1. (Khalil) Consider the system

\[
\begin{align*}
\dot{x}_1 &= -x_2 x_3 + 1, \\
\dot{x}_2 &= x_1 x_3 - x_2, \\
\dot{x}_3 &= x_2^3 (1 - x_3)
\end{align*}
\]

(a) Show that the system has a unique equilibrium point. (5 pts)
(b) Using linearization, show that the equilibrium point is asymptotically stable. Is it globally asymptotically stable? (10 pts)

2. (Khalil) Euler equations for a rotating rigid spacecraft are given by

\[
\begin{align*}
J_1 \dot{\omega}_1 &= (J_2 - J_3) \omega_2 \omega_3 + u_1, \\
J_2 \dot{\omega}_2 &= (J_3 - J_1) \omega_3 \omega_1 + u_2, \\
J_3 \dot{\omega}_3 &= (J_1 - J_2) \omega_1 \omega_2 + u_3,
\end{align*}
\]

where \(\omega_1, \omega_2, \omega_3 \) are the components of the angular velocity vector \(\omega \) along the principal axes, \(u_1, u_2, u_3 \) are the torque inputs applied about the principal axes, and \(J_1, J_2, J_3 \) are the principal moments of inertia.

(a) [3 pts] Show that with \(u_1 = u_2 = u_3 = 0 \) the origin \(\omega = 0 \) is stable.
(b) [2 pts] Is it asymptotically stable?
Suppose the torque inputs apply the feedback control \(u_i = -k_i \omega_i \), where \(k_1, k_2, k_3 \) are positive constants. Show that the origin of the closed-loop system is globally asymptotically stable.

3. (Khalil) Consider the \(m \)-link robot dynamics

\[
M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + D \dot{q} + g(q) = u,
\]

where \(q, u \in \mathbb{R}^n \), \(M(q) \) is symmetric positive definite. The matrix \(C \) has the property that \(\dot{M} - 2C \) is skew-symmetric\(^1\) for all \(q, \dot{q} \in \mathbb{R}^n \). The term \(D \dot{q} \) accounts for viscous damping, where \(D \) is positive semidefinite symmetric matrix. The term \(g(q) \) is computed according to \(g(q) = \nabla P(q) \) where \(P(q) \) is the potential energy of the system. Assume that \(P(q) > 0 \) for all \(q \neq 0 \) and \(g(q) = 0 \) has an isolated root at \(q = 0 \).

(a) [5 pts] with \(u = 0 \) use the total energy \(V(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q} + P(q) \) as Lyapunov function to show that the origin \((q = 0, \dot{q} = 0)\) is stable.

(b) [5 pts] with \(u = -K_d \dot{q} \), where \(K_d \) is a positive diagonal matrix, show that the origin is asymptotically stable.

(c) [10 pts] with \(u = g(q) - K_p (q - q^*) - K_d \dot{q} \), where \(K_p \) and \(K_d \) are positive diagonal matrices and \(q^* \) is a desired robot position in \(\mathbb{R}^n \), show that the point \((q = q^*, \dot{q} = 0)\) is an asymptotically stable equilibrium point.

4. Design of a stabilizing controller for a simple mechanical system and Matlab implementation.

Consider an omnidirectional hovercraft (Fig. 1) modeled as a fully actuated rigid body in the plane. It has mass \(m \) and moment of inertia \(J \). It is controlled with three bidirectional thrusters. Two of them are placed in the rear at distance \(r \) from the central axis, and the third passes through the body laterally aligned with the center of mass. The hovercraft position is denoted by \(p = (x, y) \) and its orientation by \(\theta \). The system coordinates are \(q = (x, y, \theta) \). The forces produced by each thruster are denoted by \(u = (u_1, u_2, u_3) \).

The equations of motion of the system can be expressed as

\[
M \ddot{q} + D \dot{q} = B(q)u,
\]

where

\[
M = \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & J \end{pmatrix}, \quad D = \begin{pmatrix} d_x & 0 & 0 \\ 0 & d_y & 0 \\ 0 & 0 & d_\theta \end{pmatrix}, \quad B(q) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -r & r & 0 \end{pmatrix},
\]

with \(d_x, d_y, d_\theta > 0 \) defining viscous damping constants.

Analytical Problems:

(a) [10 pts] Design an exponentially stable controller as a function of the state, i.e. \(u = k(q, \dot{q}) \), so that the system can stabilizes at the origin \((q, \dot{q}) = (0, 0)\). Prove that your controller is exponentially stable.

\(^1\)A skew-symmetric matrix \(S \in \mathbb{R}^{n \times n} \) has the property that \(x^T S x = 0 \) for all \(x \in \mathbb{R}^n \).
(b) [10 pts] Imagine that there is a disk-like obstacle at position \(p_o = (x_o, y_o) \) with radius \(r_o \) that the vehicle must avoid. Assume that the vehicle can sense the obstacle if it is within \(d_o \) meters of it. Augment your control law with an obstacle avoidance term which applies a “steering” force to the \((x, y)\) degrees of freedom defined by

\[
\begin{pmatrix}
 f_x \\
 f_y
\end{pmatrix} = \frac{k_o}{d(q)} \begin{bmatrix}
 0 & -1 \\
 1 & 0
\end{bmatrix} \begin{pmatrix}
 \dot{x} \\
 \dot{y}
\end{pmatrix}.
\]

The force is applied only when the vehicle is heading towards an obstacle, i.e. when the angle between the velocity \((\dot{x}, \dot{y})\) and direction towards obstacle is less than \(\pi/2\). Here, \(k_o\) is positive constant and \(d(q) = \sqrt{(x-x_o)^2 + (y-y_o)^2} - r_o\) is the distance between the vehicle and obstacle. Prove the system is globally asymptotically stable.

Implementation:

Choose the following model parameters: \(m = 1, J = .1, r = .2, D = \text{diag}(.01, .1, .02)\).

(a) [5 pts] Obstacle-free case: implement the controller and simulate the closed-loop system from two initial conditions. In both cases set \(q(0) = (3, 2, -\pi/4)\). The first initial condition must be with zero velocity (i.e. \(\dot{q}(0) = 0\)), while the second with non-zero velocity that you’re free to choose.

(b) [5 pts] Obstacle avoidance case: add an obstacle with \(r_0 = .25\) at position \(p_o = (1, 1)\) and set \(d_o = 1\). Design and simulate the obstacle avoidance controller from the two initial conditions specified in a). Generate trajectories for a few different choices of \(k_o\) and comment on the effect of this gain.

An example implementation of a simpler point-mass vehicle stabilization with obstacle avoidance is provided for reference. See file `hw2_example.m`.

Note: Upload your code and plots as a .zip file using https://forms.gle/Z2AYx3FRNJHtXTR47 in addition attach a printout of the code and all plots to your homework solutions.

5. [Extra Credit - 5 pts] (Khalil) Consider the system

\[
\dot{x} = -a[I_n + S(x) + xx^T]x,
\]

where \(a\) is a positive constant, \(I_n\) is the nxn identity matrix, and \(S(x)\) is an \(x\)-dependent skew symmetric matrix. Note that this system is the same as in hw#1. Show that the origin is globally exponentially stable.