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1 Mathematical Preliminaries I: Matrix Algebra

• vectors x = (x1, ..., xn) ∈ Rn and matrices A =


a11 .. a1n
. .. .
. .. .
an1 .. ann

 ∈ Rn×n

• scalar t denotes time, we write x(t) and A(t) when they are function of time

• Inner products

xT y ≡ x′y ≡ x · y ≡ 〈x, y〉 ≡
n∑

i=1

xiyi

• Matrix determinant det(A) or |A| is

det(A) =
n∑

i=1

aijCij ,

for a single fixed j ∈ {1, . . . , n}, where Cij is called the ij-th cofactor, which is the determinant
of the reduced matrix obtained by crossing out the i-th row and j-th column multiplied by
(−1)i+j .

• The determinant is also the signed volume of the parallellepiped whose sides corresponds to
the columns of the matrix

• Matrix Inverse

(A−1)ij =
1

det(A)
Cji, for det(A) 6= 0

• Linear Independence: a set of vectors a1 ∈ Rn, ..., an ∈ Rn are linearly independent if it is
not possible to express one a linear combination of the others, i.e.

x1a1 + · · ·+ xnan = 0

implies that all scalars x1, ..., xn are zero. The rank of a matrix is the maximum number of
linearly independent columns or rows. A square n-by-n matrix with rank less than n is called
singular.
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• The solutions λi to the equation
det(A− λI) = 0,

where I is the identity matrix, are called the eigenvalues of A. If Ax = y then λx = y and
the vectors xi corresponding to λi are called the eigenvectors of A. Combining all solutions
we have

A
[
x1 | · · · | xn

]
=
[
x1 | · · · | xn

]
diag([λ1, · · · , λn]) ⇔ AS = SΛ,

or
S−1AS = Λ,

which is called similarity transformation, i.e. A is similar to the diagonal matrix Λ. Two
similar matrices A and B satisfy λi(A) = λi(B). We have the relationship

trace(A) =
n∑
1

aii =
n∑
1

λi(A)

If A is symmetric then S−1 = ST , i.e. S is an orthogonal transformation.

• Consider the equation Ax = y, where A ∈ Rn×n. The following are equivelent:

1. det(A) 6= 0

2. A−1 exists

3. Ax = y has a unique solution for y 6= 0

4. A is full rank;

5. we have λi(A) 6= 0, i = 1, . . . , n where λi(A)is the i-th eigenvalue

• The norm of a vector is ‖x‖2 = xTx. For y = Ax for non-singular matrix A we have

‖y‖2 = xTATAx = ‖x‖2ATA,

where ‖x‖2B is called a generalized norm, i.e. a norm in new coordinates defined by B. The
matrix B is positive definite if ‖x‖2B > 0 for all x 6= 0, which is written as B > 0. If ‖x‖2B ≥ 0
for all x 6= 0 then B is positive semidefinite, i.e. B ≥ 0.

• The norm of a matrix
‖A‖ = max

‖x‖=1
‖Ax‖

• Symmetric matrices have real eigenvalues and mutually orthogonal, real, non-zero eigenvec-
tors x1, . . . , xn. Assuming normalized ‖xi‖ = 1 we have

A =

n∑
i=1

λixix
T
i

Let λ1 ≤ · · · ≤ λn be the eigenvalues of symmetric matrix A, then we have

‖A‖ = max{|λ1|, |λ2|}, λ1‖y‖2 ≤ yTAy ≤ λ2‖y‖2, for all y ∈ Rn
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• Geometric Notions:

– The scalar equation (ai)Tx−bi = 0 for a given scalar bi and vector ai defines a hyperplane
in Rn with normal vector ai. The intersection of n such hyperplanes is a point determined
by Ax = b, where (ai)T are the rows of A and b = (b1, . . . , bn)

– the equation xTΣ−1x − c = 0 determines a quadratic surface. If Σ > 0 and Σ = ΣT

then this is an hyperellispoid in Rn with principal axes equal to
√
λi/c where λi are the

eigenvalues of Σ. Furthermore, since Σ = STΛS the axis of the ellipsoid are rotated by
S. Clearly, if λi = 0 for some i then the hyperellipsoid is flat along that dimension and
its volume (i.e. determinant) is zero. Another way to think about it is as the relationship

yT y−c = 0, where y = Λ−
1
2Sx, which means that to construct the set of points x we can

start with a set of points y on a sphere of radius c2, then scale that sphere by
√
λi along

its i-th axis for all i = 1, . . . , n (to obtain an axis-aligned elliposoid) and then rotate the
axis-aligned ellipsoid by S.

– more generally, a scalar function f(x) = 0 defines a hupersfurce in Rn. Taylor expansion
gives:

f(x) ≈ f(x0) +
∂f

∂x

∣∣∣
x=x0

(x− x0) = 0,

so that the normal to the surface is simply the gradient. A closer approximation results
from second-order expansion

f(x) ≈ f(x0) +
∂f

∂x

∣∣∣
x=x0

(x− x0) +
1

2
(x− x0)T

∂2f

∂x2

∣∣∣
x=x0

(x− x0) = 0,

where ∂2f
∂x2 ≡ B is the n-by-n Hessian matrix. If B ≥ 0 (> 0) we call the function locally

convex (strictly locally convex) near x0. If it is true for all x0 then f is convex (strictly
convex).

– Derivative Notation: Let f be a function of two variables x ∈ Rn and y ∈ Rm. The
following euivalent notations will be used

∂f

∂x
(x, y) ≡ ∂xf(x, y) ≡ fx(x, y) ≡ D1f(x, y)

∂f

∂y
(x, y) ≡ ∂yf(x, y) ≡ fy(x, y) ≡ D2f(x, y)

Similar notation is used for higher derivatives, e.g.

∂2f

∂x2
(x, y) ≡ ∂2xf(x, y) ≡ fxx(x, y) ≡ D2

2f(x, y).

We regard ∂xf as a row vector, i.e.

∂xf =

[
∂f

∂x1
, · · · , ∂f

∂xn

]
The gradient of f denoted by ∇xf is the column vector

∇xf =


∂f
∂x1
...
∂f
∂xn

 = ∂xf
T .
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The notation extends when f(x) is a column vector of functions, in which case ∂xf is a
matrix called the Jacobian.

The differential df of a function f(x, y) is

df = fx · dx+ fy · dy,

where dx and dy are regarded as infinitesimal changes in x and y. In other words, df
defines how f changes subject to infinitesimal changes in its parameters.
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