EN.530.678: Nonlinear Control and Planning in
Robotics

Lecture# 12
Sampling-based Motion Planning

April 20, 2015

The trajectory planning problem

» design a reference trajectory x(t) € R” and control inputs
u(t) € R™ by solving the constrained optimal control problem:

SR CONARY WICORTOR
subject to:

x(to) = x0, x(tr) and tr free

(t) = F(x(t), u(t), t)

c(x(t),u(t),t) <0, for all t € [ty, tf]
U(x(tr), tr) <0,

X

where
> [to, tf] - time horizon, xp-initial state
» L - trajectory cost: e.g. control effort, energy, time, distance
> ¢ - terminal cost: e.g. reaching a desired region
» C - trajectory constraints: e.g. control bounds, forbidden regions in X
» 1) - terminal constraint defines algebraically a goal region

Issues and Challenges

Generally, it's a hard problem:
» no closed-form solution in general (beyond the linear-quadratic case)
» infinite dimensional; numerically NP-complete

Issues and Challenges

Generally, it's a hard problem:
» no closed-form solution in general (beyond the linear-quadratic case)
» infinite dimensional; numerically NP-complete

Solution Techniques
» nonlinear optimization (over finite trajectory parameterization)
» could be slow, might not converge, only locally optimal

Issues and Challenges

Generally, it's a hard problem:
» no closed-form solution in general (beyond the linear-quadratic case)
» infinite dimensional; numerically NP-complete
Solution Techniques
» nonlinear optimization (over finite trajectory parameterization)
» could be slow, might not converge, only locally optimal
» stochastic trajectory optimization
» cannot handle complex constraints, e.g. narrow passages

Issues and Challenges

Generally, it's a hard problem:
» no closed-form solution in general (beyond the linear-quadratic case)
» infinite dimensional; numerically NP-complete

Solution Techniques

» nonlinear optimization (over finite trajectory parameterization)
» could be slow, might not converge, only locally optimal

» stochastic trajectory optimization
» cannot handle complex constraints, e.g. narrow passages

» linearize/convexify the problem
» might become too conservative or not realizable; might not scale to

complex constraints

Issues and Challenges

Generally, it's a hard problem:
» no closed-form solution in general (beyond the linear-quadratic case)
» infinite dimensional; numerically NP-complete

Solution Techniques

» nonlinear optimization (over finite trajectory parameterization)
» could be slow, might not converge, only locally optimal

» stochastic trajectory optimization
» cannot handle complex constraints, e.g. narrow passages

» linearize/convexify the problem
» might become too conservative or not realizable; might not scale to

complex constraints

» discretize the space and use discrete search
» not scalable: exponential in state dimension and time
» dynamic constraints difficult to handle

Issues and Challenges

Generally, it's a hard problem:
» no closed-form solution in general (beyond the linear-quadratic case)
» infinite dimensional; numerically NP-complete
Solution Techniques
» nonlinear optimization (over finite trajectory parameterization)
» could be slow, might not converge, only locally optimal
stochastic trajectory optimization
» cannot handle complex constraints, e.g. narrow passages

v

» linearize/convexify the problem
» might become too conservative or not realizable; might not scale to
complex constraints
» discretize the space and use discrete search

» not scalable: exponential in state dimension and time
» dynamic constraints difficult to handle
sampling-based methods
» randomized approximation of the space of trajectories (e.g. as a
graph with randomly sampled nodes) and then search
» By law of large numbers it approaches the optimal solution but
typically at a very slow rate

v

Example: Tree-based Sampling Motion Planning

C\)

RA]

L
probabilistic roadmap

. P
optimal motion? (PRM)

kinodynamic planning

prm2.avi
Media File (video/avi)

prm1.avi
Media File (video/avi)

path.avi
Media File (video/avi)

prm.avi
Media File (video/avi)

The basic algorithm: rapidly-exploring random tree (RRT)
Algorithm 1: 7 < RRT(n)p)

T < InitializeTree()

T + InsertNode((,no,T) .
fori=1:Ndo Trand

Trand < Sample
Mnearest < Nearest (7-7 77rand)

()?newa Unew, Tnew) < Steer (nnearesta nrand) ’ W
if ObstacleFree(Xqew) then

L T + InsertNode (nnearesty Tlnew T)

©® N o G A W N =

o return T

> A node is the tuple 7; = (x;, pi, J;) € N =X x N xR, where

» x; € X is the state
» p;i € N is the index of the parent node of i, i.e. 7, is the parent of n;
» J; is the cumulative cost from the start 7y to 7;

> Atree T C N is a particular arrangement of nodes

©® N o G A W N =

9

The basic algorithm: rapidly-exploring random tree (RRT)
Algorithm 2: 7 < RRT())

T < InitializeTree()
T + InsertNode((,no,T)
fori=1:Ndo
Trand < Sample
Mnearest < Nearest (7-7 77rand)
()?newa Unew, Tnew) < Steer (nnearesta nrand)
if ObstacleFree(Xqew) then
L T < InsertNode (7nearests Tnews T)

return T

> A node is the tuple 7; = (x;, pi, J;) € N =X x N xR, where

» x; € X is the state
» p;i € N is the index of the parent node of i, i.e. 7, is the parent of n;
» J; is the cumulative cost from the start 7y to 7;

> Atree T C N is a particular arrangement of nodes

Key ingredients

v

sampling routine Sample

v

distance function p(x, xp) > 0 for determining Nearest (7, 7)
» steering method Steer (74, 75)

v

collision detection ObstacleFree(x)

Key ingredients: sampling routine Sample

» Baseline: uniform sampling

> low-dispersion: reduce largest unsampled space
between all samples

(P) = suplmin{px 1

where P is a set of sampled points

» low-discrepancy: # of samples inside a set are
consistent with the volume of the set

IPNR| u(R) I
k u(x)

D(P,R) = 32%{”

where R are all subsets of X and p measures the
volume of a set

dispersion

discrepancy

Key ingredients: sampling routine Sample

» Baseline: uniform sampling

> low-dispersion: reduce largest unsampled space
between all samples

(P) = suplmin{px 1

where P is a set of sampled points

» low-discrepancy: # of samples inside a set are
consistent with the volume of the set

IPNR| u(R) I
k u(x)

D(P,R) = 32%{”

where R are all subsets of X and p measures the
volume of a set

dispersion

discrepancy

» non-uniform sampling: exploiting problem structure (more later)

Key ingredients: distance function

Distance function p(xa, xp) > 0 for determining Nearest (7,7)
> ideal distance is the true cost-to-go from x, to x, i.e.
P(Xa; Xb) = J(Xasb, Ua—sb)

Key ingredients: distance function

Distance function p(xa, xp) > 0 for determining Nearest (7,7)
> ideal distance is the true cost-to-go from x, to x, i.e.
p(Xa7Xb) = J()_(a%bv L_la*)b)

> which typically unavailable or expensive to compute so use a lower
bound heuristic cost, e.g.

P(Xa,Xb) = \/(Xb - Xa)TW(Xb - Xa)a

i.e. a weighted Euclidean distance (for some matrix W > 0)

Key ingredients: distance function

Distance function p(xa, xp) > 0 for determining Nearest (7,7)
> ideal distance is the true cost-to-go from x, to x, i.e.
p(Xa,Xp) = J(Xamsby Ua—sb)
> which typically unavailable or expensive to compute so use a lower
bound heuristic cost, e.g.

P(Xa,Xb) = \/(Xb - Xa)TW(Xb - Xa)a

i.e. a weighted Euclidean distance (for some matrix W > 0)

> Nearest (7,7) can be set by:
» p(xa, xp): local distance ordering, i.e. standard RRT
» J,+ p(xa, xp): cost-to-come to parent + local distance ordering, i.e.
RRT with optimal cost-to-come

Key ingredients: steering method Steer (7,, 7p)

» Structured models (assume controllability)

» open-loop trajectory generation: exploit nonholonomy, flatness,
symmetries, if possible

» employ efficient closed-form local methods, e.g. polynomial boundary
value solutions

Key ingredients: steering method Steer (7,, 7p)

» Structured models (assume controllability)
» open-loop trajectory generation: exploit nonholonomy, flatness,
symmetries, if possible
» employ efficient closed-form local methods, e.g. polynomial boundary
value solutions

» Complicated / Black box models:
» only possible to sample control space
» observe/simulate generated trajectories
» must be resolution complete: i.e. reach infinitely close to any state
>

typically implies a regularity condition: that small change in u result
in small change in x

Key ingredients: steering method Steer (7,, 7p)

» Structured models (assume controllability)
» open-loop trajectory generation: exploit nonholonomy, flatness,
symmetries, if possible
» employ efficient closed-form local methods, e.g. polynomial boundary
value solutions

» Complicated / Black box models:
» only possible to sample control space
» observe/simulate generated trajectories
» must be resolution complete: i.e. reach infinitely close to any state
> typically implies a regularity condition: that small change in u result
in small change in x
» Steering using a finite set of primitives

» primitives must be carefully chosen to satisfy controllability
> in this case controllability is equivalent to resolution completeness

Key ingredients: collision checking ObstacleFree(Xew)

» ensure constraints c(t, x, u) < 0 are satisfied

» often the free configuration space is difficult to compute
> easiest to use a black-box collision checking package

» simulate controls u(t) and check collision

Example: Proximity Query Package (PQP)
http://gamma.cs.unc.edu/SSV/

PQP collision checking PQP distance and direction
10

http://gamma.cs.unc.edu/SSV/

Tree-based planners
Various tree-based planners are possible (LaValle, 2006)

Tr BVP,.-¢
(a) (b)
1 W\
St i'/ \BvP \ > .
/ 1
() (d)

It is critical to solve the boundary value (steering) problem (BVP)
a) standard planning to a goal set Xg

b) reaching a specific goal
c) tree grown backwards from goal
d) bidirectional tree: forward from start and backward frem goal

11

Key challenges in motion planning

» achieving efficiency even in high dimensions

» handling complicated constraints, e.g. narrow passages
» finding optimal not just feasible solutions

> hybrid and non-smooth systems

» distributed systems planning, parallel processing
» dealing with uncertainty

> partially known system dynamics
» unstructured dynamic uncertain environment
» formal robustness guarantees

» holy grail: unifying planning, estimation, and control

12

Workspace Adaptivity in Sampling-based methods

vV vV vy

Complex planning problems can be addressed through adaptation
Example: handling narrow passages

Constructing roadmaps adaptively

T

a Map of Cobst

i

Bridge Test Toggle PRM Roadmap Spanner

Toggle PRM: A Coordinated Mapping of C-free and C-obstacle in Arbitrary Dimension, Jory Denny, Nancy M.
Amato, WAFR, 2012. Proceedings

Marble J, Bekris KE. 2013. Asymptotically Near-Optimal Planning with Probabilistic Roadmap Spanners. IEEE
Transactions on Robotics. 29(3)

David Hsu, Tingting Jiang, John Reif, Zheng Sun, The Bridge Test for Sampling Narrow Passages with Probabilistic
Roadmap Planners, ICRA, 2003

many more: Kurniawati, Hsu; Ladd, Kavraki; Rickert, Brock, Knoll; etc...

13

From exploration to optimality

> Sampling-based methods are good at exploring the space to find “a path” but
notoriously slow in converging to the “optimal” path.

An important recent method: RRT* (Karaman, Frazzoli, 2011)

Idea: rewire tree to maintain optimal cost-to-go

Key result: only need to rewire by checking = log(n) neighbors

Challenges: extend theory to complex dynamics; principled neighbor selection; CPU
time?

vyVYY

D% 4 2 o 2 & & 8 0% a % 4 2 o 2 4 & & 0% 8 s 4 2 o 2 &+ & 8 0

(a) RRT in iteration 1,000 (b) RRT in iteration 3,000 (c) RRT in iteration 10,000

P S S NP

The RRT* algorithm

Algorithm 3: 7 < RRT*(ng, Xy)

T < InitializeTree()
T « InsertNode(,no,T)
fori=1:N do
Trand < Sample(r)
Tnearest <— Nearest (T, rand)
(Xnew, Unew, Tnew) < Steer (nnearest, nrand)
if ObstacleFree(xnew) then
Nhear < Near (T, fnew, | V)
Nmin = ChooseParent (Nneah TInearest Xnew)
T < InsertNode (Nmin; Mnew, T)
T < Rewire (T, Naear; Timin> Tnew)

return T

15

© 0N G A WN =

[I R R

The RRT* algorithm (cont.)

Algorithm 4: 7),;, < ChooseParent(MNear, nearest, Xnew)

TImin < Tlnearest
Crmin — CostToCome(7nearest) + CoSt(Xnew)
for Npear € Nnear do
(le Ulv Tl) — Steer(nnearannew)
if ObstacleFree(x’) and x’(T’) = Nnew then
¢’ = CostToCome(7near) + Cost(x’)
if ¢/ < cmin then
L Tmin < Tlnear
Cmin < c’

return 7y,

Algorithm 5: 7 «+ Rewire(T, Mear, Tmin, Xnew)

for Npear € Nnear\{nmin} do
(x',u’, T") < Steer(Mnew, Nnear)
if ObstacleFree(x’) and x'(T') = Npear and
CostToCome(7new) + Cost(x’) < CostToCome(nnear) then
L T < Reconnect (Nnew, Mnear, T)

return T

16

Towards optimal adaptive sampling

But still all these methods sample from the space of states: information about
trajectory cost is not fully exploited

New method: Cross-entropy motion planning
> it is not necessary to sample everywhere uniformly
» adaptively sample nodes by exploiting cost information

» perform density estimation of low-cost regions in trajectory space

> “learn” regions in state space where “good” trajectories lie

Y/
4

Adaptive density discovers salient regions for obtaining samples

17

TCE Cross-entropy Planning

Algorithm Overview: Trajectory-Cross-Entropy (TCE) Motion Planning
Expand RRT/PRM and attempt to connect to goal region

Obtain all RRT/PRM trajectories {m;}Y | reaching the goal

Construct parametrized trajectories Z; = (m;)

Update pz using the elite subset of these parameters

Sample a trajectory Z ~ pz

Select one or more states X = ¢(Z, t) for a random t and add to RRT/PRM

ok wNEO

The density over trajectories pz(Z) induces a density px (X) over states:

px(X) =1+ max {pz(2) | X = px(Z,1) for some 0 < t < 7(2)},

M. Kobilarov: Cross-Entropy Motion Planning, International Journal of Robotics Research, (2012).

Repeat from either (0) or (1) with some probability. Stop on a termination condition.

(6)

18

SCE Cross-entropy Planning

Algorithm Overview: State-Cross-Entropy (SCE) Motion Planning
Expand RRT/PRM and attempt to connect to goal region

Obtain all RRT/PRM trajectories {m;}) | reaching the goal
Discretize each trajectory 7; into a set of states

Update px using the elite subset of all states of discretized trajectories
Sample a state X ~ px and add to RRT/PRM
Repeat from either (0) or (1) with some probability. Stop on a termination condition.

e

N)

4
SCE-RRT* with adaptive Gaussian Mixture Model sampling

19

ce_gmm.avi
Media File (video/avi)

	The Problem
	Tree-based Planning
	Challenges
	Adaptive Planning

