1 Distributions

The role of distributions and controllability:

- **distributions** determine possible directions of motion
- **nonlinear controllability** determines which states can be reached
- **motion planning** employs these structural properties to generate trajectories
- **trajectory tracking** processes feedback to follow these trajectories

- Let \(g_1(x), \ldots, g_m(x) \) be linearly independent vector fields on \(M \).
- A **distribution** \(\Delta \) assigns a subspace of the tangent space to each point defined by
 \[
 \Delta = \text{span}\{g_1, \ldots, g_m\}.
 \]

- A distribution \(\Delta \) is **involutive** if it is closed under the Lie bracket, i.e. if
 \[
 \forall f(x), g(x) \in \Delta(x), \quad [f(x), g(x)] \in \Delta(x)
 \]

- A distribution \(\Delta \) is **regular** if the dimension of \(\Delta_x \) does not vary with \(x \).

- A distribution \(\Delta \) of constant dimension \(k \) is **integrable** if for every \(x \in \mathbb{R}^n \) there are smooth functions \(h_i : \mathbb{R}^n \to \mathbb{R} \) such that \(\frac{\partial h_i}{\partial x} \) are linearly independent at \(x \) and for every \(f \in \Delta \)
 \[
 L_fh_i = \frac{\partial h_i}{\partial x}f(x) = 0, \quad i = 1, \ldots, n-k.
 \]

- The hypersurfaces defined as the level sets
 \[
 \{q : h_1(x) = c_1, \ldots, h_{n-k}(x) = c_{n-k}\},
 \]
 are called **integral manifolds** for the distribution.

- **Frobenius Theorem:** A regular distribution is integrable if and only if is involutive.

- If the distribution \(\Delta \) is involutive then its integral manifolds (level sets of functions \(h_i \)) are **leaves** of a **foliation** of \(\mathbb{R}^n \)
Examples

- The nonholonomic integrator

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
-x_2
\end{pmatrix} u_1 + \begin{pmatrix}
0 \\
1 \\
x_1
\end{pmatrix} u_2
\]

- Trapped on a sphere

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{pmatrix} = \begin{pmatrix}
x_2 \\
-x_1 \\
0
\end{pmatrix} u_1 + \begin{pmatrix}
x_3 \\
0 \\
-x_1
\end{pmatrix} u_2
\]

2 Nonlinear Controllability

2.1 Reachable Sets

- Consider the nonlinear control system (NCS)

\[
\Sigma : \quad \dot{x} = g_0(x) + \sum_{i=1}^{m} g_i(x) u_i, \quad x \in \mathbb{R}^n, u \in U \subset \mathbb{R}^m
\]

- A system is controllable if for any \(x_0, x_f \in \mathbb{R}^n \) there exists a time \(T \) and \(u : [0, T] \rightarrow U \) such that \(\Sigma \) satisfies \(x(0) = x_0 \) and \(x(T) = x_f \).

- A system is small-time locally controllable (STLC) at \(x_0 \) if it can reach nearby points in arbitrary small times and stay near \(x_0 \).

- The reachable set \(\mathcal{R}^V(x_0, T) \) is the set of states \(x(T) \) for which there is a control \(u : [0, T] \rightarrow U \) that steers the system from \(x(0) \) to \(x(T) \) without leaving an open set \(V \) around \(x_0 \).

- The set of states reachable up to time \(T \) is defined by

\[
\mathcal{R}^V(x_0, \leq T) = \bigcup_{0<\tau\leq T} \mathcal{R}^V(x_0, \tau)
\]

2.2 Controllability Conditions

- NCS is locally accessible (LA) from \(x_0 \) if \(\forall V, \) a neighborhood of \(x_0 \) and \(\forall T > 0 \)

\[
\Omega \subset \mathcal{R}^V(x_0, \leq T), \text{ for some open set } \Omega
\]

- NCS is STLC if every neighborhood \(V \) of \(x_0 \) and every \(T > 0 \) if \(\mathcal{R}^V(x_0, T) \) contains a neighborhood of \(x_0 \).

- STLC \(\Rightarrow \) controllability \(\Rightarrow \) LA (not vice versa)
• Checking LA is performed through an algebraic test:
 – Let $\bar{\Omega}$ be the involutive closure of the distribution of $\{g_0, g_1, \ldots, g_m\}$
 – **Theorem (Chow):** NCS is LA from x_0 if and only if
 \[
 \dim \bar{\Delta}(x_0) = n : \text{accessibility rank condition}
 \]
 – Algorithmic Test:
 \[
 \bar{\Delta} = \text{span} \left\{ v \in \bigcup_{k \geq 0} \Delta^k \right\} \text{ with } \begin{cases}
 \Delta^0 = \text{span}\{g_0, g_1, \ldots, g_m\} \\
 \Delta^k = \Delta^{k-1} + \text{span}\{[g_j, v], j = 0, \ldots, m : v \in \Delta^{k-1}\}
 \end{cases}
 \]

• only sufficient conditions exists for STLC, e.g., [Sussmann 1987]
• however, for driftless control systems:
 \[\text{LA } \iff \text{controllability } \iff \text{STLC}\]
• this equivalence holds also whenever
 \[
g_0(x) \in \text{span}\{g_1(x), \ldots, g_m(x)\}, \quad \forall x \in X
 \]
 ("trivial" drift)
• if the driftless control system
 \[
 \dot{q} = \sum_{i=1}^{m} g_i(q)v_i,
 \]
 with state q and inputs v is controllable, then its *dynamic extension*
 \[
 \dot{q} = \sum_{i=1}^{m} g_i(x)v_i, \\
 \dot{v}_i = u_i, \quad i = 1, \ldots, m,
 \]
 with state $x = (q, v)$ and controls u is also controllable (and vice versa).

Examples
• The unicycle
 \[
 g_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \Rightarrow \quad g_3 = [g_1, g_2] = \begin{pmatrix} -\sin \theta \\ \cos \theta \\ 0 \end{pmatrix}
 \]
 \[
 \dim \bar{\Delta} = 3 \text{ for all } q
 \]
• The car-like robot (rear-drive)

\[
g_1 = \begin{pmatrix}
\cos \theta \\
\sin \theta \\
\tan \phi / \ell
\end{pmatrix},
g_2 = \begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix}
\]

\[
g_3 = [g_1, g_2] = \begin{pmatrix}
0 \\
0 \\
-1 / \ell \cos^2 \phi \\
0
\end{pmatrix},
g_4 = [g_1, g_3] = \begin{pmatrix}
-\sin \theta / \ell \cos^2 \phi \\
\cos \theta / \ell \cos^2 \phi \\
0 \\
0
\end{pmatrix}
\]

\[\dim \Delta = 4\] away from singularity at \(\phi = \pm \pi/2 \) of \(g_1 \)

• more generally, the filtration of a distribution \(\Delta \) is defined by

\[
\Delta_1 = \Delta, \quad \Delta_i = \Delta_{i-1} + [\Delta_1, \Delta_{i-1}], i \geq 2
\]

where

\[[\Delta_1, \Delta_{i-1}] = \text{span}\{[g, h] : g \in \Delta_1, h \in \Delta_{i-1}\} \]

• after enough “bracketing” (e.g. \(k \) times) the rank of \(\Delta_i \) for \(i \geq k \) stops increasing, no more new directions of motion appear. The smallest such \(k \) is called degree of nonholonomy of the distribution, i.e. such that

\[\dim \Delta_{k+1} = \dim \Delta_k. \]

• Classification in terms of \(k \)

 – completely nonholonomic: \(\dim(\Delta_k) = n \)

 – partially nonholonomic: \(m < \dim(\Delta_k) < n \)

 – holonomic: \(\dim(\Delta_k) = m = n - k \)

• Examples: unicycle \((k = 2)\), car-like robot \((k = 3)\)

2.3 Good and bad brackets

For the general system with non-zero drift \(g_0 \) term we will use the concept of good and bad brackets.

A bad bracket is a Lie bracket generated using an odd number of \(g_0 \) vectors and even number of \(g_i \) (for each \(i = 1, \ldots, m \)) vectors. A good bracket is one that is not bad.

Theorem 1. A control system with \(x \in \mathbb{R}^n \) and controls \(u \in U \subset \mathbb{R}^m \)

\[
\dot{x} = g_0(x) + \sum_{i=1}^{m} g_i(x)u_i
\]

is STLC at \(x^* \) if

1. \(g_0(x^*) = 0 \)
2. \(U \) is open and its convex hull contains 0
3. LARC is satisfied using brackets of degree k

4. any bad bracket of degree $j \leq k$ can be expressed as linear combination of good brackets of degree $< j$

Example 1. from Principles of Robot Motion Consider the planar rigid body with state $x \in \mathbb{R}^6$ defining its position, orientation, and velocities, controls $u \in \mathbb{R}^2$ defining the forward force and lateral force (at distance d from the center-of-mass) with vector fields

$$g_0(x) = \begin{pmatrix} x_4 \\ x_5 \\ x_6 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad g_1(x) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \cos x_3 \\ \sin x_3 \\ 0 \end{pmatrix}, \quad g_2(x) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\sin x_3 \\ \cos x_3 \\ -d \end{pmatrix},$$

We can define

$$g_3 = [g_0, g_1], \quad g_4 = [g_0, g_2], \quad g_5 = [g_1, g_4], \quad g_6 = [g_0, g_5],$$

and note that

$$\det([g_1, g_2, g_3, g_4, g_5, g_6]) = d^4 \Rightarrow \text{LARC of degree 4}$$

The bad brackets of degree < 4 are

$$[g_1, [g_0, g_1]] = 0, \quad [g_2, [g_0, g_2]] = (0, 0, 0, 2d \cos x_3, 2d \sin x_3, 0) \triangleq 2dg_1,$$

and since both are spanned by good brackets of lower order then the system is STLC. Note that since the first bad bracket is zero then it becomes irrelevant.