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Receding Horizon Control
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RHC: methodology

Consider a task involving
» a long time-horizon, or long-time periodic tasks
» unmodeled disturbances move system away from desired path

» performance can be greatly improved by recomputing reference
RHC approach

» Solve optimization over a short horizon T, the cost is:

t+T
Jr(x(). u()) = min / L(x(). u(r))dr + V(x(t + T)),

where L(x, u) is the incremental cost and V/(x) is the terminal cost
» The cost V accounts for the “tail” of the hirozon

» RHC idea: optimize J over small T but carefully choose V to
guarantee stability!



BN
Stability Issues

> If T is the original long-horizon then optimization is too expensive
» For shorter T, J can be optimized in real-time, then stability
depends on V
V is an estimate of the optimal cost-to-go
> it is generally unavailable, i.e. we do not know V/(x) = J% (x)
» V should “measure” the total accrued cost L(x) along the “tail”
» that cost must be driven to zero

RHC approach: V is chosen as an appropriate Lyapunov Function, i.e.
RHC subsumes a tracking/regulation problem inside the optimal control
formulation.



BN
RHC Stability Theorem

[Jadbabaie and Hauser, 2002] Suppose that the terminal cost V(x) is a

CLF s.t. _
min(V + L)(x,u) <0
u

for each x in Q, = {x: V(x) < r?}. Then, for every T > 0 and
0 € (0, T], the RHC trajectories reach the goal exponentially fast.
» Meaning: V should decrease at least as fast as the accrued cost L

> V is difficult to find: currently standard appraoch is to linearize
around reference and use LQR, i.e. set V = %XTPX, where P is the
solution to the Ricatti equation.
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Proof

> Let x“(7,x) denote the state trajectory at time 7 starting from x after
applying control u(-)

» Let (x¥, u%)(+, x) denote the optimal trajectory of the finite horizon OC
problem with hirozon T

> Assume x3(T,x) € Q, = {x: V(x) < r?} for some r > 0. Then, for each
d € (0, T], our notion of stability is understood as the following condition:
the optimal cost from x3(d, x) must satisfy

é
Jr(x7(8:x)) SJ-?(X)—/O L (x7(7: %), u (7 X)) dT

» In other words, the optimal cost is constantly decreasing (converging) so
that the state will remain in the region of attraction of V.

» Proving this condition is equivalent to proving stability.



I
Proof (cont)

> Let (X(t),u(t)), t € [0,2T] obtained by concatenating (x}, u%)(t,; x), t € [0, T] and
(xk, uk)(t — T;x%(T;x)), t € [T,2T] which are the closed-loop trajectories with
u = k(x) such that (V + L) (x, k(x)) < 0.

> Consider the cost of using u(-) for time T, starting at x}(d;x), é € [0, T]

T+6
Jr(x7(8;x),u()) = /5 L(x(7),u(r))dT + V(X(T +9))
)
= 5500 = [ L {rin). v (rix)) dr = V (7(Ti)
T+
+/T L(x(7),u(r))dr + V(X(T +9))
)
< U5 - /0 L (x (73 x), w3 (s X)) o7,
using the fact that
L(X(7), (7)) < =V(X(7),T(r)), forall 7 € [T,2T]

The proof then follows, since J%(x5(8; x)) < J7(x3(8; x), a(-)).



