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Planning/Control Architecture

Global Planning

• complex constraints

• obstacles with narrow passages

• short or long time horizons

• uses local trajectory generation or
feedback controllers to explore space

Local Trajectory Generation

• nonlinear dynamics

• simpler constraints

• locally optimal control

• short time horizons

Global Planning Methods:

• discrete space search methods (e.g. A*)

• tree/graph sampling-based methods

• stochastic trajectory optimization (global models)

• value function approximation methods

• relaxation methods (linearize/convexify)

Local Planning Methods:

• exploit structure: nonholonomy, symmetries, flatness

• gradient-based trajectory optimization (SQP, IP,sweep)

• stochastic trajectory optimization (local stochastic model)

xd(t), ud(t)

u(t)
controls

desired
state, control

Feedback Control

• trajectory tracking

• point state regulation

Feedback Control Methods:

• feedback linearization

• Lyapunov design

• linearization-based control

x(t)
state

noise

δ Dynamics (plant)

actual

• Global planning : handle complex constraints, long-time horizons; generate subgoals

• Local trajectory generation: optimally achieve subgoals and satisfy dynamics

• Feedback control : handle noise/disturbances and execute desired trajectory

• Receding Horizon Control : recompute reference trajectory in real-time

real-time (e.g. 100Hz)

medium (e.g. 10-100 Hz)

slow (e.g. 1-10Hz)

Update Speed

2



Receding Horizon Control

Global Planning

• complex constraints

• obstacles with narrow passages

• short or long time horizons

• uses local trajectory generation or
feedback controllers to explore space

Local Trajectory Generation

• nonlinear dynamics

• simpler constraints

• locally optimal control

• short time horizons

Global Planning Methods:

• discrete space search methods (e.g. A*)

• tree/graph sampling-based methods

• stochastic trajectory optimization (global models)

• value function approximation methods

• relaxation methods (linearize/convexify)

Local Planning Methods:

• exploit structure: nonholonomy, symmetries, flatness

• gradient-based trajectory optimization (SQP, IP,sweep)

• stochastic trajectory optimization (local stochastic model)

xd(t), ud(t)

desired
state, control

Feedback Control Methods:

• feedback linearization

• Lyapunov design

• linearization-based control

x(t)
state

noise

δ Dynamics (plant)

actual

• Global planning : handle complex constraints, long-time horizons; generate subgoals

• Local trajectory generation: optimally achieve subgoals and satisfy dynamics

• Feedback control : handle noise/disturbances and execute desired trajectory

• Receding Horizon Control : recompute reference trajectory in real-time

slow (e.g. 1-10Hz)

Update Speed

real-time (e.g. 100Hz)

Receding Horizon Control
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RHC: methodology

Consider a task involving

I a long time-horizon, or long-time periodic tasks

I unmodeled disturbances move system away from desired path

I performance can be greatly improved by recomputing reference

RHC approach

I Solve optimization over a short horizon T , the cost is:

J∗T (x(t), u(·)) = min
u(·)

∫ t+T

t
L(x(τ), u(τ))dτ + V (x(t + T )),

where L(x , u) is the incremental cost and V (x) is the terminal cost

I The cost V accounts for the “tail” of the hirozon

I RHC idea: optimize J over small T but carefully choose V to
guarantee stability!
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Stability Issues

I If T is the original long-horizon then optimization is too expensive

I For shorter T , J can be optimized in real-time, then stability
depends on V

V is an estimate of the optimal cost-to-go

I it is generally unavailable, i.e. we do not know V (x) = J∗∞(x)

I V should “measure” the total accrued cost L(x) along the “tail”

I that cost must be driven to zero

RHC approach: V is chosen as an appropriate Lyapunov Function, i.e.
RHC subsumes a tracking/regulation problem inside the optimal control
formulation.
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RHC Stability Theorem

[Jadbabaie and Hauser, 2002] Suppose that the terminal cost V (x) is a
CLF s.t.

min
u

(V̇ + L)(x , u) ≤ 0

for each x in Ωr = {x : V (x) < r2}. Then, for every T > 0 and
δ ∈ (0,T ], the RHC trajectories reach the goal exponentially fast.

I Meaning: V should decrease at least as fast as the accrued cost L

I V is difficult to find: currently standard appraoch is to linearize
around reference and use LQR, i.e. set V = 1

2x
TPx , where P is the

solution to the Ricatti equation.
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Proof

I Let xu(τ, x) denote the state trajectory at time τ starting from x after
applying control u(·)

I Let (x∗T , u
∗
T )(·, x) denote the optimal trajectory of the finite horizon OC

problem with hirozon T

I Assume x∗T (T , x) ∈ Ωr = {x : V (x) < r2} for some r > 0. Then, for each
δ ∈ (0,T ], our notion of stability is understood as the following condition:
the optimal cost from x∗T (δ, x) must satisfy

J∗T (x∗T (δ; x)) ≤ J∗T (x)−
∫ δ

0

L (x∗T (τ ; x), u∗T (τ ; x)) dτ

I In other words, the optimal cost is constantly decreasing (converging) so
that the state will remain in the region of attraction of V .

I Proving this condition is equivalent to proving stability.
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Proof (cont)
I Let (x̃(t), ũ(t)), t ∈ [0, 2T ] obtained by concatenating (x∗T , u

∗
T )(t, ; x), t ∈ [0,T ] and

(xk , uk )(t − T ; x∗T (T ; x)), t ∈ [T , 2T ] which are the closed-loop trajectories with

u = k(x) such that (V̇ + L) (x , k(x)) ≤ 0.

I Consider the cost of using ũ(·) for time T , starting at x∗T (δ; x), δ ∈ [0,T ]

JT (x
∗
T (δ; x), ũ(·)) =

∫ T+δ

δ
L(x̃(τ), ũ(τ))dτ + V (x̃(T + δ))

= J∗T (x)−
∫ δ

0
L (x∗T (τ ; x), u

∗
T (τ ; x)) dτ − V (x∗T (T ; x))

+

∫ T+δ

T
L (x̃(τ), ũ(τ)) dτ + V (x̃(T + δ))

≤ J∗T (x)−
∫ δ

0
L (x∗T (τ ; x), u

∗
T (τ ; x)) dτ,

using the fact that

L(x̃(τ), ũ(τ)) ≤ −V̇ (x̃(τ), ũ(τ)), for all τ ∈ [T , 2T ]

The proof then follows, since J∗T (x
∗
T (δ; x)) ≤ JT (x

∗
T (δ; x), ũ(·)).
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