EN530.678 Nonlinear Control and Planning in Robotics Lecture 1: Matrix Algebra Basics January 24, 2022

January 24, 2022

Lecturer: Marin Kobilarov

1 Mathematical Preliminaries I: Matrix Algebra

- vectors $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and matrices $A = \begin{bmatrix} a_{11} & ... & a_{1n} \\ & \ddots & & \cdot \\ & & \ddots & \cdot \\ & & & a_{n1} & ... & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}$
- scalar t denotes time, we write x(t) and A(t) when they are function of time
- Inner products

$$x^T y \equiv x' y \equiv x \cdot y \equiv \langle x, y \rangle \equiv \sum_{i=1}^n x_i y_i$$

• Matrix determinant det(A) or |A| is

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}$$

for a single fixed $j \in \{1, ..., n\}$, where C_{ij} is called the ij-th cofactor, which is the determinant of the reduced matrix obtained by crossing out the *i*-th row and *j*-th column multiplied by $(-1)^{i+j}$.

- The determinant is also the *signed volume* of the parallellepiped whose sides corresponds to the columns of the matrix
- Matrix Inverse

$$(A^{-1})_{ij} = \frac{1}{\det(A)}C_{ji}, \text{ for } \det(A) \neq 0$$

• Linear Independence: a set of vectors $a_1 \in \mathbb{R}^n, ..., a_n \in \mathbb{R}^n$ are linearly independent if it is not possible to express one a linear combination of the others, i.e.

$$x_1a_1 + \dots + x_na_n = 0$$

implies that all scalars $x_1, ..., x_n$ are zero. The *rank* of a matrix is the maximum number of linearly independent columns or rows. A square *n*-by-*n* matrix with rank less than *n* is called *singular*.

• The solutions λ_i to the equation

$$\det(A - \lambda I) = 0,$$

where I is the identity matrix, are called the *eigenvalues* of A. If Ax = y then $\lambda x = y$ and the vectors x^i corresponding to λ_i are called the *eigenvectors* of A. Combining all solutions we have

$$A \begin{bmatrix} x^1 \mid \cdots \mid x^n \end{bmatrix} = \begin{bmatrix} x^1 \mid \cdots \mid x^n \end{bmatrix} \operatorname{diag}([\lambda_1, \cdots, \lambda_n]) \quad \Leftrightarrow \quad AS = S\Lambda$$

or

$$S^{-1}AS = \Lambda,$$

which is called *similarity transformation*, i.e. A is similar to the diagonal matrix Λ . Two similar matrices A and B satisfy $\lambda_i(A) = \lambda_i(B)$. We have the relationship

trace(A) =
$$\sum_{1}^{n} a_{ii} = \sum_{1}^{n} \lambda_i(A)$$

If A is symmetric then $S^{-1} = S^T$, i.e. S is an orthogonal transformation.

- Consider the equation Ax = y, where $A \in \mathbb{R}^{n \times n}$. The following are equivelent:
 - 1. $\det(A) \neq 0$
 - 2. A^{-1} exists
 - 3. Ax = y has a unique solution for $y \neq 0$
 - 4. A is full rank;
 - 5. we have $\lambda_i(A) \neq 0, i = 1, ..., n$ where $\lambda_i(A)$ is the *i*-th eigenvalue
- The norm of a vector is $||x||^2 = x^T x$. For y = Ax for non-singular matrix A we have

$$||y||^2 = x^T A^T A x = ||x||^2_{A^T A},$$

where $||x||_B^2$ is called a generalized norm, i.e. a norm in new coordinates defined by B. The matrix B is *positive definite* if $||x||_B^2 > 0$ for all $x \neq 0$, which is written as B > 0. If $||x||_B^2 \ge 0$ for all $x \neq 0$ then B is *positive semidefinite*, i.e. $B \ge 0$.

• The *norm* of a matrix

$$||A|| = \max_{||x||=1} ||Ax||$$

• Symmetric matrices have real eigenvalues and mutually orthogonal, real, non-zero eigenvectors x_1, \ldots, x_n . Assuming normalized $||x_i|| = 1$ we have

$$A = \sum_{i=1}^{n} \lambda_i x_i x_i^T$$

Let $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of symmetric matrix A, then we have

$$||A|| = \max\{|\lambda_1|, |\lambda_2|\}, \qquad \lambda_1 ||y||^2 \le y^T A y \le \lambda_2 ||y||^2, \text{ for all } y \in \mathbb{R}^n$$

- Geometric Notions:
 - The scalar equation $(a^i)^T x b_i = 0$ for a given scalar b_i and vector a^i defines a hyperplane in \mathbb{R}^n with normal vector a^i . The intersection of n such hyperplanes is a point determined by Ax = b, where $(a^i)^T$ are the rows of A and $b = (b_1, \ldots, b_n)$
 - the equation $x^T \Sigma^{-1} x c = 0$ determines a quadratic surface. If $\Sigma > 0$ and $\Sigma = \Sigma^T$ then this is an hyperellispoid in \mathbb{R}^n with principal axes equal to $\sqrt{\lambda_i/c}$ where λ_i are the eigenvalues of Σ . Furthermore, since $\Sigma = S^T \Lambda S$ the axis of the ellipsoid are rotated by S. Clearly, if $\lambda_i = 0$ for some i then the hyperellipsoid is flat along that dimension and its volume (i.e. determinant) is zero. Another way to think about it is as the relationship $y^T y c = 0$, where $y = \Lambda^{-\frac{1}{2}} S x$, which means that to construct the set of points x we can start with a set of points y on a sphere of radius c^2 , then scale that sphere by $\sqrt{\lambda_i}$ along its *i*-th axis for all $i = 1, \ldots, n$ (to obtain an axis-aligned elliposoid) and then rotate the axis-aligned ellipsoid by S.
 - more generally, a scalar function f(x) = 0 defines a hupersfurce in \mathbb{R}^n . Taylor expansion gives:

$$f(x) \approx f(x_0) + \frac{\partial f}{\partial x}\Big|_{x=x_0} (x - x_0) = 0,$$

so that the *normal* to the surface is simply the gradient. A closer approximation results from second-order expansion

$$f(x) \approx f(x_0) + \frac{\partial f}{\partial x}\Big|_{x=x_0} (x-x_0) + \frac{1}{2} (x-x_0)^T \frac{\partial^2 f}{\partial x^2}\Big|_{x=x_0} (x-x_0) = 0,$$

where $\frac{\partial^2 f}{\partial x^2} \equiv B$ is the *n*-by-*n* Hessian matrix. If $B \ge 0$ (> 0) we call the function *locally* convex (strictly locally convex) near x_0 . If it is true for all x_0 then f is convex (strictly convex).

- Derivative Notation: Let f be a function of two variables $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. The following euivalent notations will be used

$$\frac{\partial f}{\partial x}(x,y) \equiv \partial_x f(x,y) \equiv f_x(x,y) \equiv D_1 f(x,y)$$
$$\frac{\partial f}{\partial y}(x,y) \equiv \partial_y f(x,y) \equiv f_y(x,y) \equiv D_2 f(x,y)$$

Similar notation is used for higher derivatives, e.g.

$$\frac{\partial^2 f}{\partial x^2}(x,y) \equiv \partial_x^2 f(x,y) \equiv f_{xx}(x,y) \equiv D_2^2 f(x,y).$$

We regard $\partial_x f$ as a row vector, i.e.

$$\partial_x f = \left[\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right]$$

The gradient of f denoted by $\nabla_x f$ is the column vector

$$\nabla_x f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \partial_x f^T.$$

The notation extends when f(x) is a column vector of functions, in which case $\partial_x f$ is a matrix called the Jacobian.

The differential df of a function f(x, y) is

$$df = f_x \cdot dx + f_y \cdot dy,$$

where dx and dy are regarded as infinitesimal changes in x and y. In other words, df defines how f changes subject to infinitesimal changes in its parameters.