1 Introduction

The role of distributions and controllability:

- *distributions* determine possible directions of motion
- *nonlinear controllability* determines which states can be reached
- *motion planning* employs these structural properties to generate trajectories
- *trajectory tracking* processes feedback to follow these trajectories

today’s slides adapted from G. Oriolo with permission

2 Stabilizability of Nonholonomic Systems

Given a nonlinear control system

\[\dot{x} = f(x, u) \]

our goal is to construct a control law

\[u = k(x) \]

which accomplishes:

- *stabilization*: an equilibrium point \(x_e \) is made asymptotically stable, or
- *tracking*: a desired feasible trajectory \(x_d(t) \) is asymptotically stable

the linear approximation of the system at \(x_e \) is

\[\delta x = A\delta x + B\delta u \quad \delta x = x - x_e, \delta u = u - u_e, \]

where \(A \triangleq \partial_x f(x_e, u_e), B \triangleq \partial_u f(x_e, u_e) \)

- if the linearized system is controllable, then the nonlinear system can be locally smoothly stabilized at \(x_e \) using a feedback law \(\delta u = K\delta x \)
- recall that the linear system is controllable if

\[\text{rank}([B \ AB \ \cdots \ A^{n-1}B]) = n \]
• for driftless (kinematic) models $\dot{q} = G(q)u$ the linear approximation around x_e has always uncontrollable eigenvalues at zero since

$$A = 0 \quad \text{and} \quad \text{rank} B = \text{rank} G(q_e) = m \leq n$$

• Necessary conditions by Brockett’s Theorem: If the system

$$\dot{x} = f(x, u)$$

is locally asymptotically C^1-stabilizable at $x_e = 0$ then the image of the map

$$f : \mathbb{R}^n \times U \rightarrow \mathbb{R}^n$$

contains some neighborhood of x_e. More formally, $\exists \delta > 0$, s.t. $\forall \|\xi\| \leq \delta, \exists x, u$ such that $f(x, u) = \xi$.

• For the special case

$$\dot{x} = g_1(x)u_1 + \ldots + g_m(x)u_m$$

with linearly independent control vectors g_i and

$$\text{rank} \{[g_1(x_e), \ldots, g_m(x_e)]\} = m$$

the system is asymptotically C^1-stabilizable at x_e if and only if $m \geq n$

• Therefore, nonholonomic mechanical systems cannot be stabilized at a point by smooth feedback

• The alternatives are: 1) time-varying feedback; 2) non-smooth (e.g. switching) feedback

3 Steering methods for chained forms (optional material)

3.1 Overview

• the objective is to build a sequence of open-loop input commands that steer the system from q_i to q_f satisfying the nonholonomic constraints

• the degree of nonholonomy gives a good measure of the complexity of the steering algorithm

• there exist canonical model structures for which the steering problem can be solved efficiently

 – chained form
 – power form
 – Chaplygin form

• interest in the transformation of the original model equation into one of these forms

• such model structures allow also a simpler design of feedback stabilizers (necessarily, non-smooth or time-varying)

• we limit the analysis to the case of systems with two inputs, where the three above forms are equivalent (via a coordinate transformation)
3.2 Chained Forms [Murray and Sastry 1993]

- a $(2,n)$ chained form is a two-input driftless control system

\[\dot{z} = g_1(z)v_1 + g_2(z)v_2 \]

in the following form

\[
\begin{align*}
\dot{z}_1 &= v_1 \\
\dot{z}_2 &= v_2 \\
\dot{z}_3 &= z_2v_1 \\
&\vdots \\
\dot{z}_n &= z_{n-1}v_1
\end{align*}
\]

- denoting the repeated Lie brackets as $\text{ad}^k_{g_1,g_2}$

\[
\text{ad}_{g_1,g_2} = [g_1,g_2], \quad \text{ad}^k_{g_1,g_2} = [g_1,\text{ad}^k_{g_1,g_2}]
\]

one has

\[
g_1 = \begin{pmatrix}
1 \\
0 \\
z_2 \\
z_3 \\
& \ddots \\
z_{n-1}
\end{pmatrix}, \quad g_2 = \begin{pmatrix}
0 \\
1 \\
0 \\
0 \\
& \ddots \\
0
\end{pmatrix} \Rightarrow \text{ad}^k_{g_1,g_2} = \begin{pmatrix}
0 \\
& \ddots \\
& & 0 \\
& & & (-1)^k
\end{pmatrix}
\]

in which $(-1)^k$ is the $(k+2)$-th entry.

- a one-chain system is completely nonholonomic (controllable) since the n vectors

\[
\{g_1, g_2, \ldots, \text{ad}^k_{g_1,g_2}, \ldots\}, \quad i = 1, \ldots, n-2
\]

are independent

- its degree of nonholonomy is $k = n - 1$

- v_1 is called the generating input, z_1 and z_2 are called base variables

- if v_1 is (piecewise) constant, the system in chained form behaves like a (piecewise) linear system

- chained systems are a generalization of first- and second-order controllable systems for which sinusoidal steering from z_i to z_f minimizes the integral norm of the input

- different input commands can be used, e.g.

 - sinusoidal inputs
 - piecewise constant inputs
 - polynomial inputs
3.3 Steering with polynomial inputs

- idea similar to piecewise constant input, but with improved smoothness properties w.r.t. time
 (remember that kinematic models are controlled at the (pseudo)velocity level)

- the controls are chosen as
 \[v_1 = \frac{z_{f1} - z_{01}}{T}, \]
 \[v_2 = c_0 + c_1 t + \ldots + c_{n-2} t^{n-2} \]

where \(T \) is desired final time and \(c_0, \ldots, c_n \) obtained solving the linear system coming from
the closed-form integration of the model

\[
M(T) \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-2} \end{pmatrix} + m(z_0, T) = \begin{pmatrix} z_{f2} \\ z_{f3} \\ \vdots \\ z_{fn} \end{pmatrix}
\]

with \(M(T) \) nonsingular for \(T \neq 0 \).

- if \(z_{f1} = z_{01} \) and intermediate point must be added

Example 1. Unicycle: consider the following change of coordinates

\[
z_1 = x \\
z_2 = \tan \theta \\
z_3 = y.
\]

and input variables

\[
u_1 = v_1 / \cos \theta \\
u_2 = v_2 \cos^2 \theta.
\]

The new equivalent system becomes

\[
\dot{z}_1 = v_1 \\
\dot{z}_2 = v_2 \\
\dot{z}_3 = z_2 v_1,
\]

Assume that the system must move between two configurations which we express in terms of the
new coordinates by \((z_{01}, z_{02}, z_{03})\) (initial) and \((z_{f1}, z_{f2}, z_{f3})\) (final).

To satisfy the first coordinate we set

\[
v_1 = \frac{z_{f1} - z_{01}}{T}, \quad v_2 = c_0 + c_1 t,
\]

where \(c_0, c_1 \) are unknowns. After integrating \(\dot{z}_2 \) we have

\[
z_2(t) = z_{02} + c_0 t + \frac{1}{2} c_1 t^2
\]
from which after integrating \(\dot{z}_3 \) we get

\[
z_3(t) = z_{03} + v_1 \left(z_{02}t + \frac{1}{2} c_0 t^2 + \frac{1}{6} c_1 t^3 \right)
\]

Now we can solve for \(c_0, c_1 \) the relationships

\[
z_2(T) = z_{f2}, \quad z_3(T) = z_{f3}
\]

which is equivalent to the relationship

\[
\begin{bmatrix}
T \\
\frac{T^2}{2} \\
\frac{T^3}{6}
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix} +
\begin{bmatrix}
z_{02} \\
z_{03} + v_1 z_{02} T
\end{bmatrix} =
\begin{bmatrix}
z_{f2} \\
z_{f3}
\end{bmatrix}
\]

and so the coefficients are found as

\[
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix} = M(T)^{-1} \left(\begin{bmatrix}
z_{f2} \\
z_{f3}
\end{bmatrix} - m(z_0, T) \right).
\]

- Sinusoidal inputs: a two-phase process
 - Phase 1: steer base variables \(z_1 \) and \(z_2 \) to their desired values \(z_{f1} \) and \(z_{f2} \)
 - Phase 2: choose
 \[
 \begin{align*}
 v_1 &= a_0 + \sin \omega t \\
 v_2 &= b_0 + \cos \omega t + \cdots + b_{n-2} \cos(n-2)\omega t,
 \end{align*}
 \]
 and solve numerically for the \(n+1 \) unknowns in terms of the boundary conditions

- piece-wise constant controls
 - subdivide total time \(T \) into subintervals of length \(\delta \)
 \[
 \begin{align*}
 v_1(\tau) &= v_{1,k} \quad \tau \in [(k-1)\delta, k\delta] \\
 v_2(\tau) &= v_{2,k}
 \end{align*}
 \]
 - it is convenient to set \(v_1 = \text{constant} \Rightarrow \) then the unknowns
 \[
 v_{2,1}, v_{2,2}, \ldots, v_{2,n-1}
 \]
 are found by solving a triangular linear system

3.4 Chained Form Transformation

Define the distributions

\[
\begin{align*}
\Delta_0 &= \text{span}\{g_1, g_2, \text{ad}_{g_1}g_2, \ldots, \text{ad}_{g_1}^{n-2}g_2\} \\
\Delta_1 &= \text{span}\{g_2, \text{ad}_{g_1}g_2, \ldots, \text{ad}_{g_1}^{n-2}g_2\} \\
\Delta_2 &= \text{span}\{g_2, \text{ad}_{g_1}g_2, \ldots, \text{ad}_{g_1}^{n-3}g_2\}
\end{align*}
\]
If, for some open set, one has (i) \(\dim \Delta_0 = n \), (ii) \(\Delta_1, \Delta_2 \) are involutive, (iii) there exists a function \(h_1 \) such that
\[
dh_1 \cdot \Delta_1 = 0 \quad dh_1 \cdot g_1 = 1
\]
then the system can be transformed into chained form

the change of coordinates is given by

\[
\begin{align*}
z_1 &= h_1 \\
z_2 &= L_{g_1}^{n-2}h_2 \\
 & \quad \vdots \\
z_{n-1} &= L_{g_1}h_2 \\
z_n &= h_2
\end{align*}
\]

with \(h_2 \) independent from \(h_1 \) and such that \(dh_2 \cdot \Delta_2 = 0 \) the input transformation is given by

\[
\begin{align*}
v_1 &= u_1 \\
v_2 &= (L^{n-1}_{g_1}h_2)u_1 + (L_{g_2}L_{g_1}^{n-2}h_2)u_2
\end{align*}
\]