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0.1 Constraints

The configuration space of a mechanical sysetm is denoted by ) and is assumed to be an n-
dimensional manifold, locally isomorphic to R™ (we’ll say exactly what this means in a future
lecture). A configuration is denoted by ¢ € Q.

We first introduce the notion of constraints:

e holonomic (or geometric):
hi(lg) =0, i=1,....k

restrict possible motions to a n — k dimensional sub-manifold (think hypersurface embedded
in a larger ambient space)

e linear (Pfaffian) nonholonomic (or kinematic):
aiT(q)q' =0, i1=1,...,k, or AT(q)q =0 in matrix form
linear in the velocities

Nonholonomic constraints are not integrable, i.e. it is not possible to find & functions h; such
that
Vehi(@) = ai(q), i=1,....k

If one can find such functions then the constraint is holonomic, i.e.

/ o7 (q(t))i(t)dt = / Vhi(g(t)Td(t)dt = hi(g) + ¢

where c¢ is a constant of integration.

Holonomic constraints are inherently different than nonholonomic. If a(q)”¢ = 0 can be in-
tegrated to obtain h(g) = ¢, then the motion is restricted to lie on a level surface (a leaf) of h
corresponding to the constant ¢ obtained by the initial condition ¢ = h(qg). Practically speaking,
once the system is on the surface, it cannot escape.

Consider a single constraint a(q)”¢ = 0. When the constraint is nonholonomic the instantaneous
motion (velocity) is allowed in all directions except for a(q) (i.e. to an n — l1-dimensional space).
But it could still be possible to reach any configuration in Q. So the system will leave the surface.

Example 1. The unicycle. The canonical example of a nonholonomic system is the unicycle (a.k.a.
the rolling disk). The configuration is ¢ = (z, y, #) denoting position (x,y) and orientation #. There
is one constraint, i.e. the unicycle must move in the direction in which it is pointing:

Zsinf — gycosf =0, or g:tane,
z



We have
sin 6
a(q) = | —cosf
0

The feasible velocities are then contained in the null space of A(q) = a(q), i.e.

cos 6 0
null(a” (¢)) = span sinf |, O
0 1

This system starts at configuration gy = (x0,yo,60) and can reach any desired final configuration
qr = (xf,y5,0f). The simplest strategy is first to rotate so that the disk points to (xf,ys), then
move forward until (zf,yy) is reached, then turn in place until the orientation reaches ;.

Draw a picture of the motion in the the configuration space.

More generally, let us denote the allowed directions of motion by vectors g;, i.e.
ai(q)ng(q) =0, i=1,....k, j=1,....,n—k
or in matrix form
AT(g)G(q) = 0.

The feasible trajectories of the mechanical system are the solutions of
m
i=>_gi(q)v; = G(q)v,
j=1

where v(t) € R™, m = n — k, are called reduced velocities or pseudovelocities

We will be concerned with two classes of models. Kinematic models assume that v can be
directly controlled. Dynamic models require the derviation of another differential equation deter-
mining the evolution of v.

For kinematic systems the question of controllability is equivalent to nonholonomy.

0.2 Dynamics

How do we obtain @ = f(t,z,u) for dynamical systems? We will focus on mechanical systems
with equations of motion derived through a Lagrangian approach, which is often sufficient for most
systems of interest in robotics.

0.2.1 Holonomic Underactuated Systems

Let ¢ € R™ denote generalized coordinates. Assume that the system has a Lagrangian

L(g.d) = 5" M(a)i ~ V(0)

with inertia matrix M (q) > 0 and potential energy V(q). The system is subject to external forces
fext(q,4) € R™ and control inputs u € R™.



The equations of motion in terms of the Lagrangian (i.e.the Euler-Lagrange equations) are given
by
d

%qu — VQL == fext(Q7 Q) + B(Q)u7

where B(q) € R™ "™ is a matrix mapping from m control inputs to the forces/torques acting on the
generalized coordinates q.
This equation is obtained from Lagrange-d’Alembert variational principle

5[ L(q,q)dt + /tf [fext(q,9) + B(q)u)]"dq(t) = 0.

to to

The actual equations take the form

M(q)§ +b(q,q) = B(q)u, (1)

where
ba,8) = M(a)d — 5 Vo(d™M(@)d) + VoV (@) — fox(4:3).

The system is written in control form in terms of the state z = (¢, q) as

&= f(z)+g(x)u= ( _M(q)qlb(q,Q) ) * < M(Q)OlB(Q) )u

Example 2. 2-dof manipulator. Consider a 2 dof-manipulator subject to gravity with the following
parameters:

Description Notation
Length of link #1 1
Length of link #2 lo

Distance to COM of link #1 le1
Distance to COM of link #2 leo

link #1 mass mi
link #2 mass mo
link #1 inertia I
link #2 inertia I
gravity acceleration g

The mass matrix is

mily +moll? + 13, + 2Ll cosqo] + I + o ma(l% + Uil cos qo) + Io
mg(lé + l1le0 coS QQ) + I m2l32 + 1> ’

M) = |

while the bias term is

o | —malileasin(ga)de  —malileasin(ga)[d1 + ¢o] | . [miler + mali]gsin(qi) + maleagsin(q1 + go)
malilea sin(g2)dy 0 maleagsin(qr + q2)

For fully actuated manipulator we have B(q) = I. For actuation only at the first joint we have
10

3



Example 3. Simplified model of a boat in 2D, with two rear propellers. The configuration is
denoted by ¢ = (z,y,0). The mass matrix is given by

m 0
M(g)=| 0 m
0 0

Lo o

while the bias is
b(q,q) = R(O)D(¢)R(0)"q,

where tha matrix D(¢) > 0 denotes drag terms and R(6) is the rotation matrix

cosf —sinf O
R(f) = | sinf cosf® O
0 0 1

which transforms forces from body-fixed to spatial frame. The control martix is

11
Blg)=R(@)| 0 01,

where the constant » > 0 denotes the distance between each thruster and central axis.

0.2.2 Nonholonomic Systems

Assume that the system has a Lagrangian

. I .
L(g,q) = 54" K(9)d = V(a),

with inertia matrix K(g) > 0 and potential energy V' (gq). The system is subject to external forces
fext(q,4) and control inputs u € R™.

The Euler-Lagrange equations take the form

d .

5 Vil = Vol = A@A + fext(a,4) + S(g)u,
where S(q) € R™™ is a matrix mapping from m control inputs to the forces/torques acting on the
generalized coordinates ¢ and where A € R¥ is a vector of Lagrange multipliers. The term A(q)\
should be understood as a force which counters any motion in directions spanned by A(q).

This equation is obtained from the Lagrange-d’Alembert variational principle

5 / " Liq.d)d + /  [usa(@: @) + S(a)u)]Tda(t) = 0,

subject to both A(q)T¢ =0 and A(q)Tdq(t) = 0, i.e. the variations are restricted as well.
The actual equations take the form

K(q)j+n(q,q) = A(QA+ S(q)u, (2)



where )
n(¢:4) = K(a)g = 5V4(d" K(a)d) + V4V (9)
The Lagrange multipliers can be eliminated by first noting that
AT (g)G(q) =0

and multiplying by G (q) to obtain a reduced set of m = n — k differential equations

GT(q)(K(q)i + n(q,9) = G"S(q)u.

A standard assumption will be that det(G(q)?S(q)) # 0 or that all feasible directions are control-
lable. The final equations are then expressed as

q=G(q)v, (4)
M (q) +b(g,v) = B(q)u, (5)

where

using the notation

Gl =" (Vgi(g)"v:)G(q)v.

i=1
For nonholonomic systems, we would normally assume an isomorphism between pseudo-accelerations
a = v and control inputs u, i.e. any acceleration a can be achieved by setting

u= B(q)" (M(q)a+ b(q,v)).

That is why often in nonholonomic control we take a as the (virtual) control input, i.e. u = a and
express the control system in terms of the state = = (q,v)

i = f(@)+ gla)u = < Glaye ) + < I?n )u

Example 4. Unicycle. The configuration is ¢ = (x,y, §) with mas m, moment of inertia J, driving
force uq, steering force uy. The general dynamic model

K(q)j+n(q,q) = A(QA + S(q)u,

takes the form

m 0 0 T sin 6 cos@ 0
0 m O gy | = —cosf® | A+ | sinf O <u1 >,
0 0 J i 0 0 1 U2



We have G(q) = S(q), GT(q)S(q) = I, and GT(q)BG(q) = 0, from which we obtain the reduced

mass matrix and bias
m 0

M(q) = [ 0 J ] b(q,q) = 0.
The complete equations of motion are

T = cos 0v;
7 = sin Qv
0= vy
mu; = uq
JUg = ug,

which can be put in a standard form, for x = (z,y, 0, vy, v2)

%= f(x) + g(x)u.

Example 5. Simple car models. A common way to model a car for control purposes is to employ
the bycycle model, i.e. collapse each pair of wheels to a single wheel at the center of their axle.

The generalized coordinates are
q=(z,y,0,9),

where ¢ is the steering angle. We have the constraints

Zsinf —gcosf =0 front wheel

i sin(f + ¢) — g cos(d + @) — Bl cosp = 0 rear wheel

For the real-wheel drive we have
cos

sin 6
%tan 10)
0

G(g) =

o O O

while for the front-wheel drive we have

cos 0 cos ¢
sin 0 cos ¢
% sin ¢
0

Glg) =

— o O O

Dynamic vs kinematic model. A kinematic model is given by

¢ = G(q)u,

where the inputs u € R™ are actually the pseudo-velocities (that we defined above as v € R™), i.e.
u1 — rear drive velocity, uo - steering rate. A dynamic model includes the dynamics of ¢ and the

control inputs u are forces or accelerations (e.g. similar to the unicycle).
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