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1 Uncertainty and Lyapunov Redesign

Consider the system [?]

ẋ = f(t, x) +G(t, x)[u+ δ(t, x, u)], (1)

where x ∈ Rn is the state and u ∈ Rp is the control input. The functions f,G, and δ are defined
for (x, u) ∈ D × Rp, where D ⊂ Rn contains the origin. The functions f,G and δ are piece-wise
continuous and Lipschitz in x and u. We assume that f and G are known while δ is unknown and
represents the combined effect of model simplification, parametric uncertainty, etc... [?]. When the
uncertainty acts only along control vector fields (the columns of the matrix G) it is said to satisfy
the matching condition, i.e. it matches the controls. The system (1) is in such form. Stabilizing
controls can be designed for this case through the concept of Lyapunov redesign. In the non-
matching case, it is necessary to assume more restrictive assumptions about the bounds of δ and
employ recursive techniques such as robust backstepping.

A nominal model of the system is given by

ẋ = f(t, x) +G(t, x)u, (2)

and we assume that a feedback controller u = ψ(t, x) was designed so that the nominal closed-loop
system

ẋ = f(t, x) +G(t, x)ψ(t, x), (3)

is uniformly asymptotically stable.
Assume that the nominal control corresponds to a Lyapunov function V (t, x) such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (4)

∂tV + ∂xV · [f(t, x) +G(t, x)ψ(t, x)] ≤ −α3(‖x‖), (5)

for all x ∈ D and where the functions αi are strictly increasing and satisfy αi(0) = 0 (such functions
are said be class K functions). Assume that for

u = ψ(x, t) + v,

the uncertainty satisfies the bound

‖δ(t, x, ψ(t, x) + v)‖ ≤ ρ(t, x) + k0‖v‖, 0 ≤ k0 < 1 (6)
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where ρ : [0, tf ]×D → R is a non-negative continuous function and specifies the magnitude of the
uncertainty. The idea behind Lyapunov redesign is to augment the nominal control law ψ(t, x) with
an extra term v ∈ Rp which suppresses the uncertainty so that the combined control u = ψ(t, x)+v
stabilizes the real system (1).

The closed-loop system now becomes

ẋ = f(t, x) +G(t, x)ψ(t, x) +G(t, x)[v + δ(t, x, ψ(t, x) + v)]. (7)

The derivative of V is computed becomes

V̇ = ∂tV + ∂xV · [f +Gψ] + ∂xV ·G[v + δ] ≤ −α3(‖x‖) + ∂xV ·G[v + δ] (8)

Setting wT = ∂xV ·G this is equivalent to

V̇ ≤ −α3(‖x‖) + wT v + wT δ (9)

Using the bound (6) we have

wT v + wT δ ≤ wT v + ‖w‖ (ρ+ k0‖v‖) (10)

Setting

v = −η(t, x)
w

‖w‖
, (11)

for some η(t, x) > 0 such that

η(t, x) ≥ ρ(t, x)

1− k0
, ∀x ∈ D

we have
wT v + wT δ ≤ −η(x)‖w‖+ ‖w‖(ρ+ k0η(x)) = ‖w‖(ρ− η(1− k0)) ≤ 0

Hence, V̇ ≤ 0 for the whole system.
Note that the uncertainty bound (6) was employed by regarding the norm ‖ · ‖ as a L2 norm

‖ · ‖2. An alternative controller can be obtained by setting ‖ · ‖ = ‖ · ‖∞ (see [?]).
The resulting controller (11) is discontinuous at w = 0, e.g. typically at the origin. In addition

to this theoretical limitation, practical issues also occur due to digital switching, delays, and other
physical imperfections. This results in oscillatory behavior near the equilibrium called chattering.
In order to deal with it the control law can be smoothed near the origin by setting

v = −η(t, x)
w

‖w‖
, if η(t, x)‖w‖ ≥ ε, (12)

v = −η(t, x)2
w

ε
, if η(t, x)‖w‖ < ε, (13)

As a result one can show [?] that the closed-loop solutions of the system are bounded by a K-class
function of ε. Thus, by making ε arbitrary small the system can stabilize arbitrary close to the
origin.
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Example 1. Pendulum with uncertain model. Consider the pendulum with uncertain damping
and control given by:

ẋ1 = x2

ẋ2 = a sinx1 + bx2 + cu,

where aand c are uncertain. By uncertain in this case we mean that their exact values are not
known, but we do know that they are close to given nominal values, denoted by â and ĉ. A
stabilizing controller for the nominal system is chosen as

ψ(x) = − â
ĉ

sinx1 −
1

ĉ
(k1x1 + k2x2),

with gains k1 > 0 and k2 > b so that the nominal system is asymptotically stable. The system is
put in the form (1)

ẋ2 = â sinx1 + bx2 + ĉ [u+ δ] ,

where

δ =
a− â
ĉ

sinx1 +
c− ĉ
ĉ

u

= (ā− c̄) â
ĉ

sinx1 −
c̄

ĉ
kTx+ c̄v

where we substituted u = ψ(x) + v and used the notation

ā =
a− â
â

, c̄ =
c− ĉ
ĉ

.

Hence, using the identities sin(x1) ≤ |x1| ≤ ‖x‖ and kTx ≤ ‖x‖‖k‖ where k = (k1, k2), the
uncertainty can be expressed as

|δ| ≤ ρ1‖x‖+ k0|v|,

where ρ1 and k0 must be chosen so that

ρ1 ≥ (|ā|+ |c̄|)
∣∣∣∣ âĉ

∣∣∣∣ +
∣∣∣ c̄
ĉ

∣∣∣ ‖k‖, k0 ≥ |c̄|

In practice, we can make assumptions about how large |ā| and |c̄| can be (e.g. less than 0.3, which
would mean up to 30% error relative to the nominal value). From these assumptions we then set
ρ1 and k0.

2 Robust Backstepping

In the previous section we considered the case of uncertainty matched by the control inputs. This
restriction can be relaxed by accounting for uncertainty in the context of backstepping. Consider
the single-input system

η̇ = f(η) + g(η)ξ + δη(η, ξ) (14)

ξ̇ = fa(η, ξ) + ga(η, ξ)u+ δξ(η, ξ) (15)
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where η ∈ Rn, ξ ∈ R are defined over a domain D ⊂ Rn+1 containing the origin (0, 0). Assume that
the functions f, g, fa, ga are smooth and known, while δη and δξ are uncertain terms. In addition,
it is assumed that f and fa vanish at the origin and the uncertain terms satisfy

‖δη(η, ξ)‖2 ≤ a1‖η‖2 (16)

|δξ(η, ξ)| ≤ a2‖η‖2 + a3|ξ|, (17)

for all (η, ξ) ∈ D.
Assume that we can find a stabilizing controller ξ = φ(η) for φ(0) = 0 for the system (14) and

a Lyapunov function V0(η) such that

∂V0
∂η

[f(η) + g(η)φ(η) + δη(η, ξ)] ≤ −b‖η‖2 (18)

for some b > 0. Suppose further that φ(η) satisfies

|φ(η)| ≤ a4‖η‖,
∥∥∥∥∂φ∂η

∥∥∥∥ ≤ a5 (19)

over D. Consider the Lyapunov function

V (η, ξ) = V0(η) +
1

2
[ξ − φ(η)]2

We have

V̇ =
∂V0
∂η

[f + gφ+ δη] +
∂V0
∂η

g(ξ − φ) + (ξ − φ)

[
fa + gau+ δξ −

∂φ

∂η
(f + gξ + δη)

]
Taking

u =
1

ga

[
∂φ

∂η
(f + gξ)− ∂V0

∂η
g − fa − k(ξ − φ)

]
, k > 0 (20)

we have

V̇ ≤ −b‖η‖2 + (ξ − φ)

[
δξ −

∂φ

∂η
δη

]
− k(ξ − φ)2

Using assumptions (16),(17),(19) it can be shown that

V̇ ≤ −b‖η‖2 + 2a6|ξ − φ|‖η‖ − (k − a3)|ξ − φ|2 (21)

= −
[
‖η‖
|ξ − φ|

] [
b −a6
−a6 (k − a3)

] [
‖η‖
|ξ − φ|

]
(22)

for some a6 > 0. Choosing

k ≥ a3 +
a26
b

yields
V̇ ≤ −σ[‖η‖2 + |ξ − φ|2]

for some σ > 0.

Lemma 1. [?] Consider the system (14)-(15) where the uncertainty satisfies the inequalities (16),(17).
Let φ(η) be a stabilizing state feedback control law for (14) that satisfies (19) and V (η) a Lyapunov
function that satisfies (18). Then, the state feedback control law (20) stabilizes the origin.
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