The trajectory planning problem

- design a reference trajectory $x(t) \in \mathbb{R}^n$ and control inputs $u(t) \in \mathbb{R}^m$ by solving the constrained optimal control problem:

\[
\min_{x(\cdot), u(\cdot), t_f} J = \phi(x(t_f), t_f) + \int_{t_0}^{t_f} L(x(t), u(t), t) dt,
\]

subject to:

\[
x(t_0) = x_0, \quad x(t_f) \text{ and } t_f \text{ free}
\]

\[
\dot{x}(t) = f(x(t), u(t), t)
\]

\[
c(x(t), u(t), t) \leq 0, \text{ for all } t \in [t_0, t_f]
\]

\[
\psi(x(t_f), t_f) \leq 0,
\]

where

- $[t_0, t_f]$ - time horizon, x_0-initial state
- L - trajectory cost: e.g. control effort, energy, time, distance
- ϕ - terminal cost: e.g. reaching a desired region
- c - trajectory constraints: e.g. control bounds, forbidden regions in X
- ψ - terminal constraint defines algebraically a goal region
Issues and Challenges

Generally, it’s a hard problem:

- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques

- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
- linearize/convexify the problem
 - might become too conservative or not realizable; might not scale to complex constraints
- discretize the space and use discrete search
 - not scalable: exponential in state dimension and time
- dynamic constraints difficult to handle
- sampling-based methods
 - randomized approximation of the space of trajectories (e.g. as a graph with randomly sampled nodes) and then search
 - By law of large numbers it approaches the optimal solution but typically at a very slow rate
Issues and Challenges

Generally, it’s a hard problem:

- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques

- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
Issues and Challenges

Generally, it’s a hard problem:
- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques
- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
Issues and Challenges

Generally, it’s a hard problem:

▶ no closed-form solution in general (beyond the linear-quadratic case)
▶ infinite dimensional; numerically NP-complete

Solution Techniques

▶ nonlinear optimization (over finite trajectory parameterization)
 ▶ could be slow, might not converge, only locally optimal
▶ stochastic trajectory optimization
 ▶ cannot handle complex constraints, e.g. narrow passages
▶ linearize/convexify the problem
 ▶ might become too conservative or not realizable; might not scale to complex constraints
Issues and Challenges

Generally, it’s a hard problem:
- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques
- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
- linearize/convexify the problem
 - might become too conservative or not realizable; might not scale to complex constraints
- discretize the space and use discrete search
 - not scalable: exponential in state dimension and time
 - dynamic constraints difficult to handle
Issues and Challenges

Generally, it’s a hard problem:
- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques
- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
- linearize/convexify the problem
 - might become too conservative or not realizable; might not scale to complex constraints
- discretize the space and use discrete search
 - not scalable: exponential in state dimension and time
 - dynamic constraints difficult to handle
- sampling-based methods
 - randomized approximation of the space of trajectories (e.g. as a graph with randomly sampled nodes) and then search
 - By law of large numbers it approaches the optimal solution but typically at a very slow rate
Example: Tree-based Sampling Motion Planning

optimal motion? probabilistic roadmap (PRM) kinodynamic planning
The basic algorithm: rapidly-exploring random tree (RRT)

Algorithm 1: $\mathcal{T} \leftarrow \text{RRT}(\eta_0)$

1. $\mathcal{T} \leftarrow \text{InitializeTree}()$
2. $\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, \eta_0, \mathcal{T})$
3. for $i = 1 : N$ do
 4. $\eta_{\text{rand}} \leftarrow \text{Sample}$
 5. $\eta_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, \eta_{\text{rand}})$
 6. $(\bar{x}_{\text{new}}, \bar{u}_{\text{new}}, T_{\text{new}}) \leftarrow \text{Steer}(\eta_{\text{nearest}}, \eta_{\text{rand}})$
 7. if ObstacleFree(\bar{x}_{new}) then
 8. $\mathcal{T} \leftarrow \text{InsertNode}(\eta_{\text{nearest}}, \eta_{\text{new}}, \mathcal{T})$
 9. return \mathcal{T}

- A node is the tuple $\eta_i = (x_i, p_i, J_i) \in \mathcal{N} = \mathcal{X} \times \mathbb{N} \times \mathbb{R}_+$ where
 - $x_i \in \mathcal{X}$ is the state
 - $p_i \in \mathbb{N}$ is the index of the parent node of i, i.e. η_{p_i} is the parent of η_i
 - J_i is the cumulative cost from the start η_0 to η_i
- A tree $\mathcal{T} \subset \mathcal{N}$ is a particular arrangement of nodes
The basic algorithm: rapidly-exploring random tree (RRT)

Algorithm 2: $\mathcal{T} \leftarrow \text{RRT}(\eta_0)$

1. $\mathcal{T} \leftarrow \text{InitializeTree}()$
2. $\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, \eta_0, \mathcal{T})$
3. for $i = 1 : N$ do
 4. $\eta_{\text{rand}} \leftarrow \text{Sample}$
 5. $\eta_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, \eta_{\text{rand}})$
 6. $(\bar{x}_{\text{new}}, \bar{u}_{\text{new}}, \mathcal{T}_{\text{new}}) \leftarrow \text{Steer}(\eta_{\text{nearest}}, \eta_{\text{rand}})$
 7. if ObstacleFree(\bar{x}_{new}) then
 8. $\mathcal{T} \leftarrow \text{InsertNode}(\eta_{\text{nearest}}, \eta_{\text{new}}, \mathcal{T})$
9. return \mathcal{T}

- A node is the tuple $\eta_i = (x_i, p_i, J_i) \in \mathcal{N} = \mathcal{X} \times \mathbb{N} \times \mathbb{R}_+$ where
 - $x_i \in \mathcal{X}$ is the state
 - $p_i \in \mathbb{N}$ is the index of the parent node of i, i.e. η_{p_i} is the parent of η_i
 - J_i is the cumulative cost from the start η_0 to η_i

- A tree $\mathcal{T} \subset \mathcal{N}$ is a particular arrangement of nodes
Key ingredients

- sampling routine Sample
- distance function $\rho(x_a, x_b) \geq 0$ for determining $\text{Nearest}(\mathcal{T}, \eta)$
- steering method $\text{Steer}(\eta_a, \eta_b)$
- collision detection $\text{ObstacleFree}(x)$
Key ingredients: sampling routine Sample

- **Baseline**: uniform sampling

 - **low-dispersion**: reduce largest unsampled space between all samples
 \[
 \delta(P) = \sup_{x \in \mathcal{X}} \min_{x' \in P} \{\rho(x, x')\},
 \]
 where \(P \) is a set of sampled points

 - **low-discrepancy**: # of samples inside a set are consistent with the volume of the set
 \[
 D(P, \mathcal{R}) = \sup_{R \in \mathcal{R}} \left\{ \left\| \frac{|P \cap R|}{k} - \frac{\mu(R)}{\mu(\mathcal{X})} \right\| \right\},
 \]
 where \(\mathcal{R} \) are all subsets of \(\mathcal{X} \) and \(\mu \) measures the volume of a set

- Non-uniform sampling: exploiting problem structure (more later)
Key ingredients: sampling routine Sample

- **Baseline**: uniform sampling

- **low-dispersion**: reduce largest unsampled space between all samples

\[
\delta(P) = \sup \{ \min_{x \in X} \min_{x' \in P} \{ \rho(x, x') \} \},
\]

where \(P \) is a set of sampled points

- **low-discrepancy**: # of samples inside a set are consistent with the volume of the set

\[
D(P, \mathcal{R}) = \sup_{R \in \mathcal{R}} \left\{ \left\| \frac{|P \cap R|}{k} - \frac{\mu(R)}{\mu(X)} \right\| \right\},
\]

where \(\mathcal{R} \) are all subsets of \(X \) and \(\mu \) measures the volume of a set

- **non-uniform sampling**: exploiting problem structure (more later)
Distance function $\rho(x_a, x_b) \geq 0$ for determining Nearest (T, η)

- ideal distance is the true cost-to-go from x_a to x_b, i.e.
 $$\rho(x_a, x_b) = J(\bar{x}_{a\rightarrow b}, \bar{u}_{a\rightarrow b})$$
Key ingredients: distance function

Distance function $\rho(x_a, x_b) \geq 0$ for determining Nearest (T, η)

- ideal distance is the true cost-to-go from x_a to x_b, i.e.
 $\rho(x_a, x_b) = J(\bar{x}_{a\rightarrow b}, \bar{u}_{a\rightarrow b})$

- which typically unavailable or expensive to compute so use a lower bound *heuristic cost*, e.g.

\[
\rho(x_a, x_b) = \sqrt{(x_b - x_a)^T W (x_b - x_a)},
\]

i.e. a weighted Euclidean distance (for some matrix $W > 0$)
Key ingredients: distance function

Distance function $\rho(x_a, x_b) \geq 0$ for determining Nearest (\mathcal{T}, η)

- ideal distance is the true cost-to-go from x_a to x_b, i.e.
 \[\rho(x_a, x_b) = J(\bar{x}_{a \rightarrow b}, \bar{u}_{a \rightarrow b}) \]
- which typically unavailable or expensive to compute so use a lower bound heuristic cost, e.g.
 \[\rho(x_a, x_b) = \sqrt{(x_b - x_a)^T W (x_b - x_a)}, \]
 i.e. a weighted Euclidean distance (for some matrix $W > 0$)

- Nearest (\mathcal{T}, η) can be set by:
 - $\rho(x_a, x_b)$: local distance ordering, i.e. standard RRT
 - $J_a + \rho(x_a, x_b)$: cost-to-come to parent + local distance ordering, i.e. RRT with optimal cost-to-come
Key ingredients: steering method $\text{Steer}(\eta_a, \eta_b)$

- Structured models (assume controllability)
 - open-loop trajectory generation: exploit nonholonomy, flatness, symmetries, if possible
 - employ efficient closed-form local methods, e.g. polynomial boundary value solutions

- Complicated / Black box models:
 - only possible to sample control space
 - observe/simulate generated trajectories
 - must be resolution complete: i.e. reach infinitely close to any state
 - typically implies a regularity condition: that small change in u result in small change in x
Key ingredients: steering method $\text{Steer}(\eta_a, \eta_b)$

- **Structured models (assume controllability)**
 - open-loop trajectory generation: exploit nonholonomy, flatness, symmetries, if possible
 - employ efficient closed-form local methods, e.g. polynomial boundary value solutions
- **Complicated / Black box models:**
 - only possible to sample control space
 - observe/simulate generated trajectories
 - must be *resolution complete*: i.e. reach infinitely close to any state
 - typically implies a regularity condition: that small change in u result in small change in x
Key ingredients: steering method $\text{Steer}(\eta_a, \eta_b)$

- Structured models (assume controllability)
 - open-loop trajectory generation: exploit nonholonomy, flatness, symmetries, if possible
 - employ efficient closed-form local methods, e.g. polynomial boundary value solutions

- Complicated / Black box models:
 - only possible to sample control space
 - observe/simulate generated trajectories
 - must be resolution complete: i.e. reach infinitely close to any state
 - typically implies a regularity condition: that small change in u result in small change in x

- Steering using a finite set of primitives
 - primitives must be carefully chosen to satisfy controllability
 - in this case controllability is equivalent to resolution completeness
Key ingredients: collision checking \(\text{ObstacleFree}(\tilde{x}_{\text{new}}) \)

- ensure constraints \(c(t, x, u) \leq 0 \) are satisfied
- often the free configuration space is difficult to compute
- easiest to use a black-box collision checking package
- simulate controls \(u(t) \) and check collision

Example: Proximity Query Package (PQP)
http://gamma.cs.unc.edu/SSV/

PQP collision checking

PQP distance and direction
Tree-based planners

Various tree-based planners are possible (LaValle, 2006)

It is critical to solve the boundary value (steering) problem (BVP)

a) standard planning to a goal set X_G
b) reaching a specific goal
c) tree grown backwards from goal
d) bidirectional tree: forward from start and backward from goal
Key challenges in motion planning

- achieving efficiency even in high dimensions
- handling complicated constraints, e.g. narrow passages
- finding optimal not just feasible solutions
- hybrid and non-smooth systems
- distributed systems planning, parallel processing
- dealing with uncertainty
 - partially known system dynamics
 - unstructured dynamic uncertain environment
 - formal robustness guarantees
- holy grail: unifying planning, estimation, and control
From exploration to optimality

- Sampling-based methods are good at exploring the space to find “a path” but notoriously slow in converging to the “optimal” path.
- An important recent method: RRT* (Karaman, Frazzoli, 2011)
- Idea: rewire tree to maintain optimal cost-to-go
- Key result: only need to rewire by checking $\approx \log(n)$ neighbors
- Challenges: extend theory to complex dynamics; principled neighbor selection; CPU time?

![Images of RRT and RRT* iterations](images)
The RRT* algorithm

Algorithm 3: \(\mathcal{T} \leftarrow \text{RRT}^*(\eta_0, X_g) \)

1. \(\mathcal{T} \leftarrow \text{InitializeTree()} \)
2. \(\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, \eta_0, \mathcal{T}) \)
3. for \(i = 1 : N \) do
 4. \(\eta_{\text{rand}} \leftarrow \text{Sample}(i) \)
 5. \(\eta_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, \eta_{\text{rand}}) \)
 6. \((x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \text{Steer}(\eta_{\text{nearest}}, \eta_{\text{rand}}) \)
 7. if \(\text{ObstacleFree}(x_{\text{new}}) \) then
 8. \(\mathcal{N}_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, \eta_{\text{new}}, |V|) \)
 9. \(\eta_{\text{min}} = \text{ChooseParent}(\mathcal{N}_{\text{near}}, \eta_{\text{nearest}}, x_{\text{new}}) \)
 10. \(\mathcal{T} \leftarrow \text{InsertNode}(\eta_{\text{min}}, \eta_{\text{new}}, \mathcal{T}) \)
 11. \(\mathcal{T} \leftarrow \text{Rewire}(\mathcal{T}, \mathcal{N}_{\text{near}}, \eta_{\text{min}}, \eta_{\text{new}}) \)
4. return \(\mathcal{T} \)
The RRT* algorithm (cont.)

Algorithm 4: \(\eta_{\text{min}} \leftarrow \text{ChooseParent}(N_{\text{near}}, \eta_{\text{nearest}}, x_{\text{new}}) \)

1. \(\eta_{\text{min}} \leftarrow \eta_{\text{nearest}} \)
2. \(c_{\text{min}} \leftarrow \text{CostToCome}(\eta_{\text{nearest}}) + \text{Cost}(x_{\text{new}}) \)
3. for \(\eta_{\text{near}} \in N_{\text{near}} \) do
 4. \((x', u', T') \leftarrow \text{Steer}(\eta_{\text{near}}, \eta_{\text{new}}) \)
 5. if ObstacleFree\((x')\) and \(x'(T') = \eta_{\text{new}}\) then
 6. \(c' = \text{CostToCome}(\eta_{\text{near}}) + \text{Cost}(x')\)
 7. if \(c' < c_{\text{min}}\) then
 8. \(\eta_{\text{min}} \leftarrow \eta_{\text{near}}\)
 9. \(c_{\text{min}} \leftarrow c'\)
4. return \(\eta_{\text{min}}\)

Algorithm 5: \(T \leftarrow \text{Rewire}(T, N_{\text{near}}, \eta_{\text{min}}, x_{\text{new}}) \)

1. for \(\eta_{\text{near}} \in N_{\text{near}} \setminus \{\eta_{\text{min}}\} \) do
 2. \((x', u', T') \leftarrow \text{Steer}(\eta_{\text{new}}, \eta_{\text{near}}) \)
 3. if ObstacleFree\((x')\) and \(x'(T') = \eta_{\text{near}}\) and
 4. \(\text{CostToCome}(\eta_{\text{new}}) + \text{Cost}(x') < \text{CostToCome}(\eta_{\text{near}})\) then
 5. \(T \leftarrow \text{Reconnect}(\eta_{\text{new}}, \eta_{\text{near}}, T)\)
4. return \(T\)