
EN.530.678: Nonlinear Control and Planning in
Robotics

Lecture# 12
Sampling-based Motion Planning

April 20, 2015

1

The trajectory planning problem
I design a reference trajectory x(t) ∈ Rn and control inputs

u(t) ∈ Rm by solving the constrained optimal control problem:

min
x(·),u(·),tf

J = φ(x(tf), tf) +

∫ tf

t0

L(x(t), u(t), t)dt, (1)

subject to:

x(t0) = x0, x(tf) and tf free (2)

ẋ(t) = f (x(t), u(t), t) (3)

c(x(t), u(t), t) ≤ 0, for all t ∈ [t0, tf] (4)

ψ(x(tf), tf) ≤ 0, (5)

where
I [t0, tf] - time horizon, x0-initial state
I L - trajectory cost: e.g. control effort, energy, time, distance
I φ - terminal cost: e.g. reaching a desired region
I c - trajectory constraints: e.g. control bounds, forbidden regions in X
I ψ - terminal constraint defines algebraically a goal region

2

Issues and Challenges
Generally, it’s a hard problem:

I no closed-form solution in general (beyond the linear-quadratic case)
I infinite dimensional; numerically NP-complete

Solution Techniques
I nonlinear optimization (over finite trajectory parameterization)

I could be slow, might not converge, only locally optimal
I stochastic trajectory optimization

I cannot handle complex constraints, e.g. narrow passages
I linearize/convexify the problem

I might become too conservative or not realizable; might not scale to
complex constraints

I discretize the space and use discrete search
I not scalable: exponential in state dimension and time
I dynamic constraints difficult to handle

I sampling-based methods
I randomized approximation of the space of trajectories (e.g. as a

graph with randomly sampled nodes) and then search
I By law of large numbers it approaches the optimal solution but

typically at a very slow rate

3

Issues and Challenges
Generally, it’s a hard problem:

I no closed-form solution in general (beyond the linear-quadratic case)
I infinite dimensional; numerically NP-complete

Solution Techniques
I nonlinear optimization (over finite trajectory parameterization)

I could be slow, might not converge, only locally optimal

I stochastic trajectory optimization
I cannot handle complex constraints, e.g. narrow passages

I linearize/convexify the problem
I might become too conservative or not realizable; might not scale to

complex constraints
I discretize the space and use discrete search

I not scalable: exponential in state dimension and time
I dynamic constraints difficult to handle

I sampling-based methods
I randomized approximation of the space of trajectories (e.g. as a

graph with randomly sampled nodes) and then search
I By law of large numbers it approaches the optimal solution but

typically at a very slow rate

3

Issues and Challenges
Generally, it’s a hard problem:

I no closed-form solution in general (beyond the linear-quadratic case)
I infinite dimensional; numerically NP-complete

Solution Techniques
I nonlinear optimization (over finite trajectory parameterization)

I could be slow, might not converge, only locally optimal
I stochastic trajectory optimization

I cannot handle complex constraints, e.g. narrow passages

I linearize/convexify the problem
I might become too conservative or not realizable; might not scale to

complex constraints
I discretize the space and use discrete search

I not scalable: exponential in state dimension and time
I dynamic constraints difficult to handle

I sampling-based methods
I randomized approximation of the space of trajectories (e.g. as a

graph with randomly sampled nodes) and then search
I By law of large numbers it approaches the optimal solution but

typically at a very slow rate

3

Issues and Challenges
Generally, it’s a hard problem:

I no closed-form solution in general (beyond the linear-quadratic case)
I infinite dimensional; numerically NP-complete

Solution Techniques
I nonlinear optimization (over finite trajectory parameterization)

I could be slow, might not converge, only locally optimal
I stochastic trajectory optimization

I cannot handle complex constraints, e.g. narrow passages
I linearize/convexify the problem

I might become too conservative or not realizable; might not scale to
complex constraints

I discretize the space and use discrete search
I not scalable: exponential in state dimension and time
I dynamic constraints difficult to handle

I sampling-based methods
I randomized approximation of the space of trajectories (e.g. as a

graph with randomly sampled nodes) and then search
I By law of large numbers it approaches the optimal solution but

typically at a very slow rate

3

Issues and Challenges
Generally, it’s a hard problem:

I no closed-form solution in general (beyond the linear-quadratic case)
I infinite dimensional; numerically NP-complete

Solution Techniques
I nonlinear optimization (over finite trajectory parameterization)

I could be slow, might not converge, only locally optimal
I stochastic trajectory optimization

I cannot handle complex constraints, e.g. narrow passages
I linearize/convexify the problem

I might become too conservative or not realizable; might not scale to
complex constraints

I discretize the space and use discrete search
I not scalable: exponential in state dimension and time
I dynamic constraints difficult to handle

I sampling-based methods
I randomized approximation of the space of trajectories (e.g. as a

graph with randomly sampled nodes) and then search
I By law of large numbers it approaches the optimal solution but

typically at a very slow rate

3

Issues and Challenges
Generally, it’s a hard problem:

I no closed-form solution in general (beyond the linear-quadratic case)
I infinite dimensional; numerically NP-complete

Solution Techniques
I nonlinear optimization (over finite trajectory parameterization)

I could be slow, might not converge, only locally optimal
I stochastic trajectory optimization

I cannot handle complex constraints, e.g. narrow passages
I linearize/convexify the problem

I might become too conservative or not realizable; might not scale to
complex constraints

I discretize the space and use discrete search
I not scalable: exponential in state dimension and time
I dynamic constraints difficult to handle

I sampling-based methods
I randomized approximation of the space of trajectories (e.g. as a

graph with randomly sampled nodes) and then search
I By law of large numbers it approaches the optimal solution but

typically at a very slow rate 3

Example: Tree-based Sampling Motion Planning

optimal motion?
probabilistic roadmap

(PRM)

kinodynamic planning

4

prm2.avi
Media File (video/avi)

prm1.avi
Media File (video/avi)

path.avi
Media File (video/avi)

prm.avi
Media File (video/avi)

The basic algorithm: rapidly-exploring random tree (RRT)
Algorithm 1: T ← RRT(η0)

1 T ← InitializeTree()
2 T ← InsertNode(∅, η0, T)
3 for i = 1 : N do
4 ηrand ← Sample

5 ηnearest ← Nearest (T , ηrand)
6 (x̄new, ūnew,Tnew)← Steer (ηnearest, ηrand)
7 if ObstacleFree(x̄new) then
8 T ← InsertNode (ηnearest, ηnew, T)

9 return T

O1

O2

O3

W

η0

ηrand

ηnearest

O1

O2

O3

W

η0

ηrand

ηnearest

ηnew

x̄new

I A node is the tuple ηi = (xi , pi , Ji) ∈ N = X × N× R+ where

I xi ∈ X is the state
I pi ∈ N is the index of the parent node of i , i.e. ηpi is the parent of ηi
I Ji is the cumulative cost from the start η0 to ηi

I A tree T ⊂ N is a particular arrangement of nodes

5

The basic algorithm: rapidly-exploring random tree (RRT)
Algorithm 2: T ← RRT(η0)

1 T ← InitializeTree()
2 T ← InsertNode(∅, η0, T)
3 for i = 1 : N do
4 ηrand ← Sample

5 ηnearest ← Nearest (T , ηrand)
6 (x̄new, ūnew,Tnew)← Steer (ηnearest, ηrand)
7 if ObstacleFree(x̄new) then
8 T ← InsertNode (ηnearest, ηnew, T)

9 return T

O1

O2

O3

W

η0

ηrand

ηnearest

O1

O2

O3

W

η0

ηrand

ηnearest

ηnew

x̄new

I A node is the tuple ηi = (xi , pi , Ji) ∈ N = X × N× R+ where

I xi ∈ X is the state
I pi ∈ N is the index of the parent node of i , i.e. ηpi is the parent of ηi
I Ji is the cumulative cost from the start η0 to ηi

I A tree T ⊂ N is a particular arrangement of nodes

5

Key ingredients

I sampling routine Sample

I distance function ρ(xa, xb) ≥ 0 for determining Nearest (T , η)

I steering method Steer (ηa, ηb)

I collision detection ObstacleFree(x)

6

Key ingredients: sampling routine Sample

I Baseline: uniform sampling

I low-dispersion: reduce largest unsampled space
between all samples

δ(P) = sup
x∈X
{min
x′∈P
{ρ(x , x ′)}},

where P is a set of sampled points

I low-discrepancy: # of samples inside a set are
consistent with the volume of the set

D(P,R) = sup
R∈R
{‖ |P ∩ R|

k
− µ(R)

µ(X)
‖},

where R are all subsets of X and µ measures the
volume of a set

dispersion

discrepancy

I non-uniform sampling: exploiting problem structure (more later)

7

Key ingredients: sampling routine Sample

I Baseline: uniform sampling

I low-dispersion: reduce largest unsampled space
between all samples

δ(P) = sup
x∈X
{min
x′∈P
{ρ(x , x ′)}},

where P is a set of sampled points

I low-discrepancy: # of samples inside a set are
consistent with the volume of the set

D(P,R) = sup
R∈R
{‖ |P ∩ R|

k
− µ(R)

µ(X)
‖},

where R are all subsets of X and µ measures the
volume of a set

dispersion

discrepancy

I non-uniform sampling: exploiting problem structure (more later)

7

Key ingredients: distance function

Distance function ρ(xa, xb) ≥ 0 for determining Nearest (T , η)

I ideal distance is the true cost-to-go from xa to xb, i.e.
ρ(xa, xb) = J(x̄a→b, ūa→b)

I which typically unavailable or expensive to compute so use a lower
bound heuristic cost, e.g.

ρ(xa, xb) =
√

(xb − xa)TW (xb − xa),

i.e. a weighted Euclidean distance (for some matrix W > 0)
I Nearest (T , η) can be set by:

I ρ(xa, xb): local distance ordering, i.e. standard RRT
I Ja + ρ(xa, xb): cost-to-come to parent + local distance ordering, i.e.

RRT with optimal cost-to-come

8

Key ingredients: distance function

Distance function ρ(xa, xb) ≥ 0 for determining Nearest (T , η)

I ideal distance is the true cost-to-go from xa to xb, i.e.
ρ(xa, xb) = J(x̄a→b, ūa→b)

I which typically unavailable or expensive to compute so use a lower
bound heuristic cost, e.g.

ρ(xa, xb) =
√

(xb − xa)TW (xb − xa),

i.e. a weighted Euclidean distance (for some matrix W > 0)

I Nearest (T , η) can be set by:
I ρ(xa, xb): local distance ordering, i.e. standard RRT
I Ja + ρ(xa, xb): cost-to-come to parent + local distance ordering, i.e.

RRT with optimal cost-to-come

8

Key ingredients: distance function

Distance function ρ(xa, xb) ≥ 0 for determining Nearest (T , η)

I ideal distance is the true cost-to-go from xa to xb, i.e.
ρ(xa, xb) = J(x̄a→b, ūa→b)

I which typically unavailable or expensive to compute so use a lower
bound heuristic cost, e.g.

ρ(xa, xb) =
√

(xb − xa)TW (xb − xa),

i.e. a weighted Euclidean distance (for some matrix W > 0)
I Nearest (T , η) can be set by:

I ρ(xa, xb): local distance ordering, i.e. standard RRT
I Ja + ρ(xa, xb): cost-to-come to parent + local distance ordering, i.e.

RRT with optimal cost-to-come

8

Key ingredients: steering method Steer (ηa, ηb)

I Structured models (assume controllability)
I open-loop trajectory generation: exploit nonholonomy, flatness,

symmetries, if possible
I employ efficient closed-form local methods, e.g. polynomial boundary

value solutions

I Complicated / Black box models:
I only possible to sample control space
I observe/simulate generated trajectories
I must be resolution complete: i.e. reach infinitely close to any state
I typically implies a regularity condition: that small change in u result

in small change in x

I Steering using a finite set of primitives
I primitives must be carefully chosen to satisfy controllability
I in this case controllability is equivalent to resolution completeness

9

Key ingredients: steering method Steer (ηa, ηb)

I Structured models (assume controllability)
I open-loop trajectory generation: exploit nonholonomy, flatness,

symmetries, if possible
I employ efficient closed-form local methods, e.g. polynomial boundary

value solutions

I Complicated / Black box models:
I only possible to sample control space
I observe/simulate generated trajectories
I must be resolution complete: i.e. reach infinitely close to any state
I typically implies a regularity condition: that small change in u result

in small change in x

I Steering using a finite set of primitives
I primitives must be carefully chosen to satisfy controllability
I in this case controllability is equivalent to resolution completeness

9

Key ingredients: steering method Steer (ηa, ηb)

I Structured models (assume controllability)
I open-loop trajectory generation: exploit nonholonomy, flatness,

symmetries, if possible
I employ efficient closed-form local methods, e.g. polynomial boundary

value solutions

I Complicated / Black box models:
I only possible to sample control space
I observe/simulate generated trajectories
I must be resolution complete: i.e. reach infinitely close to any state
I typically implies a regularity condition: that small change in u result

in small change in x

I Steering using a finite set of primitives
I primitives must be carefully chosen to satisfy controllability
I in this case controllability is equivalent to resolution completeness

9

Key ingredients: collision checking ObstacleFree(x̄new)

I ensure constraints c(t, x , u) ≤ 0 are satisfied

I often the free configuration space is difficult to compute

I easiest to use a black-box collision checking package

I simulate controls u(t) and check collision

Example: Proximity Query Package (PQP)
http://gamma.cs.unc.edu/SSV/

PQP collision checking PQP distance and direction

10

http://gamma.cs.unc.edu/SSV/

Tree-based planners
Various tree-based planners are possible (LaValle, 2006)

It is critical to solve the boundary value (steering) problem (BVP)

a) standard planning to a goal set XG

b) reaching a specific goal

c) tree grown backwards from goal

d) bidirectional tree: forward from start and backward from goal
11

Key challenges in motion planning

I achieving efficiency even in high dimensions

I handling complicated constraints, e.g. narrow passages

I finding optimal not just feasible solutions

I hybrid and non-smooth systems

I distributed systems planning, parallel processing
I dealing with uncertainty

I partially known system dynamics
I unstructured dynamic uncertain environment
I formal robustness guarantees

I holy grail: unifying planning, estimation, and control

12

Workspace Adaptivity in Sampling-based methods
I Complex planning problems can be addressed through adaptation
I Example: handling narrow passages

I Constructing roadmaps adaptively

Bridge Test Toggle PRM Roadmap Spanner

I Toggle PRM: A Coordinated Mapping of C-free and C-obstacle in Arbitrary Dimension, Jory Denny, Nancy M.
Amato, WAFR, 2012. Proceedings

I Marble J, Bekris KE. 2013. Asymptotically Near-Optimal Planning with Probabilistic Roadmap Spanners. IEEE
Transactions on Robotics. 29(3)

I David Hsu, Tingting Jiang, John Reif, Zheng Sun, The Bridge Test for Sampling Narrow Passages with Probabilistic
Roadmap Planners, ICRA, 2003

I many more: Kurniawati, Hsu; Ladd, Kavraki; Rickert, Brock, Knoll; etc...

13

From exploration to optimality
I Sampling-based methods are good at exploring the space to find “a path” but

notoriously slow in converging to the “optimal” path.
I An important recent method: RRT∗ (Karaman, Frazzoli, 2011)
I Idea: rewire tree to maintain optimal cost-to-go
I Key result: only need to rewire by checking ≈ log(n) neighbors
I Challenges: extend theory to complex dynamics; principled neighbor selection; CPU

time?

14

The RRT∗ algorithm

Algorithm 3: T ← RRT∗(η0,Xg)

1 T ← InitializeTree()
2 T ← InsertNode(∅, η0, T)
3 for i = 1 : N do
4 ηrand ← Sample(i)
5 ηnearest ← Nearest (T , ηrand)
6 (xnew, unew,Tnew)← Steer (ηnearest, ηrand)
7 if ObstacleFree(xnew) then
8 Nnear ← Near (T , ηnew, |V |)
9 ηmin = ChooseParent (Nnear, ηnearest, xnew)

10 T ← InsertNode (ηmin, ηnew, T)
11 T ← Rewire (T ,Nnear, ηmin, ηnew)

12 return T

15

The RRT∗ algorithm (cont.)
Algorithm 4: ηmin ← ChooseParent(Nnear, ηnearest, xnew)

1 ηmin ← ηnearest

2 cmin ← CostToCome(ηnearest) + Cost(xnew)
3 for ηnear ∈ Nnear do
4 (x ′, u′,T ′)← Steer(ηnear, ηnew)
5 if ObstacleFree(x ′) and x ′(T ′) = ηnew then
6 c ′ = CostToCome(ηnear) + Cost(x ′)
7 if c ′ < cmin then
8 ηmin ← ηnear

9 cmin ← c ′

10 return ηmin

Algorithm 5: T ← Rewire(T ,Nnear, ηmin, xnew)

1 for ηnear ∈ Nnear\{ηmin} do
2 (x ′, u′,T ′)← Steer(ηnew, ηnear)
3 if ObstacleFree(x ′) and x ′(T ′) = ηnear and
4 CostToCome(ηnew) + Cost(x ′) < CostToCome(ηnear) then
5 T ← Reconnect (ηnew, ηnear, T)

6 return T

16

Towards optimal adaptive sampling
But still all these methods sample from the space of states: information about
trajectory cost is not fully exploited

New method: Cross-entropy motion planning

I it is not necessary to sample everywhere uniformly

I adaptively sample nodes by exploiting cost information

I perform density estimation of low-cost regions in trajectory space

I “learn” regions in state space where “good” trajectories lie

Adaptive density discovers salient regions for obtaining samples
17

TCE Cross-entropy Planning
Algorithm Overview: Trajectory-Cross-Entropy (TCE) Motion Planning

0. Expand RRT/PRM and attempt to connect to goal region
1. Obtain all RRT/PRM trajectories {πi}Ni=1 reaching the goal
2. Construct parametrized trajectories Zi = ψ(πi)
3. Update pZ using the elite subset of these parameters
4. Sample a trajectory Z ∼ pZ
5. Select one or more states X = ϕ(Z , t) for a random t and add to RRT/PRM
6. Repeat from either (0) or (1) with some probability. Stop on a termination condition.

The density over trajectories pZ (Z) induces a density pX (X) over states:

pX (X) = η · max
Z∈Zcon

{pZ(Z) | X = ϕx (Z , t) for some 0 < t < τ(Z)}, (6)

M. Kobilarov: Cross-Entropy Motion Planning, International Journal of Robotics Research, (2012). 18

SCE Cross-entropy Planning
Algorithm Overview: State-Cross-Entropy (SCE) Motion Planning

0. Expand RRT/PRM and attempt to connect to goal region

1. Obtain all RRT/PRM trajectories {πi}Ni=1 reaching the goal

2. Discretize each trajectory πi into a set of states

3. Update pX using the elite subset of all states of discretized trajectories

4. Sample a state X ∼ pX and add to RRT/PRM

5. Repeat from either (0) or (1) with some probability. Stop on a termination condition.

SCE-RRT* with adaptive Gaussian Mixture Model sampling
19

ce_gmm.avi
Media File (video/avi)

	The Problem
	Tree-based Planning
	Challenges
	Adaptive Planning

