1. (15 pts) (Khalil) Consider the system
\[
\dot{x}_1 = -x_1 + x_2 - x_3, \quad \dot{x}_2 = -x_1 x_3 - x_2 + u, \quad \dot{x}_3 = -x_1 + u, \quad y = x_3
\]
(a) (5 pts) Is the system input-output linearizable?
(b) (5 pts) If yes, transform it into the normal form and specify the region over which the transformation is valid
(c) (5 pts) Is the system minimum phase?

2. (15 pts) Consider the system
\[
\dot{x}_1 = -x_2 - \frac{3}{2} x_1^2 - \frac{1}{2} x_2^2, \quad \dot{x}_2 = u
\]
(a) (10 pts) Design a globally stabilizing state feedback controller by using feedback linearization.
(b) (5 pts) Implement the controller in Matlab. Starting from \((x_1, x_2) = (-4, 0)\), simulate the closed-loop dynamics and plot graphs of the states and control versus time.

3. (15 pts) Consider the dynamics of the flexible joint robot (Figure 1a) given by
\[
I \ddot{q}_1 + Mgl \sin q_1 + k(q_1 - q_2) = 0
\]
\[
J \ddot{q}_2 + k(q_2 - q_1) = u.
\]
The goal is to achieve a desired motion of the first joint \(q_1\) expressed using the output function
\[
y = q_1.
\]
(a) (10 pts) Show that the virtual input that renders this system feedback linearizable is
\[v = y^{(4)} \]
and provide the static feedback transformation
\[u = \alpha(x) + \beta(x)v \]

(b) (5 pts) Find a control law for the virtual input \(v \) so that the error state given by
\[z = \begin{pmatrix} y - y_d \\ \dot{y} - \dot{y}_d \\ \ddot{y} - \ddot{y}_d \\ y^{(3)} - y_d^{(3)} \end{pmatrix} \]
stabilizes to zero. Note: it is enough to express the closed-loop system as \(\dot{z} = Az \) and assume standard stability conditions on the chosen gains. Extra credit (3 pts): what are the exact algebraic stability requirements on the chosen gains?

4. (20 pts) Consider the control of a car-like robot (Figure 4) with equations of motion
\[\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \frac{\tan u_1}{\ell} v \\
\dot{v} &= u_2
\end{align*} \]
where the state \((x, y, \theta, v)\) denotes the position, orientation, and forward velocity. The inputs \(u_1\) and \(u_2\) denote the steering wheels angle and the forward acceleration, respectively. The constant \(\ell > 0\) denotes the distance between the axles.

(a) (10 pts) Using feedback linearization, design a control law that can track a given trajectory \((x(t), y(t))\).

(b) Implementation. Write a Matlab script \texttt{car traj fl.m} which implements your feedback-linearizing controller to follow a chosen reference trajectory. A file \texttt{uni flat fl.m} which demonstrates these functions for a related system is provided as a reference which you can use for your own implementation if you choose to.

i. (4 pts) Plot the desired reference path
ii. (6 pts) Implement your tracking controller and follow the generated path. Start at a “perturbed” initial state and show that your controller stabilizes to the desired trajectory.

Note: Upload all code and plots as a .zip file using \texttt{https://tinyurl.com/wr2lubj} in addition attach a printout of the code and all plots to your homework solutions.