1. (20 pts) Consider a simplified kinematic model of a car-like robot with configuration \(x = (x_1, x_2, x_3) \), where \(x_1, x_2 \) denote the position and \(x_3 \) the orientation. The vehicle is controlled with forward velocity \(u_1 \) and steering angle \(u_2 \). The equations of motion \(\dot{x} = f(x, u) \) are given by

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{pmatrix}
= \begin{pmatrix}
\cos x_3 u_1 \\
\sin x_3 u_1 \\
u_1 \tan u_2 / \ell
\end{pmatrix}
\]

where the constant \(\ell > 0 \) denotes the distance between the axles.

(a) (5 pts) Give expressions for the state and controls in terms of the differentially flat outputs \(y = (x_1, x_2) \).

(b) (15 pts) The car is required to perform a parallel parking maneuver starting at state \(x_0 = (0, 5, 0) \), going forward to state \(x_m = (5, 2.5, 0) \) and backing-up to state \(x_f = (0, 0, 0) \). Employing the fact the system is differentially flat, give explicit expressions for the trajectory \(x(t) \) and required inputs \(u(t) \) to generate the two segments of the parking maneuver. You can use polynomial interpolation or another basis function approach in flat output space. Assume that each segment takes time \(T = 10 \) s. When designing the paths, you can assume that the magnitude of the initial and final velocity of the car in each segment can be chosen freely, e.g. you can set \(|u_1| = 1 \) m/s. See Figure [1]
2. (20 pts) Consider a simplified kinematic model of a car-like robot with configuration \(x = (x_1, x_2, x_3) \), where \(x_1, x_2 \) denote the position and \(x_3 \) the orientation. The vehicle is controlled with forward velocity \(u_1 \) and steering angle \(u_2 \). The equations of motion \(\dot{x} = f(x, u) \) are given by

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{pmatrix} = \begin{pmatrix}
cos x_3 u_1 \\
\sin x_3 u_1 \\
u_1 \tan u_2 \ell
\end{pmatrix}
\]

where the constant \(\ell > 0 \) denotes the distance between the axles.

(a) (5 pts) Assume that the car is required to track a desired feasible reference trajectory \(x_d(t) \) with associated desired inputs \(u_d(t) \) (e.g. such as those computed through differential flatness). Derive the linearized dynamics along the reference trajectory, i.e. in the form:

\[
\dot{e}(t) = A(t) e(t) + B(t) (u(t) - u_d(t)),
\]

where the error \(e(t) \) is defined as \(e(t) \approx x(t) - x_d(t) \) and where \(A(t) \triangleq \partial_x f(x_d(t), u_d(t)) \), \(B(t) \triangleq \partial_u f(x_d(t), u_d(t)) \). Show that the error dynamics is controllable, along trajectories for which \(u_1(t) \neq 0 \). (see Appendix for the required definition of controllability).

(b) (15 pts) Implementation. Write a Matlab script `car_flat_care.m` which implements the steps given below. A file `uni_flat_care.m` (which demonstrates these functions for a related system) is provided as a reference which you can use for you own implementation if you choose to.

i. (10 pts) Generate a parking maneuver (see Figure 1) in flat output space \(y = (x_1, x_2) \) and use the explicit expressions derived in the previous question (part b) to compute the state trajectory \(x(t) \) and required inputs \(u(t) \) from \(y(t) \). As in the previous assignment, the car is required to perform a parallel parking maneuver starting at state \(x_0 = (0, 5, 0) \), going forward to state \(x_m = (5, 2.5, 0) \) and backing-up to state \(x_f = (0, 0, 0) \). Assume that each segment takes time \(T = 10 \text{ s} \). When designing the paths, you can assume that the magnitude of the initial and final velocity of the car is \(|u_1| = 1 \text{ m/s} \). Now, implement a linearization-based tracking controller using part 2a and follow the generated path. Start at a “perturbed” initial state \(\tilde{x}_0 = (0.25, 5.25, 0.1) \) and show that your controller stabilizes to the desired trajectory. Plot the flat output trajectory relative to the generated maneuver, and plot the control trajectory.

ii. (5 pts) Inject Gaussian noise in the controls along the path and comment on the performance. Plot the flat output trajectory relative to the generated maneuver, and plot the control trajectory.

3. (10 pts) Recall the omnidirectional hovercraft (from Problem 4 in Homework #2) and the two-link manipulator (with dynamics given in Lecture Notes #2). The files `hover_test.m` and `arm_test.m` respectively implement their ODEs and simulates the computed torque law for these systems. Choose one of the two system models (based on your interests) and extend its code as follows:
(a) (5 pts) Implement a trajectory generation routine using e.g. polynomial basis functions in flat outputs \(y(t) = q(t) \). Denote the resulting trajectory by \(q_d(t) \) and the associated feedforward control by \(u_d(t) \).

(b) (5 pts) Add a small disturbing external force to the dynamics which will result in deviation from the reference path (i.e. \(u_d(t) \) alone cannot follow \(q_d(t) \) exactly). Apply the computed torque law to employ feedback and track the trajectory \(q_d(t) \). Plot \(q(t) \) relative to \(q_d(t) \), and plot \(u(t) \) relative to \(u_d(t) \).

Note: Upload your code and plots as a .zip file (LastName_FirstName_HW5.zip) using https://forms.gle/Z2AYx3FRNJHtXTR47. In addition, attach a printout of the code and all plots to your homework solutions.

Appendix

Controllability of Time-varying systems. A linear control system \(\dot{x}(t) = A(t)x(t) + B(t)u(t) \) with \(x \in \mathbb{R}^n \) and \(u \in \mathbb{R}^m \) is controllable on \([t_0, t_f]\) if \(A(t) \) and \(B(t) \) are smooth and

\[
\text{rank}\{B_0(t) \ B_1(t) \ \cdots \ B_{n-1}(t)\} = n, \text{ for all } t \in [t_0, t_f],
\]

where the maps \(B_i : [t_0, t_f] \rightarrow \mathbb{R}^{n \times m} \) are defined recursively according to

\[
B_0(t) \triangleq B(t), \quad B_i(t) \triangleq \dot{B}_{i-1}(t) - A(t)B_{i-1}(t).
\]