control law to globally asymptotically stabilize the system.

Next consider the the trajectory tracking of standard fully-actuated robotic systems. The
dynamics is given by

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = u

and the task is to track a desired trajectory qd(t) which is at least twice differentiable. The computed
torque law is given by

u = M(q)(q̈d −Kdė−Kpe) + C(q, q̇)q̇ +N(q, q̇),

where e = q − qd and Kp and Kd are constant matrices. When we substitute this control law we
have the following error dynamics

ë+Kdė+Kpe = 0.

Since this is a linear equation it is easy to choose Kd and Kp to guarantee that the system is
exponentially stable.

Theorem 7. Stability of computed torque law. If Kp,Kd ∈ Rn×n are positive definite symmetric
matrices, then the computed torque law results in exponential trajectory tracking.
Proof: We have the dynamics

d

dt

(
e
ė

)
=

[
0 I
−Kp −Kd

]
︸ ︷︷ ︸

,A

(
e
ė

)

We can show that the eigenvalues of A have negative real parts. Let λ ∈ C be an eigenvalue of A
with corresponding eigenvector v = (v1, v2) ∈ C2n, v 6= 0. Then

λ

(
v1
v2

)
=

[
0 I
−Kp −Kd

]
︸ ︷︷ ︸

,A

(
v1
v2

)
=

(
v2

−Kpv1 −Kvv2

)
,

which means that if λ = 0 then v = 0 and so λ = 0 is not an eigenvalue. Similarly, v1, v2 6= 0 and
we may assume that ‖v1‖ = 1. Then we have

λ2 = v∗1λ
2v1 = v∗1λv2

= v∗1(−Kpv1 −Kdv2) = −v∗1Kpv1 − λv∗1Kdv1,

where ∗ denotes complex conjugate transpose. Since α , v∗1Kpv1 > 0 and β , v∗1Kdv1 > 0 we have

λ2 + αλ+ β = 0, α, β > 0,

the real part of λ must be negative.
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This is an example of a more general technique known as feedback linearization. In subsequent
lectures we will generalize these results to underactuated or constrained systems.
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