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Intro Optimization Direct Methods Special cases

The trajectory planning problem
I design a reference trajectory x(t) ∈ Rn and control inputs

u(t) ∈ Rm by solving the constrained optimal control problem:

min
x(·),u(·),tf

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt, (1)

subject to:

x(t0) = x0, x(tf ) and tf free (2)

ẋ(t) = f (x(t), u(t), t) (3)

c(x(t), u(t), t) ≤ 0, for all t ∈ [t0, tf ] (4)

ψ(x(tf ), tf ) ≤ 0, (5)

where
I [t0, tf ] - time horizon, x0-initial state
I L - trajectory cost: e.g. control effort, energy, time, distance
I φ - terminal cost: e.g. reaching a desired region
I c - trajectory constraints: e.g. control bounds, forbidden regions in X
I ψ - terminal constraint defines algebraically a goal region
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Intro Optimization Direct Methods Special cases

Methods
I Local gradient-based methods

I direct collocation/shooting/multiple-shooting/sweep methods
I indirect collocation/shooting/multiple-shooting/sweep methods

I Global methods
I dynamic programming (DP)

I approximate dynamic programming (ADP)
value function approximation, simulation / roll-outs

I graph-based methods
1.) state+control space discretization (value/policy iteration)
2.) state space approximate exploration: sampling-based planning

I evolutionary methods/stochastic optimization
I stochastic gradients (SPSA); simulated annealing (SA)
I genetic algorithms (GA); differential evolution strategies (DES)
I particle-swarm optimization (PSO); ant-colony optimization (ACO)
I covariance matrix adaptation (CMA); cross-entropy method (CEM)

I Special structure-exploiting features (applies to both local and global)
I differential flatness (removes differential constraints)
I symmetries (allows sequencing of precomputed trajectories)
I hybrid dynamics; constraint relaxation
I linearity; convexity; least-squares; mixed integer, etc...
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Intro Optimization Direct Methods Special cases

Example: direct collocation

Helicopter in a canyon Numerical representation

I an underactuated helicopter model in a 3D terrain

I problem: time-optimal navigation and landing with zero-velocity

I approach: sequential quadratic programming (SQP), exploiting Jacobian sparsity

I terrain non-penetration enforce using the Proximity-query package (PQP)

I trajectory is discretized, and optimization is over each discrete state, control, and
time

I solution is only locally optimal, convergence could be slow if many constraints
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Intro Optimization Direct Methods Special cases

Examples: nonholonomic / multi-body constraints

Car in a tunnel LittleDog on rough terrain

I complex constraints require special handling: homotopy continuation

I start with a relaxed problem (obstacles smoothed/removed) and slowly deform it
back to origin while reoptimizing

I solution is only locally optimal, convergence could be slow
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Intro Optimization Direct Methods Special cases

Examples: sweep methods

UUV Satellite Car iterations Car motion

I fast methods when no path constraints are present

I optimization requires up to a few milliseconds

I only applicable when dynamics, cost are smooth; and control constraints are
convex

I solution is only locally optimal, convergence is very fast
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Intro Optimization Direct Methods Special cases

Example: sampling-based planning
I Probabilistic roadmaps (PRM) or trees (RRT*)

Time-optimal helicopter trajectory Probabilistic Roadmap (PRM)

I states sampled from environment

I connected with trajectories to form a tree/graph structure

I optimal path is then found through discrete graph search

I method can very quickly find any solution

I solution is only approximate; could be far from optimal
9





Intro Optimization Direct Methods Special cases

Example: cross-entropy stochastic optimization

adaptive sampling computed best path

I high-dimensional underactuated system

I state parametrization using precomputed optimized primitives

I versatile trajectories can be generated instantly

I trajectory space explored using adaptive sampling

I performance scales with number of samples

I not suitable for narrow passages 10





Intro Optimization Direct Methods Special cases

Example: sampling-based methods, replanning, feedback

Map construction and optimal replanning

fast replanning final path experiment setup
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Intro Optimization Direct Methods Special cases Unconstrained Equality Constraints Inequality Constraints

Unconstrained Optimization
I Find the minimum x∗ = arg min J(x) of a given function J : Rn → R

I First-order necessary condition for local optimality:

∇J(x∗) = 0

I Second-order sufficient condition for a local optimum:

∇2J(x∗) > 0 (Hessian is positive definite)

I Newton’s method: iterate x = x + αd with search direction d ∈ Rn

given by
∇2J(x)d = −∇J(x),

where α > 0 is the step-size, ensuring cost function decreases
I Sufficient conditions for a global optimum: J is convex, i.e.
∇2J(x) > 0 for all x .

I In practice, the direction d is computed according to:

H̃(x)d = −∇J(x),

where H̃ is a positive definite approximation to the Hessian
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Intro Optimization Direct Methods Special cases Unconstrained Equality Constraints Inequality Constraints

Equality Constraints

I Cost function J : Rn → R and equality constraints F : Rn → Rm≤n

I Find x∗ = argmin J(x) such that F (x∗) = 0

I Define the Lagrangian

L(x , λ) = J(x) + λTF (x),

where λ ∈ Rm are Lagrange multipliers.

I the constrained problem is equivalent to unconstrained minimization
of L over (x , λ)

I Necessary conditions: (x∗, λ∗) must satisfy

∇L(x∗, λ∗) = 0 ⇔
[
∇J(x∗) +∇F (x∗)Tλ∗

F (x∗)

]
= 0 (6)
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Intro Optimization Direct Methods Special cases Unconstrained Equality Constraints Inequality Constraints

Equality Constraints (cont.)
I Solved using Newton’s method over (x , λ) ∈ Rn+m

I Results in the Karush-Kuhn-Tucker (KKT) conditions[
HL ∇FT

∇F 0

] [
p
λ̄

]
=

[
−∇J
−F

]
, (7)

where the Hessian HL = ∇2
xL is defined by

HL = ∇2J(x) +
m∑
i=1

λi∇2Fi (x)

I Equivalent quadratic programming (QP) form: find d to minimize

1

2
dTHLd +∇JTd , subject to : ∇FTd = −F .

I Step-size again determined by line-search or trust region.
I Trust region: constrain d such that ‖Dd‖ ≤ ∆ where D is a

diagonal scaling matrix and ∆ is the radius of the trust region.
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Intro Optimization Direct Methods Special cases Unconstrained Equality Constraints Inequality Constraints

Inequality Constraints

I Minimize J(x) subject to inequality constraints F (x) ≥ 0

I the dimension of which can now be greater than n
I At the optimum x∗ we have:

I active constraints: Fi (x∗) = 0
I inactive constraints: Fi (x∗) > 0.

I During iteration, at each x̄ , the simplest scheme:
I find active constraints at x̄
I ignore inactive, and solve the equality-constraint problem

I Methods such as (Sequential Quadratic Programming) SQP
maintain an active set index.

I Computing the active set or predicting the active/inactive switch is
nontrivial.
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Intro Optimization Direct Methods Special cases Direct Shooting Direct Multiple-Shooting Direct Transcription/Collocation

Direct Methods

I finite-dimensional representation of the continuous optimal control
problem

I discretizing time and solving a discrete-time optimal control
problems

I or by parametrizing the controls using a finite set of parameters

I a finite-dimensional nonlinear optimization problem

I solution through nonlinear programming (NLP) methods.
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Intro Optimization Direct Methods Special cases Direct Shooting Direct Multiple-Shooting Direct Transcription/Collocation

Direct Shooting
Parametrize the control signal u(t) using a finite number of parameters p ∈ Rc .
For instance, in simple cases (e.g. a point-mass vehicle in R2):

u(t) = p1 + p2t,

where p = (p1, p2) ∈ R4. More generally:

u(t) =
M∑
k=1

pkBk(t),

where M is finite and Bk(t) are a set of basis functions, such as B-splines. The
unknowns in the problem are then

NLP variables= [p, tf ]

The state x(t) is obtained using forward integration. The NLP problem:

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t), (8)

subject to:

ψ(x(tf ), tf ) ≤ 0, (9)

Note that there is no systematic way to incorporate path constraints. 19



Intro Optimization Direct Methods Special cases Direct Shooting Direct Multiple-Shooting Direct Transcription/Collocation

Direct Shooting
The pros and cons of the methods are:
Pros.

I low dimension: often difficult large-scale problems can be formulated
using relatively low number of parameters p

I simplicity: straightforward to implement

Cons.
I sensitivity: small changes early in the trajectory result in large

deviations at later times and cause problems for gradient based
methods which try to stabilize the resulting boundary conditions

I instability: when the dynamics is unstable, trajectories could vary
substantially, numerical round-off errors are also an issue

I path constraints: difficult to treat since they introduce constraints
sub-arcs that must be handled with additional multipliers which
must be set up defined a-priori

I loss of sparsity: the resulting nonlinear equations to be solved are
typically complicated and non-sparse so it is not possible to gain
efficiency using sparse solvers
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Intro Optimization Direct Methods Special cases Direct Shooting Direct Multiple-Shooting Direct Transcription/Collocation

Direct Multiple-Shooting

I choose discrete times [t0, t1, t2, . . . , tN ] where tN = tf , as well as
discrete trajectory [x0, x1, . . . , xN ] and a discrete set of parametrized
control [u(p0), u(p1), . . . , u(pN)].

I perform a direct shooting step within each interval [ti , ti+1] by
integrating the dynamics starting from xi and obtaining, say x̄i at
time ti+1, for each i .

I then we solve the root finding problem with optimization variables

p0, p1, . . . , pN−1, x1, x2, . . . , xN , tf

and the equations to be solved are
x̄0 − x1

...
x̄N−1 − xN
ψ(xN , tN)

 = 0, (10)
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Intro Optimization Direct Methods Special cases Direct Shooting Direct Multiple-Shooting Direct Transcription/Collocation

Direct Multiple-Shooting

The pros and cons of the methods are similar to indirect shooting
Pros.

I robustness: issues related to stability are alleviated

I efficiency: sparsity is now introduced through the extra NLP
variables since the problem is dense only within segments, and
block-sparse overall

Cons.

I dimensionality: the problem dimension is increased and becomes
more computationally expensive, but one can exploit sparsity is the
root-finding problem

I path constraints: it is still necessary to define
constrained-unconstrained arcs in advance (unless a whole interval
[ti , ti+1] can be regarded as either constrained or unconstrained, but
this might requires very fine discretization)
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Intro Optimization Direct Methods Special cases Direct Shooting Direct Multiple-Shooting Direct Transcription/Collocation

Direct Transcription/Collocation

We start by choosing discrete times [t0, t1, t2, . . . , tN ] and defining the
optimization variables

NLP variables= [u0, x1, u1, . . . , xN , uN , tf ].

We replace the nonlinear dynamics with a finite difference approximation,
e.g. the trapezoidal rule

xi+1 − xi − hi
f (xi , ui , ti ) + f (xi+1, ui+1, ti+1)

2
= 0,

or midpoint

xi+1 − xi − hi f

(
xi + xi+1

2
,

ui + ui+1

2
,

ti + ti+1

2

)
= 0,

or another higher-order method.
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Direct Transcription/Collocation
Similarly, the cost function is approximated, e.g. by∫ ti+1

ti

L(x , u, t)dt ≈ hi
L(xi , ui , ti ) + L(xi+1, ui+1, ti+1)

2
,

or ∫ ti+1

ti

L(x , u, t)dt ≈ hiL

(
xi + xi+1

2
,

ui + ui+1

2
,

ti + ti+1

2

)
,

or another higher-order method. We can then solve the NLP:

φ(xN , tN) +
N−1∑
i=0

Li (xi , xi+1, ui , ui+1), (11)

subject to:

Si (xi , xi+1, ui , ui+1) = 0 (12)

c(xi , ui , ti ) ≤ 0, for all i = 0, . . . ,N (13)

ψ(xN , tN) ≤ 0, (14)

where Si and Li correspond to the discrete approximations of the dynamics and
cost function, e.g. using the midpoint, trapezoidal, or a higher-order scheme.

The solution can generally be computed using SQP or interior-point (IP).

Problem sparsity should be exploited for efficiency.
24



Intro Optimization Direct Methods Special cases Direct Shooting Direct Multiple-Shooting Direct Transcription/Collocation

Direct Transcription/Collocation
The pros and cons of the methods can be summarized as follows Pros.

I efficiency: the problem is complex, large-scale but still sparse
I simplicity: no need to derive adjoint equations in terms of λ, can

use x directly (although technically SQP internally uses multipliers)
I stability: unstable dynamics remedied since all x are simultaneously

varied
I path constraints: easier to handle using existing NLP methods

(SQP, IP)

Cons.
I adaptation: time grid must be chosen in advance and often difficult

to adapt (e.g. where higher accuracy is required) during
optimization, since this changes the problem dimension, i.e. more
points can’t be easily added

I careful implementation: to obtain efficiency one still needs
derivatives and sparsity structure which must be carefully specified.
Recent software packages are starting to provide automated ways to
deal with this though.
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Intro Optimization Direct Methods Special cases Differentially flat systems Constraint Homotopy

Differentially flat systems

I Find flat outputs y(t) ∈ Rm such that

x = a(y , ẏ , y (2), . . . , y (q)), u = b(y , ẏ , y (2), . . . , y (r))

I Construct finite-dimensional flat trajectory representation

y(t) =
K∑

k=1

Bk(t)pk ,

where Bk(t) are basis functions (e.g. B-splines) and pk ∈ Rm are free
parameters. This can also be written as y(t) = Pb(t), where P ∈ Rm×K is
a parameter matrix and b(t) = (B1(t), . . . ,BK (t)) ∈ RK

I Set x(t) = a(Pb(t),Pḃ(t), . . . ), u(t) = b(Pb(t),Pḃ(t), . . . ) and solve:

min
P,tf

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt, (15)

subject to:

x(t0) = x0, x(tf ) and tf free (16)

c(x(t), u(t), t) ≤ 0, for all t ∈ [t0, tf ] (17)

ψ(x(tf ), tf ) ≤ 0, (18)
27



Intro Optimization Direct Methods Special cases Differentially flat systems Constraint Homotopy

Optimization on SO(3): three parametrization methods
Optimize curve R(t) ∈ SO(3) but avoid Euler angle singularities?

1. Use quaternions c = φ(R) ∈ S3, add constraint cT c − 1 = 0.
2. Sequence of Lie algebra flows: ξ0(·), ξ1(·), · · · ∈ R3

I first let R0,R1, . . . ,RN ∈ SO(3) be discrete rotations along R(t)
I define ξi : [0,∆i ]→ R3 on the interval t ∈ [ti , ti+1] so that

R(t) = Ri exp(ξi (t − ti )), with ξi (0) = 0, ξi (∆ti ) = log(R−1
i Ri+1),

for ∆ti , ti+1 − ti and derivative conditions on the knots defined by

RiJ(ξi (∆ti ))ξ̇i (∆ti ) = Ri+1ξ̇i+1(0),

where J(ξ) is the left (translated) Jacobian of the exp defined as

J(ξ) · exp(ξ)δ = ∂exp(ξ) · δ

3. Instead of optimizing over R(t), we define R(t) = R̄(t) exp(η(t))
and optimize over η(t) ∈ R3 where R̄(t) is an initial guess.
In the discrete setting we have
R(·) ≈ (R0,R1, . . . ,RN) = (R̄0 exp(η0), R̄1 exp(η1), . . . , R̄N exp(ηN)),
so the NLP variables are (η0, η1, . . . , ηN).

28



Intro Optimization Direct Methods Special cases Differentially flat systems Constraint Homotopy

Dealing with complex constraints
I Non-convex or non-smooth constraints complicate the optimization

I Alleviated through constraint homotopy H : Rn+1 → Rm

H(x , 1) = F̃ (x), H(x , 0) = F (x),

where the smooth map F̃ : Rn → Rm is a relaxed version of F .
I For example, a commonly used homotopy is

H(x , λ) = λF̃ (x) + (1− λ)F (x).

The goal is to trace the implicitly defined curve c(s) ∈ H−1(0) from
the initial solution (x1, 1) to the actual solution (x̄ , 0).

I Example: distance function F (x) = ρ(x ,Oi ) ≥ 0 to obstacle Oi

I Consider the homotopy, where xc ∈ X as the centroid of the obstacle

ρλ(x ,Oi ) = λ‖x − xc‖+ (1− λ)ρ(x ,Oi ),

I ρλ “smooths” ρ by enclosing the obstacle in a ball
I gradually growing it back to its original form as λ goes from 1 to 0.

I To implement: use H instead of F ; add λ to optimization vector
ξ′ = (ξ, λ); initialize λ = 1 and enforce final constraint λ = 0.

29
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