
EN530.678 Nonlinear Control and Planning in Robotics

Homework #5

March 18, 2022

Due: March 28, 2022

Prof: Marin Kobilarov

Figure 1: Parallel parking for the car.

1. (20 pts) Consider a simplified kinematic model of a car-like robot with configuration x =
(x1, x2, x3), where x1, x2 denote the position and x3 the orientation. The vehicle is controlled
with forward velocity u1 and steering angle u2. The equations of motion ẋ = f(x, u) are given
by  ẋ1

ẋ2
ẋ3

 =

 cosx3u1
sinx3u1
u1

tanu2
`


where the constant ` > 0 denotes the distance between the axles.

(a) (5 pts) Give expressions for the state and controls in terms of the differentially flat
outputs y = (x1, x2).

(b) (15 pts) The car is required to perform a parallel parking maneuver starting at state
x0 = (0, 5, 0), going forward to state xm = (5, 2.5, 0) and backing-up to state xf =
(0, 0, 0). Employing the fact the system is differentially flat, give explicit expressions for
the trajectory x(t) and required inputs u(t) to generate the two segments of the parking
maneuver. You can use polynomial interpolation or another basis function approach in
flat output space. Assume that each segment takes time T = 10 s. When designing the
paths, you can assume that the magnitude of the initial and final velocity of the car in
each segment can be chosen freely, e.g. you can set |u1| = 1 m/s. See Figure 1.
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2. (20 pts) Consider a simplified kinematic model of a car-like robot with configuration x =
(x1, x2, x3), where x1, x2 denote the position and x3 the orientation. The vehicle is controlled
with forward velocity u1 and steering angle u2. The equations of motion ẋ = f(x, u) are given
by  ẋ1

ẋ2
ẋ3

 =

 cosx3u1
sinx3u1
u1

tanu2
`


where the constant ` > 0 denotes the distance between the axles.

(a) (5 pts) Assume that the car is required to track a desired feasible reference trajectory
xd(t) with associated desired inputs ud(t) (e.g. such as those computed through differ-
ential flatness). Derive the linearized dynamics along the reference trajectory, i.e. in the
form:

ė(t) = A(t)e(t) + B(t)(u(t)− ud(t)),

where the error e(t) is defined as e(t) ≈ x(t)− xd(t) and where A(t) , ∂xf(xd(t), ud(t)),
B(t) , ∂uf(xd(t), ud(t)). Show that the error dynamics is controllable, along trajectories
for which u1(t) 6= 0. (see Appendix for the required definition of controllability).

(b) (15 pts) Implementation. Write a Matlab script car flat care.m which implements the
steps given below. A file uni flat care.m (which demonstrates these functions for a
related system) is provided as a reference which you can use for you own implementation
if you choose to.

i. (10 pts) Generate a parking maneuver (see Figure 1) in flat output space y =
(x1, x2) and use the explicit expressions derived in the previous question (part b)
to compute the state trajectory x(t) and required inputs u(t) from y(t). As in the
previous assignment, the car is required to perform a parallel parking maneuver
starting at state x0 = (0, 5, 0), going forward to state xm = (5, 2.5, 0) and backing-
up to state xf = (0, 0, 0). Assume that each segment takes time T = 10 s. When
designing the paths, you can assume that the magnitude of the initial and final
velocity of the car is |u1| = 1 m/s. Now, implement a linearization-based tracking
controller using part 2a and follow the generated path. Start at a “perturbed” initial
state x̃0 = (0.25, 5.25, 0.1) and show that your controller stabilizes to the desired
trajectory. Plot the flat output trajectory relative to the generated maneuver, and
plot the control trajectory.

ii. (5 pts) Inject Gaussian noise in the controls along the path and comment on the
performance. Plot the flat output trajectory relative to the generated maneuver,
and plot the control trajectory.

3. (10 pts) Recall the omnidirectional hovercraft (from Problem 4 in Homework #2) and the
two-link manipulator (with dynamics given in Lecture Notes #2). The files hover test.m

and arm test.m respectively implement their ODEs and simulates the computed torque law
for these systems. Choose one of the two system models (based on your interests) and
extend its code as follows:
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(a) (5 pts) Implement a trajectory generation routine using e.g. polynomial basis functions
in flat outputs y(t) = q(t). Denote the resulting trajectory by qd(t) and the associated
feedforward control by ud(t).

(b) (5 pts) Add a small disturbing external force to the dynamics which will result in de-
viation from the reference path (i.e. ud(t) alone cannot follow qd(t) exactly). Apply
the computed torque law to employ feedback and track the trajectory qd(t). Plot q(t)
relative to qd(t), and plot u(t) relative to ud(t).

Note: Note: Upload your code and plots as a .zip file (LastName FirstName HW5.zip) using
https://forms.gle/wDMCsuRfvczPGNDi6. In addition, attach a printout of the code and all plots
to your homework solutions.

Appendix

Controllability of Time-varying systems. A linear control system ẋ(t) = A(t)x(t)+B(t)u(t)
with x ∈ Rn and u ∈ Rm is controllable on [t0, tf ] if A(t) and B(t) are smooth and

rank[B0(t) B1(t) · · · Bn−1(t)] = n, for all t ∈ [t0, tf ],

where the maps Bi : [t0, tf ]→ Rn×m are defined recursively according to

B0(t) , B(t), Bi(t) , Ḃi−1(t)−A(t)Bi−1(t).
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